首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urban water planning and policy have been focusing on environmentally benign and economically viable water management. The objective of this study is to develop a mathematical model to integrate and optimize urban water infrastructures for supply-side planning and policy: freshwater resources and treated wastewater are allocated to various water demand categories in order to reduce contaminants in the influents supplied for drinking water, and to reduce consumption of the water resources imported from the regions beyond a city boundary. A case study is performed to validate the proposed model. An optimal urban water system of a metropolitan city is calculated on the basis of the model and compared to the existing water system. The integration and optimization decrease (i) average concentrations of the influents supplied for drinking water, which can improve human health and hygiene; (ii) total consumption of water resources, as well as electricity, reducing overall environmental impacts; (iii) life cycle cost; and (iv) water resource dependency on other regions, improving regional water security. This model contributes to sustainable urban water planning and policy.  相似文献   

2.
Urbanisation is truly a global phenomenon. Starting at 39% in 1980, the urbanisation level rose to 52% in 2011. Ongoing rapid urbanisation has led to increase in urban greenhouse gas (GHG) emissions. Urban climate change risks have also increased with increase in climate-induced extreme weather events and more low-income urban dwellers living in climate sensitive locations. Despite increased emissions, including GHGs and heightened climate change vulnerability, climate mitigation and adaptation actions are rare in the cities of developing countries. Cities are overwhelmed with worsening congestion, air pollution, crime, waste management, and unemployment problems. Lack of resources and capacity constraints are other factors that discourage cities from embarking on climate change mitigation and adaptation pathways. Given the multitude of problems faced, there is simply no appetite for stand-alone urban climate change mitigation and adaptation policies and programmes. Urban mitigation and adaptation goals will have to be achieved as co-benefits of interventions targeted at solving pressing urban problems and challenges. The paper identifies administratively simple urban interventions that can help cities solve some of their pressing service delivery and urban environmental problems, while simultaneously mitigating rising urban GHG emissions and vulnerability to climate change.  相似文献   

3.
Despite continuous investment and various efforts to control pollution, urban water environments are worsening in large parts of the developing world. In order to reveal potential constraints and limitations of current practices of urban water management and to stimulate proactive intervention, we conducted a material flow analysis of the urban water system in Kunming City. The results demonstrate that the current efficiency of wastewater treatment is only around 25% and the emission of total phosphorous from the city into its receiving water, Dianchi Lake, is more than 25 times higher than its estimated tolerance. With regard to the crisis of water quantity and quality, the goal of a sustainable urban water environment cannot be attained with the current problem-solving approach in the region due to the technical limitations of the conventional urban drainage and treatment systems. A set of strategies is therefore proposed. The urban drainage system in Zurich is used as a reference for a potential best-available technology for conventional urban water management (BAT) scenario in terms of its low combined frequency of sewer overflow.  相似文献   

4.
It is now well established that the traditional practice of urban stormwater management contributes to the degradation of receiving waterways, and this practice was more recently critiqued for facilitating the wastage of a valuable water resource. However, despite significant advances in alternative “integrated urban stormwater management” techniques and processes over the last 20 years, wide-scale implementation has been limited. This problem is indicative of broader institutional impediments that are beyond current concerns of strengthening technological and planning process expertise. Presented here is an analysis of the institutionalization of urban stormwater management across Sydney with the objective of scoping institutional impediments to more sustainable management approaches. The analysis reveals that the inertia with the public administration of urban stormwater inherently privileges and perpetuates traditional stormwater management practices at implementation. This inertia is characterized by historically entrained forms of technocratic institutional power and expertise, values and leadership, and structure and jurisdiction posing significant impediments to change and the realization of integrated urban stormwater management. These insights strongly point to the need for institutional change specifically directed at fostering horizontal integration of the various functions of the existing administrative regime. This would need to be underpinned with capacity-building interventions targeted at enabling a learning culture that values integration and participatory decision making. These insights also provide guideposts for assessing the institutional and capacity development needs for improving urban water management practices in other contexts.  相似文献   

5.
The concept of integrated water management is uncommon in urban areas, unless there is a shortage of supply and severe conflicts among the users competing for limited water resources. Further, problem of water management in urban areas will aggravate due to uncertain climatic events. Therefore, an Integrated Urban Water Management Model considering Climate Change (IUWMCC) has been presented which is suitable for optimum allocation of water from multiple sources to satisfy the demands of different users under different climate change scenarios. Effect of climate change has been incorporated in non-linear mathematical model of resource allocation in term of climate change factors. These factors have been developed using runoff responses corresponding to base and future scenario of climate. Future scenarios have been simulated using stochastic weather generator (LARS-WG) for different IPCC climate change scenarios i.e. A1B, A2 and B1. Further, application of model has been demonstrated for a realistic water supply system of Ajmer urban fringe (India). Developed model is capable in developing adaptation strategies for optimum water resources planning and utilization in urban areas under different climate change scenarios.  相似文献   

6.
The impact of urbanization on groundwater is not simple to understand, as it depends on a variety of factors such as climate, hydrogeology, water management practices, and infrastructure. In semiarid landscapes, the urbanization processes can involve high water consumptions and irrigation increases, which in turn may contribute to groundwater recharge. We assessed the hydrological impacts of urbanization and irrigation rates in an Andean peri‐urban catchment located in Chile, in a semiarid climate. For this purpose, we built and validated a coupled surface–groundwater model that allows the verification of a strong stream–aquifer interaction in areas with shallow groundwater, higher than some sewers and portions of the stream. Moreover, we also identified a significant local recharge associated with pipe leaks and inefficient urban irrigation. From the evaluation of different future scenarios, we found a sustainable water conservation scenario will decrease the current groundwater levels, while the median flow reduces from 408 to 389 L/s, and the low flow (Q95%) from 43 to 22L/s. Overall, our results show the relevance of integrating the modeling of surface and subsurface water resources at different spatial and temporal scales, when assessing the effect of urban development and the suitability of urban water practices.  相似文献   

7.
The southeastern United States has undergone anthropogenic changes in landscape structure, with the potential to increase (e.g., urbanization) and decrease (e.g., reservoir construction) stream flashiness and flooding. Assessment of the outcome of such change can provide insight into the efficacy of current strategies and policies to manage water resources. We (1) examined trends in precipitation, floods, and stream flashiness and (2) assessed the relative influence of land cover and flow‐regulating features (e.g., best management practices and artificial water bodies) on stream flashiness from 1991 to 2013. We found mean annual precipitation decreased, which coincided with decreasing trends in floods. In contrast, stream flashiness, overall, showed an increasing trend during the period of study. However, upon closer examination, 20 watersheds showed stable stream flashiness, whereas 5 increased and 6 decreased in flashiness. Urban watersheds were among those that increased or decreased in flashiness. Watersheds that increased in stream flashiness gained more urban cover, lost more forested cover and had fewer best management practices installed than urban watersheds that decreased in stream flashiness. We found best management practices are more effective than artificial water bodies in regulating flashy floods. Flashiness index is a valuable and straightforward metric to characterize changes in streamflow and help to assess the efficacy of management interventions.  相似文献   

8.
Water resource management is becoming increasingly challenging in northern China because of the rapid increase in water demand and decline in water supply due to climate change. We provide a case study demonstrating the importance of integrated watershed management in sustaining water resources in Chifeng City, northern China. We examine the consequences of various climate change scenarios and adaptive management options on water supply by integrating the Soil and Water Assessment Tool and Water Evaluation and Planning models. We show how integrated modeling is useful in projecting the likely effects of management options using limited information. Our study indicates that constructing more reservoirs can alleviate the current water shortage and groundwater depletion problems. However, this option is not necessarily the most effective measure to solve water supply problems; instead, improving irrigation efficiency and changing cropping structure may be more effective. Furthermore, measures to increase water supply have limited effects on water availability under a continuous drought and a dry‐and‐warm climate scenario. We conclude that the combined measure of reducing water demand and increasing supply is the most effective and practical solution for the water shortage problems in the study area.  相似文献   

9.
van de Meene, Susan J. and Rebekah R. Brown, 2009. Delving into the “Institutional Black Box”: Revealing the Attributes of Sustainable Urban Water Management Regimes. Journal of the American Water Resources Association (JAWRA) 45(6):1448‐1464. Abstract: This paper is based on the proposition that the transition to sustainable urban water management has been hampered by the lack of insight into attributes of a sustainable urban water regime. Significant progress has been made in developing technical solutions to advance urban water practice, however it is the co‐evolution of the socio‐institutional and technical systems that enable a system‐wide transition. A systematic analysis of 81 empirical studies across a range of practice areas was undertaken to construct a schema of the sustainable urban water regime attributes. Attributes were identified and analyzed using a framework of nested management regime spheres: the administrative and regulatory system, inter‐organizational, intra‐organizational, and human resources spheres. The regime is likely to involve significant stakeholder involvement, collaborative inter‐organizational relationships, flexible and adaptive organizational cultures, and motivated and engaging employees. Comparison of the constructed sustainable and traditional regime attributes reveals that to realize sustainable urban water management in practice a substantial shift in governance is required. This difference emphasizes the critical need for explicitly supported strategies targeted at developing each management regime sphere to further enable change toward sustainable urban water management.  相似文献   

10.
Urban regeneration policy and projects could facilitate the implementation of spatial policy responses to mitigate climate change and adapt to its consequences in cities. However, the potential role of urban regeneration in creating climate-friendly urban environments is not sufficiently evaluated and understood. Considering this gap, the paper aims to explore the potential linkage between urban regeneration and climate change. The case study analysis focuses on two urban regeneration projects, representing two major approaches of regeneration practices in Japanese cities, namely “project-based” and “plan-based” approaches. Research findings demonstrate that urban regeneration could help in reorganising existing urban areas in a climate-friendly manner. As a cross-cutting field of urban policy, urban regeneration could also help in creating synergies between mitigation and adaptation goals. Yet, achievement of such outcomes via regeneration projects necessitates the existence of an overriding urban development vision, political commitment, and willingness to implement binding and structural measures.  相似文献   

11.
Urban governance systems need to be adaptive to deal with emerging uncertainties and pressures, including those related to climate change. Realising adaptive urban governance systems requires attention to institutions, and in particular, processes of institutional innovation. Interestingly, understanding of how institutional innovation and change occurs remains a key conceptual weakness in urban climate change governance. This paper explores how institutional innovation in urban climate change governance can be conceptualised and analysed. We develop a heuristic involving three levels: (1) “visible” changes in institutional arrangements, (2) changes in underlying “rules-in-use”, and (3) the relationship to broader “governance dilemmas”. We then explore the utility of this heuristic through an exploratory case study of urban water governance in Santiago, Chile. The approach presented opens up novel possibilities for studying institutional innovation and evaluating changes in governance systems. The paper contributes to debates on innovation and its effects in urban governance, particularly under climate change.  相似文献   

12.
Tony Matthews 《Local Environment》2013,18(10):1089-1103
This paper characterises climate change as a “transformative stressor”. It argues that institutional change will become increasingly necessary as institutions seek to reorientate governance frameworks to better manage the transformative stresses created by climate change in urban environments. Urban and metropolitan planning regimes are identified as central institutions in addressing this challenge. The operationalisation of climate adaptation is identified as a central tenet of a comprehensive urban response to the transformative stresses that climate change is predicted to create. Operationalisation refers to climate adaptation becoming incorporated, codified and implemented as a central tenet of urban planning governance. This paper has three purposes. First, it examines conceptual perspectives on the role of transformative stressors in compelling institutional change. Second, it establishes a conceptual approach that characterises climate change as a transformative stressor requiring institutional change within planning frameworks. Third, it reports emergent results and analysis from an empirical inquiry which examines how the metro-regional planning regime of Southeast Queensland has responded to climate change as a transformative stressor via institutional change and the operationalisation of climate adaptation.  相似文献   

13.
Scientific findings confirm that Small Island Developing States (SIDS) in the Caribbean are experiencing droughts and sea level rises that are contributing to saline intrusion of underground aquifers and surface water sources. This paper, using Trinidad as a case study, analyses water governance challenges in meeting Sustainable Development Goal (SDG) 6, which addresses the sustainability of water resources. Interviews were conducted with professionals from multi‐disciplinary backgrounds. Also, data provided by the water agency were analysed to evaluate water governance practices. The main contribution of this paper is the generation of a blend of policies, good practices and tools to confront growing threats to water security and to attain sustainable development in Caribbean SIDS in an era of climate change and increasing non‐climatic stressors. The paper concludes that economic, environmental and human resources, reformed administrative and legislative systems, and technological tools are fundamental to achieving good water governance. Moreover, an array of complementary policies and technologies is needed to resolve water governance issues. However, political will to implement sustainable water resources management is the greatest challenge in attaining SDG 6.  相似文献   

14.
It is widely recognized that forest and water resources are intricately linked. Globally, changes in forest cover to accommodate agriculture and urban development introduce additional challenges for water management. The U.S. Southeast typifies this global trend as predictions of land-use change and population growth suggest increased pressure on water resources in coming years. Close attention has long been paid to interactions between people and water in arid regions; however, based on information from regions such as the Southeast, it is evident that much greater focus is required to sustain a high-quality water supply in humid areas as well. To that end, we review hydrological, physicochemical, biological, and human and environmental health responses to conversion of forests to agriculture and urban land uses in the Southeast. Commonly, forest removal leads to increased stream sediment and nutrients, more variable flow, altered habitat and stream and riparian communities, and increased risk of human health effects. Although indicators such as the percentage of impervious cover signify overall watershed alteration, the threshold to disturbance, or the point at which effects can been observed in stream and riparian parameters, can be quite low and often varies with physiographic conditions. In addition to current land use, historical practices can greatly influence current water quality. General inferences of this study may extend to many humid regions concerning climate, environmental thresholds, and the causes and nature of effects.  相似文献   

15.
This study explores potential adaptation approaches in planning and management that the United States Forest Service might adopt to help achieve its goals and objectives in the face of climate change. Availability of information, vulnerability of ecological and socio-economic systems, and uncertainties associated with climate change, as well as the interacting non-climatic changes, influence selection of the adaptation approach. Resource assessments are opportunities to develop strategic information that could be used to identify and link adaptation strategies across planning levels. Within a National Forest, planning must incorporate the opportunity to identify vulnerabilities to climate change as well as incorporate approaches that allow management adjustments as the effects of climate change become apparent. The nature of environmental variability, the inevitability of novelty and surprise, and the range of management objectives and situations across the National Forest System implies that no single approach will fit all situations. A toolbox of management options would include practices focused on forestalling climate change effects by building resistance and resilience into current ecosystems, and on managing for change by enabling plants, animals, and ecosystems to adapt to climate change. Better and more widespread implementation of already known practices that reduce the impact of existing stressors represents an important “no regrets” strategy. These management opportunities will require agency consideration of its adaptive capacity, and ways to overcome potential barriers to these adaptation options.  相似文献   

16.
House-Peters, Lily, Bethany Pratt, and Heejun Chang, 2010. Effects of Urban Spatial Structure, Sociodemographics, and Climate on Residential Water Consumption in Hillsboro, Oregon. Journal of the American Water Resources Association (JAWRA) 46(3):461-472. DOI: 10.1111/j.1752-1688.2009.00415.x Abstract: In the Portland metropolitan area, suburban growth in cities such as Hillsboro is projected to increase as people seek affordable housing near a burgeoning metropolis. The most significant determinants for increases in water demand are population growth, climate change, and the type of urban development that occurs. This study analyzes the spatial patterns of single family residential (SFR) water consumption in Hillsboro, Oregon, at the census block scale. The following research questions are addressed: (1) What are the significant determinants of SFR water consumption in Hillsboro, Oregon? (2) Is SFR water demand sensitive to drought conditions and interannual climate variation? (3) To what magnitude do particular census blocks react to drought conditions and interannual climate variation? Using ordinary least squares multiple regression and spatial regression methods, we found that base use, representing indoor water use, is dependent on household size and that seasonal use, representing external water use is dependent on both education level and the size of the property’s outdoor space. Spatial analysis techniques determined that although the water demand of the study area as a whole is not sensitive to drought conditions, certain individual census blocks do respond with a higher magnitude of water use. The most climate-sensitive census blocks tend to contain newer and larger homes, and have higher property values and more affluent and well-educated residents.  相似文献   

17.
市容环境是与公众生活联系最为紧密的领域,也是公众参与最容易进行的领域。南京的城市建设要实现“经济发达、环境优美、融古都特色和现代文明于一体的现代化江滨城市”的目标,公众参与市容环境的规划与管理是关键内容之一。论文以“南京市市容环境卫生发展规划”项目工作为基础,分析和阐述公众参与的内涵,提出公众参与市容环境的五大步骤,并针对南京市容环境方面的具体案例,设计出符合南京特色的公众参与市容环境规划与管理的方法框架模型,包括决策模式、制度框架的共管体系。  相似文献   

18.
This paper clarifies the competing discourses of sustainability and climate change and examines the manifestation of these discourses in local government planning. Despite the increasingly significant role of sustainability and climate change response in urban governance, it is unclear whether local governments are constructing different discourses that may result in conflicting approaches to policy-making. Using a governmentality approach, this paper dissects the contents of 15 Canadian local governments’ sustainability plans. The findings show that there are synergies and tensions between discourses of sustainability and climate change. Both share discursive space and shape local governance rationalities, though climate change response logics are not necessarily highlighted even where the action could result in greenhouse gas (GHG) emission reductions. In some cases, existing GHG intensive practices are being rebranded as ‘sustainable’. This suggests a tension between discourses of sustainability and climate change that may complicate attempts to address climate change through local sustainability planning.  相似文献   

19.
In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.  相似文献   

20.
This study focuses on the potential role of technical and institutional innovations for improving water management in a multi-user context in Burkina Faso. We focus on a system centered on three reservoirs that capture the waters of the Upper Comoé River Basin and servicing a diversity of users, including a sugar manufacturing company, a urban water supply utility, a farmer cooperative, and other downstream users. Due to variable and declining rainfall and expanding users’ needs, drastic fluctuations in water supply and demand occur during each dry season. A decision support tool was developed through participatory research to enable users to assess the impact of alternative release and diversion schedules on deficits faced by each user. The tool is meant to be applied in the context of consultative planning by a local user committee that has been created by a new national integrated water management policy. We contend that both solid science and good governance are instrumental in realizing efficient and equitable water management and adaptation to climate variability and change. But, while modeling tools and negotiation platforms may assist users in managing climate risk, they also introduce additional uncertainties into the deliberative process. It is therefore imperative to understand how these technological and institutional innovations frame water use issues and decisions to ensure that such framing is consistent with the goals of integrated water resource management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号