首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Abstract: We assessed the potential effect of frugivore extinctions on forest regeneration in the North Negros Forest Reserve, a forest fragment that is one of the last remaining wet tropical rainforest ecosystems in the biogeographic region of the central Philippine Islands. We evaluated foraging observations of 19 species of birds, fruit bats, and other mammals in three successional habitats and identified tree species that are potentially at risk because their seeds are dispersed by frugivores that are seriously endangered. The relative abundance of zoochorous trees in this forest community was exceptionally high (80%), suggesting that the process of forest regeneration will change drastically if endangered frugivores are hunted to extinction. We grouped 45 tree species as early-, mid-, or late-successional species based on their population structure and we demonstrated that early-successional tree species were visited by a wide spectrum of frugivores, whereas mid- and late-successional species were visited mostly by hornbills (Bucerotidae) and fruit pigeons (Columbidae). Late-successional tree species were most specialized with respect to dispersers and could therefore be susceptible to extinction. We recommend tree species that could be useful for assisted natural regeneration projects in the reserve because they are visited by a variety of frugivores. Of those, we recommend early-successional trees for open-field plantations and mid-successional tree species for enrichment plantings.  相似文献   

2.
Forest succession is the base of establishing restoration reference which plays an important role in forest restoration and restoration estimation. The study presented the establishment of a Markov successional model (MSM) and its application to restoration reference in lower subtropical forest in China. The compositions of successional system in MSM were divided into three species types: pioneering pine trees, heliophytic trees and mesophytic trees. The successional system was divided into three subsystems: early successional stage, mid-successional stage and late-successional stage. Based on the site survey on the changes in the species and their individuals in 25 years, the transition matrices in various subsystems were determined. The predicted results were used to establish the restoration reference of the vegetation restoration in lower subtropical China. According to the ecological restoration reference established in this study, it would take 150 years for the forest to change from pioneer to mature communities in the region. Successional change of tree composition was forecast by the model, and the scenario forecast by the model reflects the actual conditions observed through 52 years of long-term permanent site research. The restoration experience in the region matches the forecast results. The application of a restoration reference model indicates that forest restoration can be accelerated by taking measures which change forest structure. The above results imply that a restoration reference established on the rule of regional forest succession could be very useful not only in directing, but also in assessing and managing regional forest restoration. Previously, one “ideal reference ecosystem” was used as a restoration reference in all correlative studies. In this study, the restoration “process” was used as the restoration reference.  相似文献   

3.
Despite the great interest in characterizing the functional structure and resilience of functional groups in natural communities, few studies have examined in which way the roles and relationships of coexisting species change during community succession, a fundamental and natural process that follows the release of new resources in terrestrial and aquatic ecosystems. Variation in algal traits that characterize different phases and stages of community succession on rocky shores are likely to influence the magnitude, direction of effects, and the level of redundancy and complementarity in the diverse assemblage of herbivores. Two separate field experiments were conducted to quantify per capita and population effects and the functional relationship (i.e., redundancy or complementarity) of four herbivore species found in central Chile during early and late algal succession. The first experiment examined grazer effects on the colonization and establishment of early-succession algal species. The second experiment examined effects on the late-successional, dominant corticated alga Mazzaella laminarioides. Complementary laboratory experiments with all species and under natural environmental conditions allowed us to further characterize the collective effects of these species. We found that, during early community succession, all herbivore species had similar effects on the ephemeral algae, ulvoids, but only during the phase of colonization. Once these algae were established, only a subset of the species was able to control their abundance. During late succession, only the keyhole limpet Fissurella crassa could control corticated Mazzaella. The functional relationships among these species changed dramatically from redundant effects on ephemeral algae during early colonization, to a more complementary role on established early-successional algae, to a dominant (i.e., keystone) effect on late succession. This study highlights that functional relationship within consumer assemblages can vary at different phases and times of community succession. Differentiation in herbivore roles emphasizes the need to evaluate consumer's impacts through different times of community succession, and through experimental manipulations to make even broad predictions about the resilience or vulnerability of diverse intertidal assemblages to human disturbances.  相似文献   

4.
Herbivory mediates grass-endophyte relationships   总被引:1,自引:0,他引:1  
Koh S  Hik DS 《Ecology》2007,88(11):2752-2757
Endophytic fungi are plant symbionts living asymptomatically within plant tissues. Neotyphodium spp., which are asexual vertically transmitted systemic fungal endophytes of cool-season grasses, are predicted to be plant mutualists. These endophytes increase host plant resistance to environmental stresses and/or increase the production of alkaloid-based herbivore deterrents. The ubiquity of this defense mutualism is unclear, and a variety of alternative mechanisms may explain the observed variation in infection rates, levels of deterrence, and the maintenance of asexual endophytes in grass populations. We found that grass-endophyte interactions are variable and ordered along an herbivory gradient in an undisturbed subarctic alpine ecosystem. Native grass populations in grazed sites had significantly greater frequency of Neotyphodium infection compared to ungrazed sites. Tillers from grazed sites had significantly higher hyphal densities compared to ungrazed sites. The ability of grass-Neotyphodium constituents to deter vertebrate herbivory in natural systems is thought to be rare. In grazed meadows, we showed that endophyte infection resulted in the deterrence of grazing by native vertebrate herbivores. However, the same herbivores did not distinguish between infected and uninfected grass harvested from ungrazed areas. These results demonstrate that the relationship between vertically transmitted endophytes and grasses in the alpine tundra vary greatly within populations. This may be based in part on defense mutualism and is consistent, under varying levels of herbivory, with the predictions of optimal defense theory.  相似文献   

5.
Abstract:  In the Neotropics ongoing deforestation is producing open and heavily fragmented landscapes dominated by agriculture, mostly plantations and cattle pastures. After some time agriculture often becomes uneconomical and land is abandoned. Subsequent habitat regeneration may be slow because seed inputs are restricted by a lack of incentives—such as suitable roost sites—for seed dispersers to enter deforested areas. Increasing environmental awareness has fostered growing efforts to promote reforestation. Practical and cost-efficient methods for kick-starting forest regeneration are, however, lacking. We investigated whether artificial bat roosts for frugivorous bat species can attract these key seed dispersers to deforested areas, thereby increasing seed rain. We installed artificial bat roosts in a forest-pasture mosaic in the Costa Rican Atlantic lowlands and monitored bat colonization and seed dispersal. Colonization occurred within a few weeks of installation, and 10 species of bats occupied the artificial roosts. Five species of frugivorous or nectarivorous bats colonized artificial roosts permanently in both primary habitat and in deforested areas, in numbers similar to those found in natural roosts. Seed input around artificial roosts increased significantly. Sixty-nine different seed types, mostly of early-successional plant species, were transported by bats to artificial roosts in disturbed habitats. The installation of artificial bat roosts thus successfully attracted frugivorous bats and increased seed inputs into degraded sites. This method is likely to speed up early-vegetation succession, which in turn will attract additional seed dispersers, such as birds, and provide a microhabitat for seeds of mid- and late-successional plants. As well as supporting natural forest regeneration and bat conservation, this cost-efficient method can also increase environmental awareness among landowners.  相似文献   

6.
Aquilino KM  Stachowicz JJ 《Ecology》2012,93(4):879-890
The importance of herbivores and of plant diversity for community succession and recovery from disturbance is well documented. However, few studies have assessed the relative magnitude of, or potential interactions between, these factors. To determine the combined effect of herbivory and surrounding algal species richness on the recovery of a rocky intertidal community, we conducted a 27-month field experiment assessing algal recruitment and succession in cleared patches that mimic naturally forming gaps in the ambient community. We crossed two herbivore treatments, ambient and reduced abundance, with monocultures and polycultures of the four most common algal species in a mid-high rocky intertidal zone of northern California. We found that both the presence of herbivores and high surrounding algal richness increased recovery rates, and the effect of algal richness was twice the magnitude of that of herbivores. The increased recovery rate of patches containing herbivores was due to the consumption of fast-growing, early colonist species that preempt space from perennial, late-successional species. Mechanisms linking algal richness and recovery are more numerous. In polycultures, herbivore abundance and species composition is altered, desiccation rates are lower, and propagule recruitment, survival, and growth are higher compared to monocultures, all of which could contribute the observed effect of surrounding species richness. Herbivory and species richness should jointly accelerate recovery wherever palatable species inhibit late-successional, herbivore-resistant species and recruitment and survival of new colonists is promoted by local species richness. These appear to be common features of rocky-shore seaweed, and perhaps other, communities.  相似文献   

7.
Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and >20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining well-conserved natural areas close to roadsides to enhance plant compositional changes towards late-successional stages, (2) increasing BSC cover in areas under strong erosion risk, to avoid soil loss, and (3) enhancing soil microbial functional diversity in resource-limited areas, to enhance soil C and N accumulation.  相似文献   

8.
Boege K 《Ecology》2010,91(9):2628-2637
Herbivory and competition are two of the most common biotic stressors for plants. When occurring simultaneously, responses to one interaction can constrain the induction of responses to the other interaction due to resource limitation and other interactive effects. Thus, to maximize fitness when interacting with competitors and herbivores, plants are likely to express particular combinations of plastic responses. This study reports the interactive effects of herbivory and competition on responses induced in Tithonia tubaeformis plants and describes how natural selection acts on particular plastic responses and on their different combinations. Competition induced a stem elongation response, expressed through an increase in height and mean internode length, together with a decrease in basal diameter. Interestingly, realized resistance increased in both competition and herbivory treatments, suggesting a plastic response in both constitutive and induced resistance traits. Particular combinations of plastic responses defined three plant phenotypes: vigorous, elongated, and resistant plants. The ecological context in which plants grew modified the traits and the particular combinations of plastic responses that were favored by selection. Vigorous plants were favored by selection in all environments, except when they were damaged by herbivores in the absence of neighbors. The combination of responses defining an elongated plant phenotype was favored by selection in crowded conditions. Resistance was negatively selected in the absence of competition and herbivory but favored in the presence of both interactions. In addition, contextual analyses detected that population structure in heterogeneous environments can also influence the outcomes of selection. These findings suggest that natural selection can act on particular combinations of plastic responses, which may allow plants to adjust their phenotypes to those that promote greater fitness under particular ecological conditions.  相似文献   

9.
全球变化对土壤有机碳(SOC)存贮与分解的影响在全球碳(C)循环中具有重要地位.分别通过室内土壤培养法和氯仿熏蒸法,研究了降水变化和氮(N)添加处理对鼎湖山3种不同演替阶段的季风常绿阔叶林、针阔混交林和马尾松针叶林SOC矿化和土壤微生物量碳(SMBC)的影响.结果表明:1)降水量增加能够提高森林演替晚期SOC累积矿化量和矿化速率,而对森林演替早期SOC累积矿化量和矿化速率没有显著影响(P>0.05).2)干旱条件(降水量减少)降低森林SMBC含量,且在鼎湖山季风林表层土壤(0~10 cm)中SMBC的减少达到显著水平(P<0.05).3)N添加处理对鼎湖山3种森林类型SOC累积矿化量、矿化速率以及SMBC都没有显著影响(P>0.05).未来关于SOC矿化对全球变化响应的研究,要综合考虑土壤有机质质量、C/N比例、外源性氮输入等因素的作用.图4表2参37  相似文献   

10.
Invasive species pose significant ecological costs, and therefore successful management techniques are important. One commonly employed method is biological control. The success of biological control depends largely on whether additional inflicted damage can successfully reduce the fitness and population growth rate of a target species. Here, we simulate herbivory on the invasive Lespedeza cuneata and create stage-structured projection models to determine if augmented herbivory by a leaf-chewing biological control agent would regulate the population growth rate of this species. We found that augmented herbivory influenced stage transitions of plants in the smallest stage class, causing higher mortality and reduced growth. No other effect was found on stage transitions or fecundities, despite manipulation of herbivory at exceptionally high levels (up to 80% leaf loss). None of the clipping treatments significantly reduced the population growth rate of L. cuneata. We conclude that biological control by a leaf chewing herbivore would not likely be successful, even if an exceptionally large amount of each plant were consumed. We suggest that this approach, a combination of simulated herbivory and demographic modeling, will provide essential information for understanding the utility of biological control to curb the population growth of invasive plant species.  相似文献   

11.
Summary. Jasmonic acid (JA) is a wound-related hormone found in most plants that, when applied exogenously, can induce increases in levels of chemical defenses in patterns similar to those induced by mechanical damage or insect feeding. Relative to responses to insect and pathogen attack, chemical responses of herbaceous plants to mammalian herbivore attack have been little studied. In a field experiment, we compared the effects of JA treatment and naturally occurring mammalian herbivory on the expression of trypsin inhibitors, glucosinolates, peroxidase activity and growth of wild mustard (Brassica kaber). Exogenous JA significantly increased trypsin inhibitor activity and glucosinolate concentration, and moderately increased peroxidase activity in the eighth true leaves of five-week-old plants, relative to untreated controls. In contrast, levels of these chemical defenses in the eighth true leaves or in regrowth foliage of plants that had ∼80% of their leaf area removed by groundhogs (Marmota monax) did not differ from that in undamaged and untreated controls. Although exogenous JA significantly elevated levels of chemical defenses, it did not affect height of plants through the season and only slightly reduced time to first flower. Groundhog herbivory significantly reduced height and delayed or abolished flowering, but these effects were not substantial unless coupled with apical meristem removal. We hypothesize that the lack of effect of groundhog herbivory on chemical defenses may be due in part to the speed and pattern of leaf area removal by groundhogs, or physiological constraints caused by leaf area loss. Despite having no effect on chemical defense production, leaf area loss by groundhogs was more costly to growth and fitness than the effects of JA application in this study, but only substantially so if coupled with apical meristem removal. We suggest that in general, costs of defense production in plants are likely to be minimal when compared to the risk of losing large amounts of leaf area or primary meristematic tissue. Thus, if they are effective at deterring herbivory, the benefits of inducible defense production likely outweigh the costs in most cases. Received 20 December 2000; accepted 3 May 2001  相似文献   

12.
Previous research suggests that in highly fragmented forest landscapes ecological succession can be arrested by lack of seeds, but that seed deposition abundance and diversity of bird-dispersed plants can be enhanced by bird-attracting structures such as snags. Consequently, bird perches remain a potential tool for accelerating ecological succession and reforesting disturbed land. Consequently, in order to determine the effectiveness of bird perches in reclaiming forested landscapes, seed dispersal, seedbank storage, and recruitment of bird-dispersed plants was studied on a central Florida mined site with clay-rich soil undergoing primary succession over a seven-year period. Data collection included 20 continuous months of seed dispersal data, an analysis of the total and germinable seedbanks, and plant recruitment at one and two years after a fire destroyed perches and burnt vegetation. Seed dispersal to perches reached a peak seedfall by weight in August, which was attributable to nonmigratory birds. Myrica cerifera, the most abundant species dispersed to the sites, was the only species dispersed during the winter and spring months, and it may be a keystone species for the frugivorous bird guild in central Florida. Seedfall beneath perches had a higher diversity of seed genera, and seed numbers (340 seeds m−2 yr−1) were 150 times greater than in sites without perches. Seeds of bird-dispersed plants in the seedbank under perches numbered 77 ± 33 (m−2) in total and 17 ± 5 for the viable seedbank. The population density of bird-dispersed plants was 1.4 and 2.0 plants m−2 at one and two years afler the fire. Less than 0.06% of the dispersed seeds survived to become seedlings. Species composition shifted from seedfall to seedlings, with small-seeded, early-successional (r-selected) shrubs and herbs becoming relatively more common than the desired large-seeded, late-successional (K-selected) tree species. Perches attracted birds and associated seeds, but the physically harsh conditions created by primary succession and/or high predation on seeds appeared to reduce the success of the desired late-successional plant species. Nonetheless, there was a higher abundance and diversity of bird-dispersed plants under perches, suggesting that perch structures have a limited ability to enhance plant diversity under conditions of primary succession.  相似文献   

13.
In the past 35 years, various kinds of dynamic models have been used to study vegetation development during primary or secondary succession. Typically, one specific model or models with the same conceptual background were employed. It remains largely unknown to what extent such model-based findings, e.g., on the speed of succession, depend on the specific model approach.To address this issue, we estimated the time elapsing during secondary succession in subalpine conifer forests of the Swiss National Park using three models of different conceptual background: (i) a forest gap model, (ii) a Markov chain model, and (iii) a minimum spanning tree model.Starting from a 95- to 125-year-old mountain pine (Pinus montana Miller) forest, all three models predicted a similar successional development. Even though the forest gap model and the Markov chain model are based on totally different approaches and were calibrated using different data sets, they both forecasted that it would take 500–550 years to reach a late-successional forest stage. The minimum spanning tree model, which only reveals a certain number of time steps yielding a minimum time estimate, showed a development of tree density (stems/ha) that was similar to the results of the forest gap model, but a strict quantitative comparison is not feasible.Our study shows that modeling forest development using three different approaches is quite powerful to obtain a robust estimate of the speed of forest succession. In our case, this estimate is higher than what has been suggested in previous studies that investigated secondary forest succession. The use of several approaches allows for a more comprehensive analysis in terms of variables covered (e.g., relative forest cover in the Markov approach vs. stand-scale species composition in the forest gap model). We recommend that in studies focusing on the speed of succession, several models should be employed simultaneously to identify inconsistencies in our knowledge and to increase confidence in the results.  相似文献   

14.
Stanton ML  Palmer TM 《Ecology》2011,92(5):1073-1082
Three recent meta-analyses of protective plant-ant mutualisms report a surprisingly weak relationship between herbivore protection and measured demographic benefits to ant-plants, suggesting high tolerance for herbivory, substantial costs of ant-mediated defense, and/or benefits that are realized episodically rather than continuously. Experimental manipulations of protective ant-plant associations typically last for less than a year, yet virtually all specialized myrmecophytes are long-lived perennials for which the costs and benefits of maintaining ant symbionts could accrue at different rates over the host's lifetime. To complement long-term monitoring studies, we experimentally excluded each of four ant symbionts from their long-lived myrmecophyte host trees (Acacia drepanolobium) for 4.5 years. Ant species varied in their effectiveness against herbivores and in their effects on intermediate-term growth and reproduction, but the level of herbivore protection provided was a poor predictor of the net impact they had on host trees. Removal of the three Crematogaster species resulted in cumulative gains in host tree growth and/or reproduction over the course of the experiment, despite the fact that two of those species significantly reduce chronic herbivore damage. In contrast, although T. penzigi is a relatively poor defender, the low cost of maintaining this ant symbiont apparently eliminated negative impacts on overall tree growth and reproduction, resulting in enhanced allocation to new branch growth by the final census. Acacia drepanolobium is evidently highly tolerant of herbivory by insects and small browsers, and the costs of maintaining Crematogaster colonies exceeded the benefits received during the study. No experimental trees were killed by elephants, but elephant damage was uniquely associated with reduced tree growth, and at least one ant species (C. mimosae) strongly deterred elephant browsing. We hypothesize that rare but catastrophic damage by elephants may be more important than chronic herbivory in maintaining the costly myrmecophyte habit in this system.  相似文献   

15.
Veblen KE 《Ecology》2008,89(6):1532-1540
Empirical and theoretical evidence suggests that facilitation between plants, when it occurs, is more likely during periods of abiotic stress, while competition predominates under more moderate conditions. Therefore, one might expect the relative importance of competition vs. facilitation to vary seasonally in ecosystems characterized by pronounced dry (abiotically stressful) and wet (benign) seasons. Herbivory also varies seasonally and can affect the net outcome of plant-plant interactions, but the interactive effects of seasonality and herbivory on the competition-facilitation balance are not known. I experimentally manipulated neighboring plants and herbivory during wet and dry periods for two species of grass: Cynodon plectostachyus and Pennisetum stramineum, in the semiarid Laikipia District of Kenya. These experiments indicate that Pennisetum was competitively dominant during the wet season and that it responded negatively to grazing, especially during the dry season. Cynodon showed more complex season- and herbivore-dependent responses. Cynodon experienced facilitation that was simultaneously dependent on presence of herbivores and on dry season. During the wet season Cynodon experienced net competition. These results illustrate how herbivory and seasonality can interact in complex ways to shift species-species competition-facilitation balance. Additionally, because Cynodon and Pennisetum are key players in a local successional process, these results indicate that herbivory can affect the direction and pace of succession.  相似文献   

16.
We used spatial simulation models to evaluate how current and two alternative policies might affect potential biodiversity over 100 years in the Coast Ranges Physiographic Province of Oregon. This 2.3-million-ha province is characterized by a diversity of public and private forest owners, and a wide range of forest policy and management objectives. We evaluated habitat availability for seven focal species representing different life histories. We also examined how policies affected old-growth stand structure, age distributions relative to the historical range of variability, and landscape patterns of forest types. Under the current policy scenario, the area of habitat for old-growth forest structure and associated species increased over time, the habitat for some early-successional associates remained stable, and the area of hardwood vegetation and diverse early-successional stages declined. The province is projected to move toward but not reach the historical range of variation of forest age classes that may have occurred under the wildfire regimes of the pre-Euroamerican settlement period. Ownership explained much of the pattern of biodiversity in the province, and under the current policy scenario, its effect increased over time as the landscape diverged into highly contrasting forest structures and ages. Patch type diversity declined slightly overall but declined strongly within ownerships. Most of the modeled change in biodiversity over time resulted from policies on public forest lands that were intended to increase the area of late-successional forests and species. One of the alternative policies, increased retention of wildlife trees on private lands, reduced the contrast between ownerships and increased habitat availability over time for both early- and late-successional species. Analysis of another alternative, stopping thinning of plantations on federal lands, indicated that current thinning regimes improve habitat for the Olive-sided Flycatcher, but the no-thinning alternative had no effect on the habitat scores for the late-successional species in the 100-year simulation. A comparison of indicators of biological diversity suggests that using focal species and forest structural measures can provide complementary information on biodiversity. The multi-ownership perspective provided a more complete synthesis of province-wide biodiversity patterns than assessments based on single ownerships.  相似文献   

17.
The importance of species interactions and recruitment variability was examined during the first year and a half of primary succession (1988–1989) on an exposed rocky seashore near Halifax, Nova Scotia. Previous work suggested that emergent rock on these shores is normally dominated by fucoid rockweeds because predatory whelks control the sessile animal competitors, mussels and barnacles, and because herbivorous littorinids control ephemeral algal competitors. Abundances of all species except seasonal ephemeral algae were very small throughout this experiment and we found no significant effects of carnivory, herbivory, plant-animal competition or plant-plant competition. A slight facilitation of Fucus recruitment is attributed to a thin mat of ephemeral, blue-green algae. Very few other studies have directly manipulated intertidal ephemeral algae. As primary succession may be very rare in this assemblage, these results may be specific to these circumstances, but they highlight the varying importance of species interactions with variable recruitment. In particular, it appears that variations in recruitment success may be important to community structure, even when recruitment is not limited by propagule supply. The scale of the study also provides insight into successional processes occurring after the recent, extensive ice-scour of exposed seashores in this region.  相似文献   

18.
Inter- and intraspecies variations in host plant traits are presumably involved in many host shifts by insect herbivores, and elucidating the mechanisms involved in such shifts has been a crucial goal in insect-plant research for several decades. Here we propose that herbivore-induced evolutionary increases in host plant resistance may cause oligophagous insect herbivores to shift to other sympatric plants as currently preferred host plants become increasingly unpalatable. We tested this hypothesis in a system based on the perennial herb Filipendula ulmaria (Rosaceae), whose herbivory defense has become gradually stronger due to prolonged selection by Galerucella tenella (Coleoptera: Chrysomelidae) herbivory in a boreal archipelago. We show that Galerucella gradually increases its use of the alternative host plant Rubus arcticus (Rosaceae) in parallel to gradually increased resistance in Filipendula. Our results imply that, by driving the evolutionary increase in Filipendula resistance, Galerucella is also gradually making the original host species more unpalatable and thereby driving its own host-breadth enlargement. We argue that such self-inflicted "rent rises" may be an important mechanism behind host plant shifts, which in turn are believed to have preceded the speciation of many phytophagous insects.  相似文献   

19.
Vergés A  Paul NA  Steinberg PD 《Ecology》2008,89(5):1334-1343
Intraspecific variation in resistance to herbivory among genders and life-history phases of primary producers can significantly alter the ecological and evolutionary consequences of plant-herbivore interactions. Seaweeds (macroalgae) with complex life histories have multiple distinct phases with associated variation in traits that can potentially lead to differences in resistance to consumers and provide a unique system in which to simultaneously test the effects of sex and life-history stage on herbivory. We tested the susceptibility to grazing of the three life-history stages and separate sexes of the chemically defended red alga Asparagopsis armata against the sea hare Aplysia parvula, and we related this to the plant quality traits of different stages and genders. Differences in nutrient content and halogenated secondary metabolites between life-history phases were highly sex dependent. Male gametophytes had a low concentration of secondary metabolites and the highest nutrient content. The highest secondary metabolite content was found within the female gametophyte, in the wall of the reproductive structures (cystocarps) that contain the microscopic carposporophyte phase. Feeding choices by A. parvula were consistent with differences in algal quality and defense and resulted in the haploid male gametophytes being the most preferred food type. The diploid carposporophyte found inside the chemically rich cystocarps was the least consumed life-history stage. Selective herbivory of male gametophytes by A. parvula is consistent with an observed shift in gametophyte sex ratio in the field from unity at the beginning of the reproductive season to female bias at the end. The variation in susceptibility to herbivory found between sex and life-history stages of A. armata represents the first example of sex-biased consumption in seaweeds and may contribute to the maintenance of complex life histories such as those found in red algae.  相似文献   

20.
根系及其主要影响因子在森林演替过程中的变化   总被引:9,自引:2,他引:9  
郝艳茹  彭少麟 《生态环境》2005,14(5):762-767
统计分析了国内外主要森林生态系统演替过程中根系生物量及其分布的变化,并探讨了相关的影响因子及其动态。结果发现,根系生物量随林龄和演替的进行而增加,演替群落的根冠比呈减小趋势。一般来说,根系的垂直分布是较浅的,尤其是细根。根系分布范围与地下部生态位的变化能够反映其可以利用的资源范围以及它在演替过程中的作用和地位。在森林演替初期,群落根系分布较浅,可塑性强,且水平根系发达;演替中期的根系呈镶嵌分布,分布范围加深,根系密度增加;演替后期的根系分布趋于稳定,地下生态位分离程度加剧,根系结构具有相对明显的分层。在演替过程中,根系的这种分布特征受自身条件和生态因子的影响,文章论证了这些影响因子本身在演替过程中也是动态变化的,进一步说明了根系分布动态规律存在的必然性。在演替过程中,根系生物量及其分布动态的研究,可以为森林群落动态学提供新的理论基础,是未来地下生态学研究的焦点之一。最后,分析了根系研究中亟待解决的问题和今后的发展重点,提出新的展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号