首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determining the effect of tropical land use on the carbon dioxide (CO2) content of the atmosphere requires: (a) estimates of the rates of land use change, (b) estimates of the difference between the carbon stored in forests and that stored in pastures and cultivated fields, and (c) a consideration of the fate of carbon stored in the cleared vegetation. The first article of this series analyzed land use in four tropical countries and estimated the carbon released to the atmosphere as a consequence of changes in land use. This article estimates the carbon released from the entire tropical region based on the two published studies of land use change for the tropics as a whole that distinguish between temporary and permanent land use: Seiler and Crutzen (1980) and Lanly (1982). We combine these estimates with two estimates of the difference in carbon storage between forests and fields derived from Whittaker and Likens (1975) and Brown and Lugo (1982), and the two scenarios of the fate of cleared vegetation, developed in the previous article, to produce several complete sets of data describing the necessary parameters to calculate carbon exchange. These data sets, entered into our model, produce a range of estimates of the annual release of carbon from tropical vegetation in 1980 of from 0.6 to 1.8 BMT/year, with the more likely range being 0.9–1.2 BMT/year. Our preliminary analysis suggests that the release from tropical soils due to land use change adds about an additional 0.3 BMT C/year, so that the total release is probably between 1.2 and 1.5 BMT C/year. Peng and others (1983) reported that new models of the oceanic carbon cycle can accommodate at least 1.2 BMT C/year in 1980 from forests and soils. Our results indicate that, given the uncertainties in the size of both the biotic release and oceanic uptake, the global carbon budget may be balanced if there is no significant release from nontropical ecosystems due to land use change and all mature ecosystems are in collective equilibrium with the atmosphere.  相似文献   

2.
The rationale, assumptions, structure and basic mathematical functions of the model used to produce the simulation results reported in the first two articles of this series are described in detail. Sensitivity analysis indicates that the most important parameters in the model, and, presumably, in the carbon exchange between tropical forests and the atmosphere, are: (a) the conversion rate of forests to permanent pasture and agriculture, (b) the changes that are occurring and have occurred in the shifting cultivation system, and (c) the fate of cleared vegetation. Although it is not possible to validate the model against direct measurements of carbon exchange, the model has been proven robust when subject to a series of explicit analyses and comparisons with other assessments.  相似文献   

3.
Tropical deforestation is a significant contributor to accumulation of greenhouse gases (GHGs) in the atmosphere. GHG emissions from deforestation in the tropics were in the range of 1 to 2 Pg C yr(-1) for the 1990s, which is equivalent to as much as 25% of global anthropogenic GHG emissions. While there is growing interest in providing incentives to avoid deforestation and consequently reduce net carbon emissions, there is limited information available on the potential costs of these activities. This paper uses a global forestry and land use model to analyze the potential marginal costs of reducing net carbon emissions by avoiding deforestation in tropical countries. Our estimates suggest that about 0.1 Pg C yr(-1) of emissions reductions could be obtained over the next 30 to 50 yr for $5 per Mg C, and about 1.6 Pg C yr(-1) could be obtained over the same time frame for $100 per Mg C. In addition, the effects of carbon incentives on land use could be substantial. Relative to projected baseline conditions, we find that there would be around 3 million additional hectares (ha) of forestland in 2055 at $5 per Mg C and 422 million ha at $100 per Mg C. Estimates of reductions in area deforested, GHG mitigation potential, and annual land rental payments required are presented, all of which vary by region, carbon price paid, and time frame of mitigation.  相似文献   

4.
Land-cover change has significant influence on carbon storage and fluxes in terrestrial ecosystems. The southern United States is thought to be the largest carbon sink across the conterminous United States. However, the spatial and temporary variability of carbon storage and fluxes due to land-cover change in the southern United States remains unclear. In this study, we first reconstructed the annual data set of land-cover of the southern United States from 1860 to 2003 with a spatial resolution of 8 km. Then we used a spatially explicit process-based biogeochemical model (Terrestrial Ecosystem Model [TEM] 4.3) to simulate the effects of cropland expansion and forest regrowth on the carbon dynamics in this region. The pattern of land-cover change in the southern United States was primarily driven by the change of cropland, including cropland expansion and forest regrowth on abandoned cropland. The TEM simulation estimated that total carbon storage in the southern United States in 1860 was 36.8 Pg C, which likely was overestimated, including 10.8 Pg C in the southeast and 26 Pg C in the south-central. During 1860-2003, a total of 9.4 Pg C, including 6.5 Pg C of vegetation and 2.9 Pg C of soil C pool, was released to the atmosphere in the southern United States. The net carbon flux due to cropland expansion and forest regrowth on abandoned cropland was approximately zero in the entire southern region between 1980 and 2003. The temporal and spatial variability of regional net carbon exchange was influenced by land-cover pattern, especially the distribution of cropland. The land-use analysis in this study is incomplete and preliminary. Finally, the limitations, improvements, and future research needs of this study were discussed.  相似文献   

5.
Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.  相似文献   

6.
Forests and soils are a major sink of carbon, and land use changes can affect the magnitude of above ground and below ground carbon stores and the net flux of carbon between the land and the atmosphere. Studies on methods for examining the future consequences of changes in patterns of land use change and carbon flux gains importance, as they provide different options for CO2 mitigation strategies. In this study, a simulation approach combining Markov chain processes and carbon pools for forests and soils has been implemented to study the carbon flows over a period of time. Markov chains have been computed by converting the land use change and forestry data of India from 1997 to 1999 into a matrix of conditional probabilities reflecting the changes from one class at time t to another class time t+1. Results from Markov modeling suggested Indian forests as a potential sink for 0.94 Gt carbon, with an increase in dense forest area of about 75.93 Mha and decrease of about 3.4 Mha and 5.0 Mha in open and scrub forests, if similar land use changes that occurred during 1997–1999 would continue. The limiting probabilities suggested 34.27 percent as dense forest, 6.90 as open forest, 0.4 percent mangrove forest, 0.1 percent scrub and 58 percent as non-forest area. Although Indian forests are found to be a potential carbon sink, analysis of results from transition probabilities for different years till 2050 suggests that, the forests will continue to be a source of about 20.59 MtC to the atmosphere. The implications of these results in the context of increasing anthropogenic pressure on open and scrub forests and their contribution to carbon source from land use change and forestry sector are discussed. Some of the mitigation aspects to reduce greenhouse gas emissions from land use change and forestry sector in India are also reviewed in the study.  相似文献   

7.
A review is presented on trace gas exchange of CH4, CO, N2O, and NOx arising from agriculture and natural sources in the world's semiarid and arid zones due to soil processes. These gases are important contributors to the radiative forcing and the chemistry of the atmosphere. Quantitative information is summarized from the available studies. Between 5 and 40% of the global soil-atmosphere exchange for these gases (CH4, CO, N2O, and NOx) may occur in semiarid and arid zones, but for each of these gases there are fewer than a dozen studies to support the individual estimates, and these are from a limited number of locations. Significant differences in the biophysical and chemical processes controlling these trace gas exchanges are identified through the comparison of semiarid and arid zones with the moist temperate or wet/dry savanna land regions. Therefore, there is a poorly quantified understanding of the contribution of these regions to the global trace gas cycles and atmospheric chemistry. More importantly, there is a poor understanding of the feedback between these exchanges, global change, and regional land use and air pollution issues. A set of research issues is presented.  相似文献   

8.
This work analyses land cover changes occurring between 1990 and 2000 within a Natural Protected Area, southwest of Madrid (Spain). We develop a new methodology that considers the net change in different land cover categories in each municipality of the study area. Our methodology, which uses Factorial Correspondence Analysis, allows identification of the most important changes at the municipality level and groups the municipalities where land use dynamics are similar. This method is a powerful tool for synthesis and can potentially be applied to non-spatial geographical data sources (e.g. agrarian census statistics). Our results show that the land cover around SW Madrid is highly dynamic. The shrub vegetation, arable land, heterogeneous agricultural and human-created area categories show the highest total change. The dynamics of the changes detected are dominated by decreases in the area of different types of crops and increases in forest areas. These changes may have indirect effects on the conservation of natural resources and wildlife if not managed appropriately.  相似文献   

9.
The present research introduces a well to wire pseudo comprehensive carbon footprint model for combined cycle power plants. The mentioned model integrates land use change model, operational model and transmission and distribution model into one comprehensive model. The parameters which their effects are considered in the integrated model are: fuel type, fuel transmission type, emission for fuel extraction and processing, own consumption of the plant, degradation, site ambient condition, transmission and distribution losses. For quantifying the effectiveness of each parameter, sensitivity analyses based on different life cycle scenarios are performed. The result shows that the effect of land use change is negligible. The carbon footprint of electrical energy produced in combined cycle plant until it is delivered to the end users varies from 321 to 522 g CO2 eq/kWh.  相似文献   

10.
The soil microbial community plays a critical part in tropical ecosystem functioning through its role in the soil organic matter (SOM) cycle. This study evaluates the relative effects of soil type and land use on (i) soil microbial community structure and (ii) the contribution of SOM derived from the original forest vegetation to the functioning of pasture and sugarcane (Saccharum spp.) ecosystems. We used principal components analysis (PCA) of soil phospholipid fatty acid (PLFA) profiles to evaluate microbial community structure and PLFA stable carbon isotope ratios (delta13C) as indicators of the delta13C of microbial substrates. Soil type mainly determined the relative proportions of gram positive versus gram negative bacteria whereas land use primarily determined the relative proportion of fungi, protozoa, and actinomycetes versus other types of microorganisms. Comparison of a simple model to our PLFA delta13C data from land use chronosequences indicates that forest-derived SOM is actively cycled for appreciably longer times in sugarcane ecosystems developed on Andisols (mean turnover time = 50 yr) than in sugarcane ecosystems developed on an Oxisol (mean turnover time = 13 yr). Our analyses indicate that soil chronosequence PLFA delta13C measurements can be useful indicators of the contribution that SOM derived from the original vegetation makes to continued ecosystem function under the new land use.  相似文献   

11.
Models of carbon storage in softwood and hardwood trees and forest soils and its emission from timber products and waste are developed and integrated with data on storage benefits to yield estimates of the value of the net carbon flux generated by afforestation. The long-term nature of the processes under consideration and the impact of varying the discount rate are explicitly incorporated within the model. A geographical information system (GIS) is used to apply carbon sequestration models to data on tree growth and soil type distribution for a large study area (the entire country of Wales). The major findings are: (1) all three elements under analysis (carbon sequestration in livewood, release from different products and waste, and storage or emission from soils) play a vital role in determining overall carbon flux; (2) woodland management has a substantial impact upon carbon storage in livewood however the choice of discount rate exerts the largest overall influence upon estimated carbon flux values; (3) timber growth rates (yield class) also have a major impact upon values; (4) tree species does affect storage values, however this is less important than the other factors listed above; (5) non-peat soils generally sequester relatively low levels of carbon. Planting upon peat soils can result in very substantial emissions of carbon which exceed the level of storage in livewood.The GIS is used to produce valuation maps which can be readily incorporated within cost-benefit analyses regarding optimal locations for conversion of land into forestry.  相似文献   

12.
Features of the land management history over a 125,755 km(2) area of central Queensland, Australia were determined from a variety of sources. A random sample of 205 site locations provided the basis for determining trends in land use. Trends in vegetation clearing were determined using sequential aerial photography for the sample sites, revealing a steady rate averaging nearly 1% of the region per annum over 41 years. This measure of sustained clearing over a large region is higher than recently published clearing rates from South America. Land types have been selectively cleared with over 90% of the Acacia on clay land type having been cleared. A land-holder questionnaire pertaining to the random sites yielded a response rate of 71% and provided information on vegetation clearing, ploughing, tree killing (ring-barking or tree poisoning), and fire frequency, season and intensity. The land-holder responses were compared with independent data sources where possible and revealed no mis-information. However, land-holders may have been marginally less likely to respond if the sample area had been cleared, although this effect was not statistically significant. Ploughing and tree killing are variable depending on land type, but the former has affected about 40% of the Acacia on clay land type, effectively eliminating options for natural regrowth. The proportion of decade-site combinations that were reported as having no fires increased from 22% in the 1950s to an average of 42% for subsequent decades, although the reporting of more than one fire per decade has been relatively constant through the study period. The reporting of at least one fire per decade varies from 46% for the Acacia on sand land type to 77% for the Eucalypt on sand land type for decade-site combinations. Fires are more intense when associated with clearing than in uncleared vegetation, but the proportion of cool and hot fires is relatively constant between land types in uncleared vegetation. Nearly all fires reported were either in spring or summer and this seasonally restricted regime is probably at variance with Aboriginal fire regimes. This study describes the rapid transformation of central Queensland. This has yielded substantially increased agricultural production but may also result in a range of negative impacts and these are discussed.  相似文献   

13.
In biologically mega-diverse countries that are undergoing rapid human landscape transformation, it is important to understand and model the patterns of land cover change. This problem is particularly acute in Colombia, where lowland forests are being rapidly cleared for cropping and ranching. We apply a conceptual model with a nested set of a priori predictions to analyse the spatial and temporal patterns of land cover change for six 50-100 km(2) case study areas in lowland ecosystems of Colombia. Our analysis included soil fertility, a cost-distance function, and neighbourhood of forest and secondary vegetation cover as independent variables. Deforestation and forest regrowth are tested using logistic regression analysis and an information criterion approach to rank the models and predictor variables. The results show that: (a) overall the process of deforestation is better predicted by the full model containing all variables, while for regrowth the model containing only the auto-correlated neighbourhood terms is a better predictor; (b) overall consistent patterns emerge, although there are variations across regions and time; and (c) during the transformation process, both the order of importance and significance of the drivers change. Forest cover follows a consistent logistic decline pattern across regions, with introduced pastures being the major replacement land cover type. Forest stabilizes at 2-10% of the original cover, with an average patch size of 15.4 (+/-9.2)ha. We discuss the implications of the observed patterns and rates of land cover change for conservation planning in countries with high rates of deforestation.  相似文献   

14.
We modeled the effects of afforestation and deforestation on carbon cycling in forest floor and soil from 1900 to 2050 throughout 13 states in the southern United States. The model uses historical data on gross (two-way) transitions between forest, pasture, plowed agriculture, and urban lands along with equations describing changes in carbon over many decades for each type of land use change. Use of gross rather than net land use transition data is important because afforestation causes a gradual gain in carbon stocks for many decades, while deforestation causes a much more rapid loss in carbon stocks. In the South-Central region (Texas to Kentucky) land use changes caused a net emission of carbon before the 1980s, followed by a net sequestration of carbon subsequently. In the Southeast region (Florida to Virginia), there was net emission of carbon until the 1940s, again followed by net sequestration of carbon. These results could improve greenhouse gas inventories produced to meet reporting requirements under the United Nations Framework Convention on Climate Change. Specifically, from 1990 to 2004 for the entire 13-state study area, afforestation caused sequestration of 88 Tg C, and deforestation caused emission of 49 Tg C. However, the net effect of land use change on carbon stocks in soil and forest floor from 1990 to 2004 was about sixfold smaller than the net change in carbon stocks in trees on all forestland. Thus land use change effects and forest carbon cycling during this period are dominated by changes in tree carbon stocks.  相似文献   

15.
3 and C4 plant species consumed by animals. Sheep sample vegetation continuously throughout a year, and as their wool grows it integrates and stores information about their diet. In subtropical and tropical rangelands the majority of grass species are C4. Since sheep prefer to graze, and their wool is an isotopic record of their diet, we now have the potential to develop a high resolution index to the availability of grass from a sheep's perspective. Isotopic analyses of wool suggest a new direction for monitoring grazing and for the reconstruction of past vegetation changes, which will make a significant contribution to traditional rangeland ecology and management. It is recommended that isotopic and other analyses of wool be further developed for use in rangeland monitoring programs to provide valuable feedback for land managers.  相似文献   

16.
Forest fires are an integral part of the ecology of the Mediterranean Basin; however, fire incidence has increased dramatically during the past decades and fire is expected to become more prevalent in the future due to climate change. Fuel modification by prescribed burning reduces the spread and intensity potential of subsequent wildfires. We used the most recently published data to calculate the average annual wildfire CO(2) emissions in France, Greece, Italy, Portugal and Spain following the IPCC guidelines. The effect of prescribed burning on emissions was calculated for four scenarios of prescribed burning effectiveness based on data from Portugal. Results show that prescribed burning could have a considerable effect on the carbon balance of the land use, land-use change and forestry (LULUCF) sector in Mediterranean countries. However, uncertainty in emission estimates remains large, and more accurate data is needed, especially regarding fuel load and fuel consumption in different vegetation types and fuel layers and the total area protected from wildfire per unit area treated by prescribed burning, i.e. the leverage of prescribed burning.  相似文献   

17.
The CORINE land cover database for Ireland (in ARC/INFO) is used to estimate the amount of carbon stored (tonnes) by each land-cover (vegetation) type. Carbon store is the area of each CORINE land-cover type multiplied by its carbon density (t C ha−1). Derivations of these carbon densities are described and limitations of data and other empirical evidence discussed. The total vegetation-carbon stores are calculated for Northern Ireland (3·81 Mt), the Republic of Ireland (19·27 Mt) and Ireland (23·08 Mt). Carbon densities are grouped into classes and their distributions across Ireland are mapped. The vegetation-carbon store is taken to include stems, branches, foliage and roots. It does not include litter, microbial biomass and organic carbon in the soil. Forests store 49% of the vegetation carbon on less than 5% of the total CORINE land area, with a further 22% in other semi-natural vegetation. In contrast, pastures account for 56% of the land-cover area, but only 19% of the carbon store. High carbon densities are found in the west and in uplands, reflecting the distribution of forests and semi-natural vegetation, particularly peatland and moors. The inventory of vegetation-carbon stores is an important first step in attempts to monitor changes in carbon sequestration from, and emissions to, the atmosphere by terrestrial vegetation. Greenhouse gas fluxes, including CO2, and climate warming are global issues which require responses by all countries. Inventories of carbon stores and fluxes therefore need to be comparable between countries so that agreed reductions can be targetted. CORINE land-cover data are available for 19 European Union and adjacent countries and could be used to provide an inventory of carbon stores, and through updating of CORINE, changes in those stores. Commonality in determining the carbon densities of CORINE classes would be required. This study exemplifies how that was achieved in two countries using their national data.  相似文献   

18.
Policy enabling tropical forests to approach their potential contribution to global-climate-change mitigation requires forecasts of land use and carbon storage on a large scale over long periods. In this paper, we present an integrated modeling methodology that addresses these needs. We model the dynamics of the human land-use system and of C pools contained in each ecosystem, as well as their interactions. The model is national scale, and is currently applied in a preliminary way to Costa Rica using data spanning a period of over 50 years. It combines an ecological process model, parameterized using field and other data, with an economic model, estimated using historical data to ensure a close link to actual behavior. These two models are linked so that ecological conditions affect land-use choices and vice versa. The integrated model predicts land use and its consequences for C storage for policy scenarios. These predictions can be used to create baselines, reward sequestration, and estimate the value in both environmental and economic terms of including C sequestration in tropical forests as part of the efforts to mitigate global climate change. The model can also be used to assess the benefits from costly activities to increase accuracy and thus reduce errors and their societal costs.  相似文献   

19.
The impacts of land use and land cover (LULC) change in buffer zones surrounding protected ecological reserves have important implications for the management and conservation of these protected areas. This study examines the spatial and temporal patterns of LULC change along the boundary of Rio Abiseo National Park in the Northern Peruvian Andes. Landscape change within four ecological zones was evaluated based on trends expected to occur between 1987 and 2001. Landsat TM and ETM imagery were used to produce LULC classification maps for both years using a hybrid supervised/unsupervised approach. LULC changes were measured using landscape metrics and from-to change maps created by post-classification change detection. Contrary to expectations, tropical upper wet montane forest increased despite being threatened by human-induced fires and cattle grazing of the highland grasslands inside the park. Within the park’s buffer zone, tropical moist forest remnants were fragmented into more numerous and smaller patches between 1987 and 2001; this was in part due to conversion into agricultural land. The methods used in this study provide an effective way to monitor LULC change detection and support the management of protected areas and their surrounding environments.  相似文献   

20.
Land-cover types were analyzed for 1970, 1990 and 2000 as the bases for determining land-use systems and their influence on the resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico. Deforestation (DR) and mean annual transformation rates were calculated from land-cover change data; thus, the classification of land-use change processes was determined according to their impact on resilience: a) Modification, including land-cover conservation and intensification, and b) Conversion, including disturbance and regeneration processes. Regeneration processes, from secondary vegetation under extensive use, cultivated vegetation under intensive use, and cultivated or induced vegetation under extensive use to mature or secondary vegetation, have high resilience capacity. In contrast, cattle-raising is characterized by rapid expansion, long-lasting change, and intense damages; thus, recent disturbance processes, which include the conversion to cattle-raising, provoke the downfall of the traditional agricultural system, and nullify the capacity of resilience of tropical rain forest. The land-use cover change processes reveal a) the existence of four land-use systems (forestry, extensive agriculture, extensive cattle-raising, and intensive uses) and b) a trend towards the replacement of agricultural and forestry systems by extensive cattle-raising, which was consolidated during 1990–2000 (DR of evergreen tropical rain forest=4.6%). Only the forestry system, which is not subject to deforestation, but is affected by factors such as selective timber, extraction, firewood collection, grazing, or human-induced fire, is considered to have high resilience (2 years), compared to agriculture (2–10 years) or cattle-raising (nonresilient). It is concluded that the analysis of land-use systems is essential for understanding the implications of land-use cover dynamics on forest recovery and land degradation in tropical rain forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号