首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wastewaters containing chlorophenol compounds are difficult to treat by biological means because of the toxic effects of those compounds on microorganisms. To investigate the adverse effects of chlorophenols on microorganisms, synthetic wastewater containing 2,4 dichlorophenol (DCP) was biologically treated in an activated sludge unit at different hydraulic residence times (HRTs) between 5 and 40 hours, whereas the feed chemical oxygen demand (COD), DCP concentrations, and sludge age were kept constant at 2500 +/- 50 mg/L, 150 mg/L, and 20 days, respectively. The resazurin method based on dehydrogenase activity was used for assessment of the feed and effluent wastewater toxicity. Percent COD, DCP, and toxicity removals increased, and the effluent COD, DCP, and toxicity levels decreased with increasing HRT. Biomass concentration in the aeration tank increased with increasing HRT because of low levels of DCP at high HRT levels, resulting in high COD, DCP, and toxicity removals. The sludge volume index decreased with increasing HRT, yielding well-settling organisms as a result of low levels of toxicity and high concentrations of active cells. Percent DCP and COD removals decreased with increasing specific DCP loading rate. The rates of DCP and COD removals showed a maximum at a low DCP concentration of 6 mg/L in the aeration tank, corresponding to a 25-hour HRT.  相似文献   

2.
The electrochemical oxidation of the biotic degradation products of the textile dye C.I. Acid Orange 7 (AO7) was achieved using a boron doped diamond electrode (BDD). Tests were performed with model solutions of the biotic degradation products, sulphanilic acid (SA) and 1-amino-2-naphthol (AN), and also with real effluents obtained in experiments carried out in an up-flow anaerobic sludge blanket (UASB) reactor, fed with a simulated textile effluent containing AO7, working in mesophilic or thermophilic conditions. Bulk electrolysis was studied using two different supporting electrolytes - NaCl and Na(2)SO(4). The influence of initial metabolite concentration and current density on the electrodegradation rates of the biotic products was investigated. For the UASB effluents, oxidation tests were carried out for different electrolytes and at different current densities. Samples were collected at pre-selected intervals and absorbance measurements, chemical oxygen demand (COD) and total organic carbon (TOC) tests and high performance liquid chromatography (HPLC) analysis were performed. Results have shown an almost complete elimination of the persistent pollutants and a COD removal higher than 70% for both AN and SA. For the UASB effluents, COD removals between 45% and 90% and TOC removals varying from 19% to 41% were obtained.  相似文献   

3.
This paper presents the results of a study performed with a pilot sewage treatment plant consisting of an aerobic reactor followed by a flotation unit. To coagulate the anaerobic effluent, different ferric chloride dosages were applied by adopting two approaches: applying constant dosages during the essay and varying the dosages according to the anaerobic effluent turbidity. To obtain more than 95% TSS, 90% COD and 70% phosphorous removals a critical chemical ratio ranging 0.012-0.013 (in terms of Fe/Turbidity ratio) was required. When aiming higher phosphorous removal (above 95%) the required Fe/Turbidity ratio range rose to 0.016–0.018.  相似文献   

4.
The main objective of this study was to investigate the feasibility of coagulation as a post-treatment method of anaerobically treated primary municipal wastewater. Both mesophilic and ambient (20 degrees C) temperature conditions were investigated in a laboratory-scale upflow anaerobic sludge bed (UASB) reactor. In addition, optimization of the coagulant, both in terms of type and dose, was performed. Finally, phosphorus removal by means of aluminum and iron coagulation and phosphorus and ammonia nitrogen removal by means of struvite precipitation were studied. Anaerobic treatment of primary effluent at low hydraulic retention times (less than 15 hours) resulted in mean chemical oxygen demand (COD) removals ranging from 50 to 70%, while, based on the filtered treated effluent, the mean removals increased to 65 to 80%. Alum coagulation of the UASB effluent gave suspended solids removals ranging from approximately 35 to 65%. Turbidity removal reached up to 80%. Remaining COD values after coagulation and settling were below 100 mg/L, while remaining total organic carbon (TOC) levels were below 50 mg/L. Filterable COD levels were generally below 60 mg/L, while filterable TOC levels were below 40 mg/L. All coagulants tested, including prepolymerized aluminum and iron coagulants, demonstrated similar efficiency compared with alum for the removal of suspended solids, COD, and TOC. Regarding struvite precipitation, optimal conditions for phosphorus and nitrogen removal were pH 10 and molar ratio of magnesium: ammonia-nitrogen: phosphate-phosphorus close to the stoichiometric ratio (1:1:1). During struvite precipitation, removal of suspended solids reached 40%, while turbidity removal reached values up to 80%. The removal of COD was approximately 30 to 35%; yet, when removal of organic matter was based on the treated filterable COD, the removal increased to approximately 65%. In addition, nitrogen was removed by approximately 70%, while phosphorus removal ranged between approximately 30 and 45% on the basis of the initial phosphorus concentration. Finally, size fractionation of the organic matter (COD) showed that the various treatment methods were capable of removing different fractions of the organic matter.  相似文献   

5.
Chowdhury N  Nakhla G  Zhu J 《Chemosphere》2008,71(5):807-815
A novel liquid-solid circulating fluidized bed bioreactor (LSCFB) configured with anoxic and aerobic columns and lava rock as the biofilm carrier was used to treat synthetic municipal wastewater. Four different empty bed contact times (EBCTs) of 0.82, 0.65, 0.55, and 0.44 h were examined to optimize nutrient removal capability of the system. The LSCFB demonstrated tertiary effluent quality organic and nitrogen removal efficiencies. Effluent characteristics of the LSCFB were soluble biological oxygen demand (SBOD)10 mg l(-1) and total nitrogen (TN)<10 mg l(-1) at organic loading rate (OLR) of 5.3 kg m(-3)d(-1) and nitrogen loading rate of 0.54 kg Nm(-3)d(-1). Remarkably low yields of 0.14, 0.17, 0.19, and 0.21 g VSS g(-1)COD were observed at OLR of 2.6, 3.2, 4.1 and 5.3 kg COD m(-3)d(-1), where increment of biomass growth and detachment rate were also experienced with increasing OLR. However the system demonstrated only 30% phosphorus removal, and mass balances along the anoxic and aerobic columns showed biological phosphorus removal in the system. Organic mass balance showed that approximately 40% of the influent COD was utilized in the anoxic column and the remaining COD was oxidized in the aerobic column. The system is very efficient in nitrification-denitrification, with more than 90% nitrification of ammonium and overall nitrogen removal in the LSCFB was 70+/-11% even at an EBCT of 0.44 h.  相似文献   

6.
Physical-chemical methods have been suggested for the treatment of low strength municipal landfill leachates. Therefore, applicability of nanofiltration and air stripping were screened in laboratory-scale for the removal of organic matter, ammonia, and toxicity from low strength leachates (NH4-N 74-220 mg/l, chemical oxygen demand (COD) 190-920 mg O2/l, EC50 = 2-17% for Raphidocelis subcapitata). Ozonation was studied as well, but with the emphasis on enhancing biodegradability of leachates. Nanofiltration (25 degrees C) removed 52-66% of COD and 27-50% of ammonia, the latter indicating that ammonia may in part have been present as ammonium salt complexes. Biological pretreatment enhanced the overall COD removal. Air stripping (24 h at pH 11) resulted in 89% and 64% ammonia removal at 20 and 6 degrees C, respectively, the stripping rate remaining below 10 mg N/l h. COD removals of 4-21% were obtained in stripping. Ozonation (20 degrees C) increased the concentration of rapidly biodegradable COD (RBCOD), but the proportion of RBCOD of total COD was still below 20% indicating poor biological treatability. The effect of the different treatments on leachate toxicity was assessed with the Daphnia acute toxicity test (Daphnia magna) and algal growth inhibition test (Raphidcocelis subcapitata). None of the methods was effective in toxicity removal. By way of comparison, treatment in a full-scale biological plant decreased leachate toxicity to half of the initial value. Although leachate toxicity significantly correlated with COD and ammonia in untreated and treated leachate, in some stripping and ozonation experiments toxicity was increased in spite of COD and ammonia removals.  相似文献   

7.
对序批式反应器 (SBR)用于牛场污水的处理进行了试验研究 ,主要研究了三个水力停留时间 (HRT)和有机负荷率对污染物去除率、出水水质和污泥特性的影响。试验结果表明 ,对 10 0 0 0mg/LCOD牛场污水 ,使用 1dHRT ,相应有机负荷率为 10gCOD/L·d时 ,混合出水COD、TS、VS、TKN和TN的去除率分别为 45 %、2 1.4%、34 .2 %、5 3.2 %和 2 2 .2 % ,上清液出水的分别为 80 .2 %、6 3.4%、6 6 .2 %、75 %和 38.3% ;两种出水的SCOD和NH3 N去除率相同 ,分别为 5 0 .0 %和 76 .5 %。经SBR处理后 ,污泥的沉降浓缩性能也有了比较明显的改善。  相似文献   

8.
曝气生物滤池处理农村污水的中试研究   总被引:4,自引:3,他引:1  
采用研制的曝气生物滤池对农村污水进行处理,研究其性能特点和影响因素。结果表明:在气水比为5∶1,水力停留时间(HRT)为15 h,进水COD浓度在250 mg/L以下时,COD和氨氮的去除率分别在80%和90%以上,出水COD和氨氮值达到国家《城镇污水处理厂污染物排放标准》一级A标准;反应器在冬季水温12℃以上运行时出水COD和氨氮值比在夏季运行时有所上升,但去除率仍在80%和90%以上,可以达到排放标准。  相似文献   

9.
Methane production from the soluble fraction of distillers' dried grains with solubles, a co-product of ethanol production, was studied in 2-L anaerobic sequencing batch reactors (ASBRs) under 10 different operating conditions. Methane production and chemical oxygen demand (COD) removal were quantified for a wide range of operating parameters. Chemical oxygen demand removals of 64 to 95% were achieved at organic loading rates ranging from 1.5 to 22.2 g COD/L x d, solids retention times from 8 to 40 days, and food-to-microorganism ratios ranging from 0.4 to 1.9 g COD/g volatile suspended solids (VSS) x d. Biogas methane content varied from 61 to 74%, with 0.29 L CH4 produced/g COD removed. Roughly 56% of the influent COD and 84% of the COD removed in the ASBRs was converted to methane. Microbial yield (Y) and decay (b) constants were determined to be Y = 0.126 g VSS/g COD removed and b = 0.032 day(-1), respectively. Methane produced from co-products can reduce the costs and fossil-fuel consumption of ethanol manufacture.  相似文献   

10.
Asselin M  Drogui P  Benmoussa H  Blais JF 《Chemosphere》2008,72(11):1727-1733
Slaughterhouse wastewaters contain varied and high amounts of organic matter (e.g., proteins, blood, fat). In order to produce an effluent suitable for stream discharge, electrochemical techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from poultry slaughterhouse (PS) effluent. Electrocoagulation (EC) process was tested using either mild steel or aluminium electrodes arranged in bipolar (BP) or monopolar configuration system. Results showed that the best performance was obtained using mild steel BP electrode system operated at a current intensity of 0.3A, through 60 or 90 min of treatment. Under these conditions, removals of 86+/-1% and 99+/-1% were measured for BOD and oil and grease, respectively, whereas soluble COD and total COD were removed by 50+/-4% and 82+/-2%, respectively. EC is also efficient for decolorization (red-color) and clarification of the PS effluent. Removals of 89+/-4% and 90+/-4% have been measured for total suspended solids and turbidity, respectively. Electrochemical coagulation operated under the optimal conditions involves a total cost of 0.71 USD $ per cubic meter of treated PS effluent. This cost includes energy and electrode consumptions, chemicals, and sludge disposal.  相似文献   

11.
外循环式UASB反应器处理槟榔废水   总被引:1,自引:0,他引:1  
在中温(35±2℃)条件下,利用外循环式UASB反应器处理中高有机浓度的槟榔加工废水,并着重探讨了水力停留时间(HRT)对厌氧消化的影响。研究表明,当反应器稳定运行,水力停留时间为1 d,进水COD浓度5 000 mg/L左右,容积负荷在2.53-5.25 kg COD/(m3·d)时,COD去除率在38%以上,出水COD〈3 000 mg/L,平均产气率为0.41 m3/kg COD;若水力停留时间延长至4 d,容积负荷为1.26-1.30 kg COD/(m3·d),COD去除率可以达到79%,出水COD〈1 200 mg/L,出水可生化性下降,BOD5/COD平均为0.28,实验取得了良好的处理效果,为利用厌氧技术处理槟榔加工废水提供了设计依据。  相似文献   

12.
稳态条件下,采用厌氧折流板反应器(anaerobic baffled reactor,ABR)处理山梨酸废水并进行基质降解动力学研究.实验表明,在污泥负荷为0.54~1.63 kg COD/(kg VSS·d)的范围内,COD去除率随着负荷的增加从85%降到55%.各隔室出水COD沿程递减,前3个隔室承担了去除COD的重要作用,但随着污泥负荷的增加,后部承担的COD去除率比例增大.基于各串联隔室完全混合的假定,推导ABR中山梨酸废水的基质降解动力学方程,并通过实验确定相关动力学参数及相应的动力学方程.实测值与预测值基本吻合.  相似文献   

13.
Simultaneous nitrification-denitrification (SND) of municipal wastewater was investigated in a laboratory-scale membrane bioreactor (MBR) operated at two different hydraulic retention times (HRTs), 0.5 and 1 day, dissolved oxygen 3.0 to 0.5 mg/L, and solids retention time (SRT) between 28 and 120 days. The organic loading rate (OLR) (0.11 to 0.64 kg chemical oxygen demand [COD]/m3/d) and influent soluble COD (SCOD)/ total Kjeldahl nitrogen (TKN) ratio (5 to 19) were varied by the addition of glucose. The ammonia-nitrogen and TKN removals were over 97%, and total nitrogen removal was approximately 89% in the MBR. The maximum specific nitrification rates (98 mg N/d/g VSS) and specific denitrification rates (81 mg N/d/g VSS) occurred at an SCOD/TKN ratio of 9.1. The optimum conditions for maximum total nitrogen removal by SND in a single reactor MBR have been found to be low dissolved oxygen (< 0.6 mg/L) and high OLR (approximately 0.64 kg COD/m3/d) at an HRT of 0.5 day and SRT of approximately 85 days.  相似文献   

14.
The removal performance of typical refractory organic compounds in landfill leachate was investigated during the electrochemical (EC) oxidation and anaerobic process combined treatment system in this paper. The results indicated that the treatment of landfill leachate by the combined system was highly effective. The toxicity of leachate was notably decreased after the electrochemical oxidation process and the biodegradability was improved. The concentration of the organic acid with low molecular weight in the leachate increased from 28% to 90% based on the biodegradability assays after the EC oxidation process. The anaerobic digestion could further remove the residual organic compounds. At a hydraulic retention time (HRT) of 16 hours and an organic loading rate (OLR) of 8 kg COD/m3 d, the concentration of COD, SS, ALK, VA, N-TKN, N-NH4+ and P-PO4(3)- [corrected] in UASB effluent were 532, 12, 6744, 400, 540, 455 and 11.6 mg/L, respectively, with approximately 90% removal efficiency of COD. The organic compounds in the landfill leachate revealed different degradation characteristics in the combined system. p-chloroaniline, bisphenol A, 6-methyl-2-phenyl-quinoline, dimethylnaphthaline and N'-(2-methyl-4-chlorophenyl)-N-cyclohexyformamidine, classified into the first group in this paper, were completely removed by the EC oxidation and did not reappear in the effluent of the UASB reactor. Phenylacetic acid, 3-methyl-indole and N-cyclohexyl-acetamide, called the second group, were completely removed, but reappeared in the UASB reactor. 4-methyl-phenol, 3,4-dihydroisoquinoline, 2(3H)-benzothiazolone, exo-2-hydroxycineole and benzothiazole, the third group, were degraded little in the EC oxidation process, but extensively removed by the anaerobic process. Benzoic acid, benzenepropanoic acid and 2-cyano-3,5-dimethyl-1-hydroxypyrrole, the fourth group, concentration obviously increased in the EC process, but was completely removed in the UASB reactor. The content of volatile fatty acids (VFAs) markedly increased from 0.68% in the leachate to 16.18% in the effluent from the electrochemical oxidation process (EC(effl)). In addition, the degradation rate of organic compounds from the landfill leachate was different in the EC oxidation and anaerobic process.  相似文献   

15.
Oily wastewater treatment using a novel hybrid PBR-UASB system   总被引:3,自引:0,他引:3  
Jeganathan J  Nakhla G  Bassi A 《Chemosphere》2007,67(8):1492-1501
In this study, anaerobic treatability of oily wastewater was investigated in a hybrid reactor system consisting of a packed bed reactor (PBR) followed by an upflow anaerobic sludge blanket (UASB) reactor at 35 degrees C. The system was operated using real pet food wastewater at different hydraulic retention times and loading rates for 165 d. The PBR was packed with sol-gel/alginate beads containing immobilized enzyme which hydrolyzed the oil and grease (O&G) into free long chain fatty acids, that were biodegraded by the UASB. The hybrid system was operated up to an oil loading rate of 4.9 kg O&Gm(-3)d(-1) (to the PBR) without any operational problems for a period of 100 d, with COD and O&G removal efficiencies above 90% and no sludge flotation was observed in the UASB. Beads supplement to the PBR was less than 2 g d(-1) and the relative activity was about 70%. Further increment in O&G loading to 18.7 kg O&Gm(-3)d(-1) caused destabilization of the system with 0.35% (v float/v feed) sludge float removed from the UASB.  相似文献   

16.
Patel A  Zhu J  Nakhla G 《Chemosphere》2006,65(7):1103-1112
In this study, the performance of the circulating fluidized bed bioreactor (CFBB) with anoxic and aerobic beds and employing lava rock as a carrier media for the simultaneous removal of carbon, nitrogen and phosphorus from municipal wastewater at an empty bed contact time (EBCT) of 0.82 h was discussed. The CFBB was operated without and with bioparticles' recirculation between the anoxic and aerobic bed for 260 and 110 d respectively. Without particles' recirculation, the CFBB was able to achieve carbon (C), total nitrogen (N) and phosphorous (P) removal efficiencies of 94%, 80% and 65% respectively, whereas with bioparticles' recirculation, 91%, 78% and 85% removals of C, N and P were achieved. The CFBB was operated at long sludge retention time (SRT) of 45-50 d, and achieved a sludge yield of 0.12-0.135 g VSS g COD(-1). A dynamic stress study of the CFBB was carried out at varying feed flow rates and influent ammonia concentrations to determine response to shock loadings. The CFBB responded favourably in terms of TSS and COD removal to quadrupling of the feed flow rate. However, nitrification was more sensitive to hydraulic shock loadings than to doubling of influent nitrogen loading.  相似文献   

17.
Li YM  Gu GW  Zhao JF  Yu HQ  Qiu YL  Peng YZ 《Chemosphere》2003,52(6):997-1005
Coke-plant wastewater was treated by an anaerobic-anoxic-aerobic (A(1)-A(2)-O) biofilm system and an anoxic-aerobic (A/O) biofilm system, respectively. At same or similar levels of hydraulic retention time (HRT), the two systems had almost identical chemical oxygen demand (COD) and NH(3) removals, but a different organic-N removal. Set-up of an acidogenic stage benefited for the removal of organic-N and the A(1)-A(2)-O system was more useful for total nitrogen removal than the A-O system. HRT did not have a substantial effect on the COD and NH(3)-N removal efficiencies, but considerably influenced the organic-N removal and distribution of oxidized nitrogen in the final effluent. The GC/MS analysis demonstrated that some refractory compounds were decomposed at the acidogenic stage and resulted in the production of some intermediates, which were more readily degraded in the subsequent aerobic stage. Hence, the A(1)-A(2)-O system had better effluent quality than the A-O system in terms of effluent composition.  相似文献   

18.
The photo-Fenton reaction effect on the biodegradability improvement of 100 mg/L solution of 2,4-dichlorophenol (DCP) has been investigated. Biochemical oxygen demand (BOD) at 5 and 21 days, BODn/ chemical oxygen demand (COD) and BODn/total organic carbon (TOC) ratios, average oxidation state, and inhibition on activated sludge were monitored. For 50 mg/L hydrogen peroxide and 10 mg/L iron(II) initial concentrations and 40 minutes of reaction time in the photo-Fenton process, the biodegradability of the pretreated solution, measured as BOD5/COD ratio, was improved from 0 for the original DCP solution up to 0.18 (BOD21/COD = 0.24). At that point, all DCP was eliminated from the solution. To study the effect of the pretreatment step, the biological oxidation of pretreated solutions was tested in two semicontinuous stirred tank reactors, one operated with activated sludge and one with biomass acclimated to phenol. Results showed that more than 80% TOC removal could be obtained by codigestion of the pretreated solution with municipal wastewater. Total organic carbon removals of approximately 60% were also obtained when the sole carbon source for the aerobic reactors was the pretreated solution. The hydraulic retention times used in the bioreactors were of the same order of magnitude as those used at domestic wastewater treatment plants (i.e., between 12 and 24 hours). Kinetic studies based on pseudo-first-order kinetics have also been carried out. Constants were found to be in range 0.67 to 1.7 L x g total volatiles suspended solids(-1) x h(-1).  相似文献   

19.
Ozonation characteristics of synthetic Procaine Penicillin G (PPG) formulation effluent were investigated in a semi-batch ozone reactor at different pH (3, 7 and 12), ozone feed rates (600-2600 mg h-1) and COD values (200-600 mg l-1). Ozonation of aqueous PPG effluent resulted in 37 (82)% COD removal after 60 (120) min ozonation when the reaction pH was kept constant at pH=7.900 mg l-1 (corresponding to 50% of the total introduced) ozone was absorbed during a reaction period of 1 h. The effects of increasing the applied ozone dose and the initial COD on the COD abatement rates of PPG effluent were also studied. Results have indicated that increasing the ozone dose and decreasing the COD content both have positive effects on COD removal rates. The significant contribution of the free radical (.OH) reaction pathway to PPG ozonation could be traced using tert-butyl alcohol as the .OH probe compound at varying concentrations. The bimolecular reaction rate constants for the direct reaction of PPG with ozone were found as 152 and 2404 M-1 h-1 at pH=3 and 7, respectively, using the gas phase ozone partial pressures determined from of the outlet gas stream analysis. It could be demonstrated that ozone decomposition to free radicals being triggered by increasing the pH from 3 to 7 is essential for the rate enhancement of PPG effluent ozonation.  相似文献   

20.
Bajaj M  Gallert C  Winter J 《Chemosphere》2008,73(5):705-710
In this study the continuous treatment of 2-chlorophenol (2-CP) containing synthetic wastewater at increasing concentrations up to 2600 mg L-1 in an anaerobic fixed bed reactor was achieved. As a source of microorganisms municipal sewage sludge was acclimatised to maximally 50 mg L-1 2-CP by 3 successive feedings within 1.5 months. Then, an anaerobic fixed bed reactor was inoculated with this sludge and was operated for 318 d, during which the 2-CP influent concentration was stepwise increased from 50 to 2600 mg L-1 within 265 d. At a hydraulic retention time (HRT) of 2.2 d the 2-CP loading rate was 2 g L-1 d-1 and the average 2-CP removal rate was 0.87 g L-1 d-1, accounting for 73% removal. This is the highest 2-CP removal rate ever reported. The negative effect of a 2-CP loading rate of 1.36 g L-1 d-1 on 2-CP removal was reversible within 2 wk when lower loading conditions (e.g. 0.76 g 2-CP L-1 d-1) were re-established. The median chloride ion release per unit 2-CP degraded was 0.24, which was reasonably close to the theoretically expected value of 0.28. In a batch assay, carried out with relatively clear reactor effluent, the highest removal rate of 2-CP was 175 mg L-1 d-1. At the time of reactor termination on day 318, the 2-CP removal rate by the biofilm in the reactor was 0.61 g L-1 d-1, corresponding to a HRT of 3.4 d and a 2-CP loading rate of 0.76 g L-1 d-1. At these very stable conditions removal of COD was 84% and of 2-CP 81%  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号