首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Water transfers from agricultural to urban and environmental uses will likely become increasingly common worldwide. Many agricultural areas rely heavily on underlying groundwater aquifers. Out-of-basin surface water transfers will increase aquifer withdrawals while reducing recharge, thereby altering the evolution of the agricultural production/groundwater aquifer system over time. An empirical analysis is conducted for a representative region in California. Transfers via involuntary surface water cutbacks tilt the extraction schedule and lower water table levels and net benefits over time. The effects are large for the water table but more modest for the other variables. Break-even prices are calculated for voluntary quantity contract transfers at the district level. These prices differ considerably from what might be calculated under a static analysis which ignores water table dynamics. Canal-lining implies that districts may gain in the short-run but lose over time if all the reduction in conveyance losses is transferred outside the district. Water markets imply an evolving quantity of exported flows over time and a reduction in basin net benefits under common property usage. Most aquifers underlying major agricultural regions are currently unregulated. Out-of-basin surface water transfers increase stress on the aquifer and management benefits can increase substantially in percentage terms but overall continue to remain small. Conversely, we find that economically efficient management can mitigate some of the adverse consequences of transfers, but not in many circumstances or by much. Management significantly reduced the water table impacts of cutbacks but not annual net benefit impacts. Neither the break-even prices nor the canal-lining impacts were altered by much. The most significant difference is that regional water users gain from water markets under efficient management.  相似文献   

2.
We developed a comprehensive coupling framework with a multi-objective optimization that bridges a water balance model (WBM) and a wetland service model (WSM) to supporting wetland management. The framework was tested for management in Tram Chim National Park (with four wetland zones) where hydro-economic optimization was needed. The framework used (1) a model coupling process bridging WBM and WSM to create a modular hydro-economic model (MHEM), (2) a multi-objective optimization, and (3) an anneal scheduling for scenario optimization. The framework demonstrated its competency in identifying cause–effect/interaction flows (bridges) between WBM and WSM to design MHEM to simulate optimized scenarios; for the case study, the multi-objective optimization was met for all wetland zones. Results suggested a flexible consideration of management scales for optimization, i.e. hydrologic optimization at a zone level and net benefit optimization at a Park level. Our framework is applicable to supporting complex wetland decisions considering multiple objectives.  相似文献   

3.
Spain's Programa AGUA was proposed in 2004 as a replacement for the Spanish National Hydrological Plan and represented a fundamental policy shift in national water management from large inter-basin water transfers to a commitment to desalination. Twenty-one desalination facilities are planned for six provinces on the Spanish Mediterranean coast to supplement their water needs. These include the province of Almería that for the last 30 years has endured a net water abstraction overdraft leading to serious reservoir depletion and groundwater imbalances. Rising water use is a result of increasing demand to support irrigated agriculture (e.g. greenhouse horticulture) and for domestic needs (e.g. rapid urban growth and tourism development), which has led observers to question Almería's long-term water sustainability. Desalinated water alone is unlikely to be sufficient to make up these water deficits and water-users will have to accept a move to full-price water recovery by 2010 under the European Union (EU) Water Framework Directive of which Spain is a signatory. Anticipated water efficiencies resulting from higher water tariffs, increasing water reuse and water infrastructure improvements (including inter-basin transfers), in conjunction with increasing use of desalinated water, are expected to address the province's current water overdraft. However, Almería will need to balance its planned initiatives against long-term estimates of projected agricultural and domestic development and the environmental consequences of adopting a desalination-supported water future.  相似文献   

4.
Water demands in the Aegean Islands have increased steadily over the last decade as a result of a building boom for new homes, hotels, and resorts. The increase in water demand has resulted in the disruption of past sustainable water management practices. At present, most freshwater needs are met through the use of the limited groundwater, desalinated seawater, and freshwater importation. Wastewater reclamation, not used extensively, can serve as an alternative source of water, for a variety of applications now served with desalinated and imported water. Three alternative processes: desalination, importation, and water reclamation are compared with respect to cost, energy requirements and long-term sustainability. Based on the comparisons made, water reclamation and reuse should be components of any long-term water resources management strategy.  相似文献   

5.
This two-part article gives an overview of the use of non-conventional water resources in developing countries. The first part (published in the January 1985 issue) reviewed United Nations involvement with the subject, and its relationship to the International Drinking Water Supply and Sanitation Decade. The main emphasis of the first part was on the development of technology and markets for the various desalination processes — distillation, electrodialysis and reverse osmosis. The general costs of the various processes were compared.
The second part of the article (presented here) concentrates on the other non-conventional water resources: transport of water by tanker and iceberg, wastewater reuse and weather modification. For all of the processes examples are given and economic comparisons made. It is concluded that it is always preferable to use conventional resources where available.
However, in water-short areas, consideration might be given to non-conventional resouces.  相似文献   

6.
Uncertainty in future water supplies for the Phoenix Metropolitan Area (Phoenix) are exacerbated by the near certainty of increased, future water demands; water demand may increase eightfold or more by 2030 for some communities. We developed a provider-based water management and planning model for Phoenix termed WaterSim 4.0. The model combines a FORTRAN library with Microsoft C# to simulate the spatial and temporal dynamics of current and projected future water supply and demand as influenced by population demographics, climatic uncertainty, and groundwater availability. This paper describes model development and rationale. Water providers receive surface water, groundwater, or both depending on their portfolio. Runoff from two riverine systems supplies surface water to Phoenix while three alluvial layers that underlie the area provide groundwater. Water demand was estimated using two approaches. One approach used residential density, population projections, water duties, and acreage. A second approach used per capita water consumption and separate population growth estimates. Simulated estimates of initial groundwater for each provider were obtained as outputs from the Arizona Department of Water Resources (ADWR) Salt River Valley groundwater flow model (GFM). We compared simulated estimates of water storage with empirical estimates for modeled reservoirs as a test of model performance. In simulations we modified runoff by 80%-110% of the historical estimates, in 5% intervals, to examine provider-specific responses to altered surface water availability for 33 large water providers over a 25-year period (2010-2035). Two metrics were used to differentiate their response: (1) we examined groundwater reliance (GWR; that proportion of a providers' portfolio dependent upon groundwater) from the runoff sensitivity analysis, and (2) we used 100% of the historical runoff simulations to examine the cumulative groundwater withdrawals for each provider. Four groups of water providers were identified, and discussed. Water portfolios most reliant on Colorado River water may be most sensitive to potential reductions in surface water supplies. Groundwater depletions were greatest for communities who were either 100% dependent upon groundwater (urban periphery), or nearly so, coupled with high water demand projections. On-going model development includes linking WaterSim 4.0 to the GFM in order to more precisely model provider-specific estimates of groundwater, and provider-based policy options that will enable "what-if" scenarios to examine policy trade-offs and long-term sustainability of water portfolios.  相似文献   

7.
Urban water management in Addis Ababa, Ethiopia, is of significant concern to the city government owing to the growing demand for water, poor urban water management practices, insufficient and ineffective infrastructures, and climate change. The objective of this study is to review current water resources and management practices, consider the sustainability of the urban water cycle in relation to climate change, and devise a feasible strategy for a sustainable urban water management system. The results of this study show that the situation as it is now is not sustainable at current levels of demand and supply, either in terms of the systems’ management practices, or in terms of the challenges posed by climate change. An Integrated Urban Water Management strategy that covers the entire urban water cycle, including diversification of water sources, protection and conservation of water, sustainable exploitation, distribution, and consumption and wastewater management, water recycling, nutrient reuse, and safe wastewater disposal, should be implemented as soon as practicable.  相似文献   

8.
Population growth, climate change, aging infrastructure, and changing societal values alter how water must be managed in the 21st Century. O'Shaughnessy Dam, located in Yosemite National Park, has been identified as a possible candidate for dam removal. It is a component of San Francisco's Hetch Hetchy System and is operated for water supply and hydropower. This article describes a spatially scaled approach to analyze water reliability without O'Shaughnessy Dam, but with improved water conveyance between the Hetch Hetchy System and existing reservoirs and aqueducts at the watershed, regional Bay Area, and statewide scales. It broadens previous research to highlight larger scale implications of removing O'Shaughnessy Dam and evaluates the role of improved water conveyance for water management. CALifornia Value Integrated Network, a large‐scale hydro‐economic model evaluates intertied water management using estimated urban and agricultural water demands for year 2050 with 72‐year historical and warm, dry hydrologic conditions. Results suggest that O'Shaughnessy Dam can be removed with additional conveyance at any spatial scale while maintaining water reliability. With a warm, dry climate, water reliability, and storage decline, indicating removing O'Shaughnessy Dam may have less effect on water management than climate change when conveyance is improved between the Hetch Hetchy System and nearby systems. Improving water conveyance can sometimes substitute for water storage in storage‐rich watersheds.  相似文献   

9.
The collection, storage, and reuse of rainwater collected in rain barrels from urban rooftop areas assists municipalities in achieving stormwater management objectives and in some areas also serves as an adjunct resource for domestic water supplies. In this study, rainwater reuse and levels of select microbial indicators were monitored for six residential rain barrels located in the Shepherd Creek watershed of Cincinnati, Ohio. Water from rain barrels typically had poor microbial quality and was used for watering indoor and outdoor plants. Rain barrel water chemistry was slightly acidic, exhibited wide ranges in conductivity, turbidity, and total organic carbon (TOC) concentrations and gave no evidence of the presence of cyanobacterial microcystin toxins. Selected microbial water‐quality indicators indicated that counts of total coliform and enterococci were consistently above U.S. Environmental Protection Agency standards for secondary recreational contact water‐quality standards. Residential rain barrels can provide water appropriate for low‐contact reuses (such as plant watering), although there may be transient periods of high levels of indicator bacteria in the collected water.  相似文献   

10.
ABSTRACT: A large-scale simulation/optimization model provides schedules for operation of water and power for the California State Water Project (SWP). The SWP consists of a series of reservoirs linked by rivers, pumping plants, canals, tunnels, and generating plants and is operated by the California Department of Water Resources. The Department provides water to municipal and agricultural users, and manages its electrical loads and resources. The model, therefore, performs hydraulic and electrical computations leading to optimal operation of the entire system. It consists of hydraulic network programming components to meet the storage objectives at all the reservoirs, a linear programming component to determine the schedules at pumping and generating plants, an electrical network programming component to balance electrical loads and resources, and a number of other simulation components. It operates on yearly, weekly, and daily bases. It is primarily used for real-time operation of the SWP and can provide hourly detail schedules which are implemented by the SWP staff via a computerized system.  相似文献   

11.
Abstract: The growing impact of urban stormwater on surface‐water quality has illuminated the need for more accurate modeling of stormwater pollution. Water quality based regulation and the movement towards integrated urban water management place a similar demand for improved stormwater quality model predictions. The physical, chemical, and biological processes that affect stormwater quality need to be better understood and simulated, while acknowledging the costs and benefits that such complex modeling entails. This paper reviews three approaches to stormwater quality modeling: deterministic, stochastic, and hybrid. Six deterministic, three stochastic, and three hybrid models are reviewed in detail. Hybrid approaches show strong potential for reducing stormwater quality model prediction error and uncertainty. Improved stormwater quality models will have wide ranging benefits for combined sewer overflow management, total maximum daily load development, best management practice design, land use change impact assessment, water quality trading, and integrated modeling.  相似文献   

12.
ABSTRACT: The Metropolitan Water District of Southern California has for more than 70 years shaped the development of an immense urban region. The district's current strategic planning process therefore could have substantial effects on regional water planning and management. The rate restructuring phase of the planning process has produced a multiple component, cost of service based framework. This paper describes that framework as well as some criticisms that have been directed toward it. The rate restructuring was shaped, and for a while stalled, by old disputes among member agencies over rights to water supplied by Metropolitan. That controversy has diverted attention from the resource management implications of the rate structure. This paper presents an alternative future focused approach to regional integrated water resource planning for Southern California based on projections of current trends and anticipation of future events. This discussion raises the question of how regional integrated water resources planning of this sort may proceed, and what role Metropolitan will play in that process.  相似文献   

13.
ABSTRACT: This paper examines a rapidly expanding area of water supplies, specifically water reclamation and reuse, and provides a comprehensive planning methodology for developing and evaluating water reuse alternatives. The methodology uses five phases: goal setting, identification of reuse opportunities, development and evaluation of planning alternatives, assessment of water reuse linkages, and making decisions and recommendations. A tool called “input-output modeling” is used in the third phase to present numerical data and choices. The methodology seeks to integrate the hydrologic and socio-economic aspects of water resources planning in the area of study. Water reuse may satisfy some of the increasing demands for water in the world, but water quality, economics, public attitudes, and legal and institutional constraints may impose limits on the extent to which it can be employed. The challenge in planning systems is to maximize the utilization of water reuse in the fact of these constraints. The importance of multidisciplinary collaboration cannot be overemphasized. This paper assesses the potential for water reclamation and reuse in developing countries by considering the relationships among the pertinent technical, social, economic, and environmental parameters. Generally, the planning process for water reuse has focused on specific technological processes, but in order to ensure the efficient transfer of waste water reuse technology into the society, the methodology seeks to provide a conceptual model which integrates the hydrologic and socioeconomic aspects of water resources planning and water reuse within the study area. (KEY WORDS: water reuse; water reclamation; planning; methodology; model; reuse technology; socio-hydrologic systems; socioeconomic systems.)  相似文献   

14.
Wastewater Reuse Practices in Kuwait   总被引:1,自引:0,他引:1  
Water is a scarce commodity in Kuwait. With rapid growth of population coupled with increasing urbanization and agriculture, the demand for water in Kuwait is continually on the increase. The main water source in the country is from desalination with small quantities from underground aquifers. Wastewater effluent at least for irrigation purposes, could be a valuable source to augment this dwindling water supply, and should not continue to be wasted. Reuse of wastewater effluent could both minimize the disposal of water to the environment and reduce the demand on fresh water supplies. This paper discusses the features of reuse, the processes used and standards adopted. Design data, operational results, and physical characteristics for the three wastewater treatment plants (Ardiya, Jahra, and Riqqa) in Kuwait are discussed. In addition, the paper reports on the results of a research study undertaken to determine the willingness, level of awareness and knowledge among the people of Kuwait in using wastewater effluent for different purposes. Cost and benefit analyses were conducted on wastewater effluent and reuse. The study concludes with useful recommendations to both the authorities and the citizens of Kuwait.  相似文献   

15.
16.
Parts of the USA are facing impending shortages of freshwater. One proposed solution is the construction of desalination plants to turn seawater into freshwater. Although seawater desalination plants are widely used in the Middle East, especially Saudi Arabia, there are few desalination plants in the USA. In 2003, Tampa Bay Water built the largest desalination plant in North America. Persistent operating problems and escalating costs have caused the utility to re-evaluate its reliance on the seawater desalination plant as part of a long-term regional water supply strategy. In addition, environmental effects of the plant are uncertain. Advances in reverse osmosis technology have significantly reduced desalination costs. However, desalination of seawater is still more expensive than other freshwater supply sources and demand management measures. With time and research, seawater desalination may prove to be a sustainable, cost-effective source of new freshwater supplies, especially if plants are coupled with renewable energy sources. Until then, the development of small-scale groundwater desalination plants, the re-use of water, water conservation, and a more efficient allocation of water through higher prices and rising block rates will be important strategies in meeting growing water demand. Moreover, it is important to improve the coordination between water supply planning and land use planning as populations continue to increase.  相似文献   

17.
Water is a relatively scarce resource in Arizona, especially since the recent urban growth booms of Phoenix and Tucson. Arizona's 1980 Groundwater Management Act was the precursor to current water-transfer conflicts between urban buyers, rural farmers, and third parties. Water farms are bought with the intention to transfer their appurtenant groundwater to the two major metropolitan areas. As water markets have emerged, differing values and public interest issues have become apparent, while the state legislature attempts to resolve inequities. Site-specific transfer disputes, as well as policy-making conflicts, offer suitable situations for a mediation process. Equity- and efficiency-based criteria are suggested as the basis for resolving water-transfer conflicts, and a mediation process is proposed. However, third parties must develop an agenda, and a balance of power should be attained before mediation can effectively forge an agreement on water-transfer policies. The attainment of statewide policies generated through a mediated process has the potential to expand long-range regional water planning and management.  相似文献   

18.
ABSTRACT: A mathematical programming model is proposed to determine economically efficient urban water resource allocation and pricing policy by maximizing the sum of the consumer and producer surplus. The optimization of this nonlinear problem is accomplished by the use of linear programming algorithm. The feasibility of using recycled water for municipal purposes is examined in a planning context. The impact of higher water quality discharge standards on pricing and allocation of water is analyzed and the attractiveness of water reuse option is demonstrated.  相似文献   

19.
炼化浓盐水处理与资源化工艺探讨*   总被引:1,自引:0,他引:1  
炼化污水深度处理回用是各炼化企业节水减排的主要措施之一。炼化企业反渗透(简称RO)污水脱盐回用装置在运行中暴露出末端高含盐污水的处置难题,影响了污水回用生产的连续运行。文章阐述近年来炼化企业高含盐污水处置现状、存在问题、国内外处理技术及发展趋势,在此基础上针对炼化企业特点,提出以热法、膜法为核心技术的浓盐水处理工艺耦合方案,为炼化企业解决污水回用瓶颈技术难题、实施污水"零排放"与发展循环经济提供借鉴与参考。  相似文献   

20.
ABSTRACT: Because of its importance and the perceived inability of private sector sources to meet water demands, many countries have depended on the public sector to provide water services for their populations. Yet this has resulted in many inefficient public water projects and in inadequate supplies of good quality and reliable water. Decentralization of water management, including the use of water markets, cannot solve all of these water problems, but it can improve the efficiency of water allocation. When given adequate responsibility and authority, water user associations have effectively taken over water management activities at a savings to tax payers. Moreover, water markets add the potential benefit of improving water efficiency within a sector as well as providing a mechanism for reallocating water among sectors. The key question involves developing innovative mechanisms for reducing the transaction costs of organizing water users and of making water trades. Water rights need to be established which are recorded, tradable, enforceable, and separate from land if markets are to operate effectively. Also, institutions are needed that effectively resolve conflicts over water rights, including third party impacts and water quality concerns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号