首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
One of conservation transfer methods for such widely-used gases as natural gas and hydrogen is buried pipelines. Safety of these pipelines is of great importance due to potential risks posed by inefficiencies of the pipelines. Therefore, an accurate understanding of release and movement characteristics of the leaked gas, i.e. distribution and speed within soil, the release to the ground surface, the movement of hydrogen gas through the ground, gas underground diffusion, gas dispersion in atmosphere, and following consequences, are very important in order to determine underground dispersion risks. In the present study, consequences of gas leakage within soil were evaluated in two sub-models, i.e. near-field and far-field, and a comprehensive model was proposed in order to ensure safety of buried gas supply pipelines. Near-field model which is related to soil and ground and its output is the gas released at different points and times from ground surface and it was adopted as input of far-field sub-model which is dispersion model in atmosphere or an open space under the surface. Validation of near-field sub-model was performed by the experimental data obtained by Okamoto et al. (2014) on full-scale hydrogen leakage and then, possible scenarios for far-field sub-model were determined.  相似文献   

2.
天然气在土壤中扩散行为的实验研究对埋地管道泄漏点的科学定位及泄漏事故的预防具有重要意义.采用全尺度气体泄漏实验系统,模拟真实埋地管道泄漏场景,对泄漏后的天然气在土壤中的扩散对流过程进行实验研究.基于自行研制的气体检测与数据采集系统和GasClam地下气体在线监测仪,分析天然气在土壤中的对流扩散规律.结果表明:埋地管道泄漏后天然气在土壤中的对流扩散过程可以分为4个阶段:孕育阶段、陡然增长阶段、缓慢增长阶段和稳定阶段,其浓度随泄漏时间的变化过程符合S型曲线特征.天然气扩散至检测点所需时间与距泄漏口距离呈现近似的幂指数关系.当检测点位于泄漏口附近区域时,泄漏压力起主导作用.当检测点位于远离泄漏口区域时,泄漏量起主导作用.  相似文献   

3.
This paper focuses on the analysis of the possibility of domino effect in underground parallel pipelines relying on historical accident data and pipeline crater models. An underground pipeline can be considered as safe following an accident with an adjacent gas or liquefied pipeline when it remains outside the ground crater generated. In order to prevent the domino effect in these cases, the design of parallel pipelines has to consider adequate pipeline separations based on the crater width, which is one of the widely used methods in engineering applications. The objective of this work is the analysis of underground petroleum product pipelines ruptures with the formation of a ground crater as well as the evaluation of possible domino effects in these cases. A detailed literature survey has been carried out to review existing crater models along with a historical analysis of past accidents. A FORTRAN code has been implemented to assess the performance of the Gasunie, the Batelle and the Advantica crater models. In addition to this, a novel Accident-Based crater model has been presented, which allows the prediction of the crater width as a function of the relevant design pipeline parameters as well as the soil density. Modifications have also been made to the Batelle and Accident-Based models in order to overcome the underestimation of the crater width. The calculated crater widths have been compared with real accident data and the performance evaluation showed that the proposed Accident-Based model has a better performance compared to other models studied in this work. The analysis of forty-eight past accidents indicated a major potential of underground parallel pipelines domino effect which is proven by two real cases taken from the literature. Relying on the investigated accidents, the crater width was smaller than or equal to 20 m in most cases indicating that the definition of underground pipeline separations at around 10 m would be sufficient to ensure a small probability of the domino effect.  相似文献   

4.
In the United States, Canada, the United Kingdom, and other countries with advanced pipeline management, some organizations are responsible for pipeline safety protection management for underground hazardous materials. The security and maintenance of a hazardous material pipeline are serious considerations for urban safety, because the materials transported by underground pipelines contain hazardous goods, such as the flammable or explosive particles of solids, liquids, and gases. Damage to a pipeline by external forces often leads to secondary disasters, such as the leakage of hazardous materials, fires, explosions, and environmental pollution. Such events seriously affect the safety of individuals and their property.Accordingly, this study used seismic scenario analysis with a spatial grid to evaluate earthquake damage to an underground pipeline in an urban area. Damage to underground pipelines was classified, pipeline disaster management procedures were discussed, and improvement measures were proposed, such as establishing a geographic information platform and conducting disaster impact assessments for hazardous material pipelines. Underground hazardous material pipelines were assessed in scenarios including earthquakes. Such assessments are intended to provide disaster reduction plans and disaster prevention drills to improve pipeline safety as well as the planning for pipeline materials to aid seismic resistance.  相似文献   

5.
The environmental safety of an underground mine depends strongly on its ventilation system. An efficient ventilation system provides fresh air, removes hazardous gases and dust, and maintains the temperature and humidity at appropriate levels. One of the most important factors in removing hazardous gases and dust is the dispersion behaviour in the mine network. This factor determines the longitudinal spreading and the average air residence time of gases or particulate matter throughout the mine. This paper describes tracer gas measurement in an underground mine and the utilisation and analysis of the dispersion characteristics using numerical simulations. The concentration–time curve obtained from the measurement is simulated to evaluate the effective diffusion coefficient that reflects the general dispersion characteristic of an entire mine. The evaluated values of effective diffusion coefficient are then compared to other data from several studies. The diffusivities obtained in this study were higher than other analytical and empirical results. More research is still required to identify the main factors causing such higher diffusivities. However, the results from the present work can be an important standpoint for future work. Numerical simulation conducted in this research was confirmed to be effective in detecting several leakage paths occurring in the mine ventilation network.  相似文献   

6.
The development of carbon capture and storage (CCS) brings challenges for safety issues regarding carbon dioxide (CO2) transmission pipelines. Once a pipeline is punctured or full-bore ruptured, the leaked CO2 is hazardous to personnel and the environment. Small-scale devices were established with the aim of studying the release and dispersion behaviour of gas and liquid CO2 from a punctured underground pipeline. A sandbox was built to simulate the underground conditions. The parameters of the sand used in the experiments were tested. CO2 concentrations on the ground and temperatures around the release orifice in the sand were analysed. The results indicate that in the CO2 gas release experiments, the CO2 concentration on the sand surface decreases with increasing horizontal distance in the form of a power function. CO2 concentrations in upward release are slightly larger than those in horizontal release at the same location but are obviously bigger than values in downward release. The temperature-drop region is much smaller than that in air. A frozen ice ball can be generated near the release orifice during the gas phase of the CO2-release process. In the liquid phase of CO2-release experiments, a large amount of dry ice is generated near the release orifice. Dry ice can only be generated in the area close to the release orifice, especially in the near-field area.  相似文献   

7.
为分析地铁上覆管道爆炸对乘客安全影响,采用基于超压冲击波阀值数值模拟,通过将泄漏气体能量等效为TNT当量,分析不同泄漏模式爆炸冲击波对地铁隧道及人员安全影响。结果表明:爆炸产生的超压冲击波对隧道及人员影响小于限值,不会造成人员伤亡,研究结果可为地下工程下穿油气管线安全影响分析提供理论支撑。  相似文献   

8.
为研究泄漏孔的各种因素对深埋土体中燃气管道泄漏的具体影响,采用1个包含燃气管道的三维模型,研究单个泄漏孔的大小、位置、形状对于埋地燃气管道泄漏的影响,并建立大小相等的双泄漏孔的燃气管道,确定双泄漏孔间距对于燃气泄漏扩散的影响。结果表明:泄漏孔越大,燃气在土壤中的扩散速度越快,且泄漏孔的大小对深埋燃气管道泄漏的影响最大;泄漏孔位置的影响次之,顶部与侧壁的泄漏孔扩散速度相差无几,底部泄漏孔的扩散速度远低于前2者;双泄漏孔间距的影响较小,双泄漏孔的距离越小,甲烷的扩散速度越快;泄漏孔形状对于深埋燃气管道泄漏扩散的影响非常小。  相似文献   

9.
为实现综合管廊燃气泄漏扩散的精确高效模拟分析,进而为综合管廊燃气泄漏事故的安全防控提供技术支撑,利用OpenFOAM对城市地下综合管廊舱内燃气泄漏扩散进行数值建模计算,研究分析通风受限空间内的燃气泄漏扩散规律,并结合对应急响应时间的分析验证了通风策略的有效性。研究结果表明:气体射流作用与浮升力作用是影响综合管廊燃气泄漏扩散浓度分布的重要因素,采取合理的通风措施可有效加速燃气的流动与扩散,缩短燃气泄漏报警响应时间,有利于燃气泄漏事故应急决策与应急救援的快速实施。  相似文献   

10.
地铁与燃气管道等高危管道均为线性工程,地铁隧道下穿管道的情况不可避免,一旦因地铁施工导致管道泄漏,后果难以承受,管道沉降值是考量其安全性的关键指标。为对双线盾构地铁隧道下穿管线安全性进行预测,采用修正的Peck公式理论方法进行计算,并与数值模拟结果相对比,研究结果表明:双线盾构地铁隧道下穿管道安全风险可控,修正Peck公式及数值模拟法均能较真实地描绘地表以下任意土层的沉降槽曲线,进而可以比较准确地计算土体竖向沉降,可作为一种用于计算隧道开挖所引起管道竖向位移的方法。  相似文献   

11.
有毒气体泄漏扩散受很多不确定性因素的影响,为了分析和评估影响毒气泄漏扩散的风速和泄漏速率的变化和不确定性,采用蒙特卡罗模拟和基于Wilks公式容许限的非参数统计法,通过抽样计算得到“95/95准则”下的毒气泄漏扩散地面浓度分布,计算了有毒气体泄漏扩散的不同风险等级的影响范围和风险概率曲线。以氨气泄漏事故为例进行实例分析,结果表明,相对于以确定性参数得出的氨气泄漏扩散浓度分布,引入参数的不确定性评估,更能贴合泄漏现场存在不确定性因素的实际情况,更有利于人员的安全和应急疏散管理。  相似文献   

12.
为研究不同孔径泄漏下天然气管道失效概率,首先基于EGIG数据库和UKOPA数据库天然气管道历史失效数据,计算由不同失效原因导致3种孔径泄漏所占比例;然后将我国管道各原因基础失效概率按照对应比例分别进行修正,获得较适用于我国天然气管道特点的不同孔径泄漏基础失效概率;最后分别考虑第三方破坏、腐蚀、施工缺陷/材料失效、误操作、自然力破坏5种失效原因,完成对天然气管道不同孔径泄漏基础失效概率的修正计算。研究结果表明:小孔泄漏、中孔泄漏和破裂泄漏的基础失效概率分别为0.173,0.128,0.048次/(103 km·a);修正因子包括管径、埋深、壁厚、管龄、防腐层类型、管道所处区域,上述因子能够满足不同场景下天然气管道失效概率的修正计算;概率量化方法综合考虑失效原因、泄漏孔径以及管道本体信息,能够定量化预测天然气管道失效概率,为天然气管道定量风险评价提供数据支撑。  相似文献   

13.
With the rapid development of petroleum industry, the transport pipelines of oil and gas are increasingly constructed to minimize land use conflicts. Therefore, the parallel pipelines are unavoidable in order to save land resource, reduce the pipeline construction and maintenance costs. The economy and security of pipeline laying and running is the primary problem considered in pipeline construction, which the parallel spacing plays a decisive role to. The leakage of natural gas is very serious and dangerous due to its flammable and combustible. The explosive of leak gas causes impact failure to parallel pipeline. Specific to the surface conduit parallel gas pipeline, numerical simulation of leak natural gas explosive was carried out based on TNT equivalent weight method. Explosive damage degree of pipeline decreased with the pipeline distance increasing. Consulting with the pipeline ovalization strain design criteria and the combustion effect, the safety parallel natural gas pipeline space maybe at least 4 m to ensure the surface conduit parallel pipeline safely and steadily operation.  相似文献   

14.
针对长输天然气架空管道泄漏问题,综合考虑风速随海拔变化的边界条件、管道管形及泄漏方向等因素,建立非稳态泄漏模型,对不同管道泄漏压力和不同天然气浓度边界的天然气非稳态泄漏扩散进行了数值模拟。结果表明:在天然气向下泄漏的工况下,天然气气团主要在地面积聚,呈无规则的扩散;天然气管道泄漏压力与气体泄漏扩散速度成正比,与天然气浓度边界达到稳定所需时间成反比:不同泄漏压力下天然气扩散稳定后的扩散距离及泄漏影响面积大致相同;天然气浓度边界越小,达到稳定所需时间越长。  相似文献   

15.
为保障天然气工业安全生产与运营,以某天然气储配厂为例,采用等效喷嘴和过程模型,利用FLACS软件对罐区高压天然气非恒定速率泄漏扩散进行数值模拟,考察环境风速及泄漏时间对气体泄漏扩散的影响.结果表明:储存压力为1.05 MPa的天然气储罐发生泄漏会产生欠膨胀射流,泄漏初期具有447.44 kJ的高动能,并在近场扩散起主导...  相似文献   

16.
针对目前城镇埋地管道天然气泄漏研究模拟工况简单、可信性较低等问题,考虑障碍物对环境风场的影响,利用计算流体力学(CFD)软件建立天然气管道三维泄漏模型,将模拟过程分为环境风场的稳态模拟和管道泄漏扩散的瞬态模拟两步,分析天然气泄漏扩散规律。结果表明:在风场稳态模拟中,建筑物附近风场受干扰明显,上游形成小范围的低速滞留区,下游形成较长的尾迹。在天然气泄漏扩散瞬态模拟中,土壤层天然气受风速影响较小,气体在近地面及贴近建筑物侧积聚,扩散范围随时间逐渐趋于稳定,泄漏扩散达到稳定后表现出土壤层积聚、气云沉降、贴近建筑物积聚、气云扩散局限性的特征。风速主要影响天然气的扩散高度,对水平方向的扩散范围影响较小,风速与天然气扩散高度成反比。  相似文献   

17.
Loss of the underground gas storage process can have significant effects, and risk analysis is critical for maintaining the integrity of the underground gas storage process and reducing potential accidents. This paper focuses on the dynamic risk assessment method for the underground gas storage process. First, the underground gas storage process data is combined to create a database, and the fault tree of the underground gas storage facility is built by identifying the risk factors of the underground gas storage facility and mapping them into a Bayesian network. To eliminate the subjectivity in the process of determining the failure probability level of basic events, fuzzy numbers are introduced to determine the prior probability of the Bayesian network. Then, causal and diagnostic reasoning is performed on the Bayesian network to determine the failure level of the underground gas storage facilities. Based on the rate of change of prior and posterior probabilities, sensitivity and impact analysis are combined to determine the significant risk factors and possible failure paths. In addition, the time factor is introduced to build a dynamic Bayesian network to perform dynamic assessment and analysis of underground gas storage facilities. Finally, the dynamic risk assessment method is applied to underground gas storage facilities in depleted oil and gas reservoirs. A dynamic risk evaluation model for underground gas storage facilities is built to simulate and validate the dynamic risk evaluation method based on the Bayesian network. The results show that the proposed method has practical value for improving underground gas storage process safety.  相似文献   

18.
With the development of natural gas transportation systems, major accidents can result from internal gas leaks in pipelines that transport high-pressure gases. Leaks in pipelines that carry natural gas result in enormous financial loss to the industry and affect public health. Hence, leak detection and localization is a major concern for researchers studying pipeline systems. To ensure the safety and improve the efficiency of pipeline emergency repair, a high-pressure and long-distance circular pipe leakage simulation platform is designed and established by similarity analysis with a field transmission pipeline, and an integrated leakage detection and localization model for gas pipelines is proposed. Given that the spread velocity of acoustic waves in pipelines is related to the properties of the medium, such as pressure, density, specific heat, and so on, this paper proposes a modified acoustic velocity and location formula. An improved wavelet double-threshold de-noising optimization method is also proposed to address the original acoustic wave signal collected by the test platform. Finally, the least squares support vector machine (LS-SVM) method is applied to determine the leakage degree and operation condition. Experimental results show that the integrated model can enhance the accuracy and precision of pipeline leakage detection and localization.  相似文献   

19.
国内外液化和压缩气体的泄漏爆炸事故屡见不鲜,针对其性质和短时间近地面扩散的特点,总结、修正和扩展了瞬时泄漏下的平均半球形扩散模型。对于连续泄漏,利用数学积分理论建立了静风下的半球形扩散模型。接着对有风时的情况进行建模推导,将风速和气体自身扩散速度进行矢量合成,得到了半椭球形扩散和半椭圆锥与1/4椭球体组合扩散下气体的质量浓度和质量浓度变化趋势。最后用实例验证了该模型的先进性。该模型集能较好地反映液化和压缩气体泄漏后不同泄漏情况、时间、近地面区域和风速下的扩散浓度空间分布及其动态变化过程,为事故后果预估和应急救援决策提供参考。  相似文献   

20.
为了分析地面堆载对埋地管道安全性的影响,以非线性接触模型为基础,应用ANSYS有限元软件,建立了地面堆载作用下的三维管土相互 作用模型。通过求解模型,探讨了地面堆载的大小、作用位置以及作用尺寸对埋地管道位移、应力和椭圆度的影响。结果表明:管道的应力和 椭圆度随着堆载大小的增大呈线性增大;垂直作用于管道正上方的堆载对管道的强度和稳定性影响较大;当作用应力不变时,与长度相比,堆 载宽度的变化对管道的影响更显著,而当总作用力不变时,增大堆载长度和宽度均可有效降低其对管道安全性的影响。预期研究结果可以为解 决油气管道建设中的安全防护问题提供一定的技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号