首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change is expected to cause shifts in species distributions worldwide, threatening their viability due to range reductions and altering their representation in protected areas. Biodiversity hotspots might be particularly vulnerable to climate change because they hold large numbers of species with small ranges which could contract even further as species track their optimal habitat. In this study, we assessed the extent to which climate change could cause distribution shifts in threatened and range-restricted birds in Colombia, a megadiverse region that includes the Tropical Andes and Tumbes-Choco-Magdalena hotspots. To evaluate how climate change might influence species in this region, we developed species distribution models using MAXENT. Species are projected to lose on average between 33 and 43 % of their total range under future climate, and up to 18 species may lose their climatically suitable range completely. Species whose suitable climate is projected to disappear occur in mountainous regions, particularly isolated ranges such as the Sierra Nevada de Santa Marta. Depending on the representation target considered, between 46 and 96 % of the species evaluated may be adequately represented in protected areas. In the future, the fraction of species potentially adequately represented is projected to decline to 30–95 %. Additional protected areas may help to retain representativeness of protected areas, but monitoring of species projected to have the largest potential declines in range size will be necessary to assess the need of implementing active management strategies to counteract the effects of climate change.  相似文献   

2.
Few other policy zones are as complex as the issue of climate change. If the more pessimistic projections of climate change doom are correct, then the failure to address the issue is likely to be catastrophic and irreversible. The Inter-governmental Panel on Climate Change has predicted the potential extinction of many species and that the existence of small-island and other vulnerable countries will be threatened if business-as-usual greenhouse gas emissions continue. Climate change is a transboundary problem and requires unprecedented levels of cooperation between states and serious and sustained responses from major emitters. However, the growing demand and consumption of natural resources for continued energy security and cornucopian economic growth have undermined the outcomes of international climate change negotiations. It is argued here that there is a strong connection between the major emitters’ positions at United Nations’ climate talks, their possessions, dependence and consumption of natural resources, and the continued undermining of international climate change policy for unsustainable growth. This paper assesses the resource politics of the US, China, India, Canada, Russia, and Saudi Arabia and their positions at climate talks to show the link between lack of climate change policy progress and the positions of these main players.  相似文献   

3.
基于气候变化下部分珍稀濒危物种脆弱性分析,初步提出了适应对策,探讨了部分物种适应措施。气候变化下,珍稀濒危物种脆弱性表现在物种分布范围减少、破碎化和失去原分布范围、丰富度下降、种群数量减少、物种灭绝、栖息地退化或消失等。珍稀濒危物种适应气候变化需要分析物种自然适应机制,加强就地保护,增加种群数量,开展迁地和遗传保护,减少其它干扰,保护和恢复栖息地,建立自然保护区适应对策等。每个物种需要分析目前濒危程度和气候变化下的脆弱性来提出适应对策。  相似文献   

4.
Natural ecosystems are generally considered to be one of the most vulnerable sectors to negative impacts from rapid climate change. Australia’s rich biodiversity is already under considerable threat from multiple human impacts, and climate change will impose additional stress. Opportunities for most Australian species to adapt to climate change by altering their distribution will be limited due to a number of characteristics of the Australian environment, both physical and biotic, including topography, habitat fragmentation, low capacity for dispersal and the restricted geographic ranges of many species. This review summarizes recent and projected climate trends in Australia and discusses how species may respond to these changes in the context of the particular environmental characteristics and biogeographic history of the continent. It also identifies particular regions and ecosystems likely to be most negatively affected in the short to medium term.  相似文献   

5.
Climate change has become widely accepted as a challenge that humans will face in the not-too-distant future.Mountain ecosystems and their inhabitants are among the most vulnerable to climate change.This paper seeks to explain migration drivers in specific mountain regions in the context of climate change based on Foresight’s conceptual framework.A climate change sensitive field named Shangnan County in southern Shaanxi Province is chosen as the case study area to investigate local migration drivers.A series of qualitative research methods is employed in the case study including participant observation,semi-structured interviews,and focus group discussions.The evidence of survey suggests that migration decisions are not only shaped by macro factors in aspects of environmental,economics,demographic,social,politics and psychological,but also influenced by placed-related barriers and facilitating mechanisms and personal characteristics.  相似文献   

6.
Sub-Saharan Africa is particularly vulnerable to climate change. Multiple biophysical, political, and socioeconomic stresses interact to increase the region’s susceptibility and constrain its adaptive capacity. Climate change is commonly recognized as a major issue likely to have negative consequences on food security and livelihoods in the region. This paper reviews three bodies of scholarship that have evolved somewhat separately, yet are inherently interconnected: climate change impacts, vulnerability and adaptation, food security, and sustainable livelihoods. The paper develops a conceptualization of the relationships among the three themes and shows how food security’s vulnerabilities are related to multiple stresses and adaptive capacities, reflecting access to assets. Food security represents one of several livelihood outcomes. The framework shows how several research paradigms relate to the issue of food security and climate change and provides a guide for empirical investigations. Recognizing these interconnections can help in the development of more effective policies and programs. The framework is applied here to synthesize findings from an array of studies in sub-Saharan Africa dealing with vulnerability to climate change, food security, and livelihoods.  相似文献   

7.
Climate change impacts on individual species are various and range from shifts in phenology and functional properties to changes in productivity and dispersal. The combination of impacts determines future biodiversity and species composition, but is difficult to evaluate with a single method. Instead, a comparison of mutually independent approaches provides information and confidence in patterns observed beyond what may be achieved in individual approaches. Here, we carried out such comparison to assess which ecosystem types in the Netherlands appear most vulnerable to climate change impacts, as arising from changes in hydrology, nutrient conditions and dispersal limitations. We thus combined meta-analyses of species range shifts with species distribution modelling and ecohydrological modelling with expert knowledge in two respective impact studies. Both impact studies showed that nutrient-poor ecosystems and ecosystem types with fluctuating water tables—like hay meadows, moist heathlands and moorlands—seem to be most at risk upon climate change. A subsequent meta-analysis of species–environmental stress relations indicated that particularly endangered species are adversely affected by the combination of drought and oxygen stress, caused by fluctuating moisture conditions. This implies that adaptation measures should not only aim to optimise mean environmental conditions but should also buffer environmental extremes. Major uncertainties in the assessment included the quantitative impacts of vegetation-hydrology feedbacks, vegetation adaptation and interactions between dispersal capacity and traits linked to environmental selection. Once such quantifications become feasible, adaptation measures may be tailor-made and optimised to conserve vulnerable ecosystem types.  相似文献   

8.
We assessed the vulnerability of 208 endemic or endangered species in China to the effects of climate change, as a part of the project “Research on China’s National Biodiversity and Climate Change Strategy and Action Plans”. Based on the China Species Information System, we selected comprehensive species as analysis targets, covering taxa including mammals, birds, reptiles, amphibians and plants. We applied nine species distribution models in BIOMOD (a package of R software) to estimate the current (1991–2010) ranges and predicted future (2081–2100) ranges of these species, using six climate variables based on Regional Climate Model version 3 (RegCM3) and A1B emission scenario. The model results showed that different taxa might show diverse potential range shifts over time. The range sizes of half of the species (104 species) would decrease, and those of another half would increase. We predicted that the future remaining ranges (intersection of current and future ranges/current ranges) of 135 species would be less than 50 % of their current range sizes. Species that are both endemic and critically endangered would lose more of their range than others. In summary, the most vulnerable species are currently found on the Qinghai-Tibetan Plateau, in the Hengduan Mountain Range, and southern China. Future action plans dealing with climate change in China should be prepared with consideration for vulnerable species and their habitats.  相似文献   

9.
Climate change poses an existential threat to Small Island Developing States (SIDS). They have played a leading role in raising awareness of climate change on the international stage and advocating for strong climate action, notably through the Alliance of Small Island States (AOSIS). Despite their heterogeneity, they succeeded in building a common diplomatic discourse and influencing strategy, and mobilized political leaders as well as talented negotiators and advisors.Small Island States were a crucial group in the negotiating period up to, during the 21st Conference of the Parties to the United Nations Framework Convention on Climate Change (COP21), and for the entry into force of the Paris Agreement. SIDS succeeded to secure their special circumstances as vulnerable countries, demonstrated leadership in raising ambition to reduce greenhouse gas emissions to help secure an ambitious long-term temperature goal of limiting global warming to below 1.5 °C, and advanced the complex debate on loss and damage.Small Island States face major challenges to advance their leadership on climate change moving forward: securing immediate actions for those particularly vulnerable countries and increasing their influence within and outside the climate change negotiations. For Small Island states, the 1.5 °C goal should be considered “the visible part of the iceberg” for their diplomacy in a post-Paris context.  相似文献   

10.
Global warming is perceived as one of the biggest global health risks of the twenty-first century and a threat to the achievement of sustainable (economic) development; especially in developing countries, climate change is believed to further exacerbate existing vulnerability to disease and food security risks, because their populations are, for example, more reliant on agriculture and more vulnerable to droughts and have a lower adaptive capacity. Furthermore, the health-related impacts of climate change are threatening to undo decades of development policies. The interactions between climate and non-climate factors are of vital importance in shaping human vulnerability to global warming. Climate change cannot be seen as ‘a stand-alone risk factor,’ but rather as an amplifier of existing health and food security risks and an additional strain on institutional infrastructures. In order to avoid a multiplication of health risks in the developing world, there is a need to better understand the multifaceted and complex linkages involved. This is further illustrated for two important climate change–induced health risks, namely malnutrition and malaria. As the amplification of existing and emerging health risks in the developing world might become the greatest tragedy of climate change, adaptation ranks high on developing countries’ agendas. Of particular importance are the discussions about the ‘Green Climate Fund,’ which aims to administer billions of dollars for mitigation and adaptation. Of course, making funds for adaptation available is an important first step, but we also need to ask ourselves the question how such adaptation policies and projects should take shape. This paper demonstrates that an adequate response to climate change health risks should take a systems approach toward adaptation, acknowledging the importance of the local context of the most vulnerable.  相似文献   

11.
The increased variability in weather as a manifestation of climate change is expected to have negative impacts on population survival in wildlife species, because it will likely lead to increased variation in vital demographic rates (mortality and reproduction) in these populations. For the effective protection of biodiversity, adaptation measures are needed to compensate for the expected increase in weather variability and the negative interaction with habitat fragmentation. As a case study, we studied the fluctuations in Great Bittern numbers (Botaurus stellaris) from 28 monitoring plots scattered over the Netherlands to explore the interaction between the effect of weather and possible remediating effects of the landscape structure. Great Bittern habitat surrounding these plots differs with respect to area, quality, and degree of isolation of this habitat. In western Europe, Great Bitterns are found to be susceptible to continuous loss of suitable habitat due to vegetation succession and fragmentation. Moreover, year-to-year fluctuations in local Great Bittern populations can be caused by severe winter weather or other weather extremes. Our results show that severe winter weather has indeed a significant negative impact on Great Bittern population growth rates. Furthermore, we found that an increased carrying capacity and spatial cohesion (i.e. inverse of habitat fragmentation) contribute to an increase in mean growth rates over the years. As growth rates are higher in large, well-connected habitats, we argue that recovery from negative effects of, e.g. severe winters on Great Bittern population numbers is enhanced in these less-fragmented habitats. We derived generic adaptation measures for enhancing the recovery rate of populations of species in general: one should invest in more large, well-connected nature areas, not only to diminish the negative effects of habitat fragmentation on wildlife populations, but additionally to reduce the impacts of climatic variability.  相似文献   

12.
Climate variability is amongst an array of threats facing agricultural livelihoods, with its effects unevenly distributed. With resource conflict being increasingly recognised as one significant outcome of climate variability and change, understanding the underlying drivers that shape differential vulnerabilities in areas that are double-exposed to climate and conflict has great significance. Climate change vulnerability frameworks are rarely applied in water conflict research. This article presents a composite climate–water conflict vulnerability index based on a double exposure framework developed from advances in vulnerability and livelihood assessments. We apply the index to assess how the determinants of vulnerability can be useful in understanding climate variability and water conflict interactions and to establish how knowledge of the climate–conflict linked context can shape interventions to reduce vulnerability. We surveyed 240 resource users (farmers, fishermen and pastoralists) in seven villages on the south-eastern shores of Lake Chad in the Republic of Chad to collect data on a range of exposure, sensitivity and adaptive capacity variables. Results suggest that pastoralists are more vulnerable in terms of climate-structured aggressive behaviour within a lake-based livelihoods context where all resource user groups show similar levels of exposure to climate variability. Our approach can be used to understand the human and environmental security components of vulnerability to climate change and to explore ways in which conflict-structured climate adaptation and climate-sensitive conflict management strategies can be integrated to reduce the vulnerability of populations in high-risk, conflict-prone environments.  相似文献   

13.
The vulnerability of forest ecosystem services to climate change is expected to depend on landscape characteristic and management history, but may also be influenced by the proximity to the southern range limit of constituent tree species. In the Western Rhodopes in South Bulgaria, Norway spruce is an important commercial species, but is approaching its current southern limit. Using climate sensitive forest models, we projected the impact of climate change on timber production, carbon storage, biodiversity and soil retention in two representative landscapes in the Western Rhodopes; a lower elevation landscape (1000–1450 m a.s.l) dominated by mixed species forests, and a higher elevation landscape (1550–2100 m a.s.l.) currently dominated by spruce. In both landscapes climate change is projected to induce a shift in forest composition, with drought-sensitive species, such as Norway spruce, being replaced by more drought-tolerant species such as Scots pine and black pine at lower elevations. In the higher elevation landscape a reduction in spruce growth is projected, particularly under the more severe climate change scenarios. Under most climate scenarios a reduction in growing stock is projected to occur, but under some scenarios a moderate increase in higher elevation stands (>1500 m a.s.l.) is expected. Climate change is projected to negatively influence carbon storage potential across landscapes with the magnitude depending on the severity of the climate change scenario. The impact of climate change on forest diversity and habitat availability is projected to differ considerably between the two landscapes, with diversity and habitat quality generally increasing at higher elevations, and being reduced at lower elevations. Our results suggest that if currently management practices are maintained the sensitivity of forests and forest ecosystem services in the Western Rhodopes to climate change will differ between low and higher elevation sites and will depend strongly on current forest composition.  相似文献   

14.
Climate change will alter the capacity of carbon sequestration,and the risk assessment of carbon sequestration for terrestrial ecosystems will be helpful to the decision-making for climate change countermeasures and international climate negotiations.Based on the net ecosystem productivity of terrestrial ecosystems simulated by Atmosphere Vegetation Integrated Model,each grid of the risk criterion was set by time series trend analysis.Then the risks of carbon sequestration of terrestrial ecosystems were investigated.The results show that,in the IPCCSRES-B2 climate scenario,climate change will bring risks of carbon sequestration,and the high-risk level will dominate terrestrial ecosystems.The risk would expand with the increase of warming degree.By the end of the long-term of this century,about 60% of the whole country will face the risk;Northwest China,mountainous areas in Northeast China,middle and lower reaches plain of Yangtze River areas,Southwest China and Southeast China tend to be extremely vulnerable.Risk levels in most regions are likely to grow with the increase of warming degree,and this increase will mainly occur during the near-term to mid-term.Northwest China will become an area of high risks,and deciduous coniferous forests,temperate mixed forests and desert grassland tend to be extremely vulnerable.  相似文献   

15.
Climate change vulnerability depends upon various factors and differs between places, sectors and communities. People in developing countries whose subsistence livelihood depends mainly upon agriculture and livestock production are identified as particularly vulnerable. Nepal, where the majority of people are in a mixed agro-livestock system, is identified as the world’s fourth most vulnerable country to climate change. However, there is limited knowledge on how vulnerable mixed agro-livestock smallholders are and how their vulnerability differs across different ecological regions in Nepal. This study aims to test two vulnerability assessment indices, livelihood vulnerability index and IPCC vulnerability index, around the Gandaki River Basin of central Nepal. A total of 543 households practicing mixed agro-livestock were surveyed from three districts, namely Dhading, Syangja and Kapilvastu representing three major ecological zones: mountain, mid-hill and Terai (lowland). Data on socio-demographics, livelihood determinants, social networks, health, food and water security, natural disasters and climate variability were collected and combined into the indices. Both indices differed for mixed agro-livestock smallholders across the three districts, with Dhading scoring as the most vulnerable and Syangja the least. Substantial variation across the districts was observed in components, sub-components and three dimensions (exposure, sensitivity and adaptive capacity) of vulnerability. The findings help in designing site-specific intervention strategies to reduce vulnerability of mixed agro-livestock smallholders to climate change.  相似文献   

16.
Abstract

Climate change will alter the capacity of carbon sequestration, and the risk assessment of carbon sequestration for terrestrial ecosystems will be helpful to the decision-making for climate change countermeasures and international climate negotiations. Based on the net ecosystem productivity of terrestrial ecosystems simulated by Atmosphere Vegetation Integrated Model, each grid of the risk criterion was set by time series trend analysis. Then the risks of carbon sequestration of terrestrial ecosystems were investigated. The results show that, in the IPCCSRES-B2 climate scenario, climate change will bring risks of carbon sequestration, and the high-risk level will dominate terrestrial ecosystems. The risk would expand with the increase of warming degree. By the end of the long-term of this century, about 60% of the whole country will face the risk; Northwest China, mountainous areas in Northeast China, middle and lower reaches plain of Yangtze River areas, Southwest China and Southeast China tend to be extremely vulnerable. Risk levels in most regions are likely to grow with the increase of warming degree, and this increase will mainly occur during the near-term to mid-term. Northwest China will become an area of high risks, and deciduous coniferous forests, temperate mixed forests and desert grassland tend to be extremely vulnerable.  相似文献   

17.
Climate change impacts affecting coastal areas, such as sea-level rise and storm surge events, are expected to have significant social, economic and environmental consequences worldwide. Ongoing population growth and development in highly urbanised coastal areas will exacerbate the predicted impacts on coastal settlements. Improving the adaptation potential of highly vulnerable coastal communities will require greater levels of planning and policy integration across sectors and scales. However, to date, there is little evidence in the literature which demonstrates how climate policy integration is being achieved. This paper contributes to this gap in knowledge by drawing on the example provided by the process of developing cross-sectoral climate change adaptation policies and programmes generated for three coastal settlement types as part of the South East Queensland Climate Adaptation Research Initiative (SEQCARI), a 3-year multi-sectoral study of climate change adaptation options for human settlements in South East Queensland, Australia. In doing so, we first investigate the benefits and challenges to cross-sectoral adaptation to address climate change broadly and in coastal areas. We then describe how cross-sectoral adaptation policies and programmes were generated and appraised involving the sectors of urban planning and management, coastal management, emergency management, human health and physical infrastructure as part of SEQCARI. The paper concludes by discussing key considerations that can inform the development and assessment of cross-sectoral climate change adaptation policies and programmes in highly urbanised coastal areas.  相似文献   

18.
Beaches are frequently subjected to erosion and accretion that are influenced by coastal development interventions and natural variations due to storms and changes in river flow. Climate change may also exacerbate beach erosion and accretion. Natural scientists are concerned with the sustainability of species dependent on the beach ecosystem. Policymakers are pre-occupied with the economic sustainability of coastal communities should species decline and prolonged beach loss occur. The aim of this paper is to explore the linkage between science and policy by reporting the findings of a study of coastal change impacts on leatherback turtle nesting and analysing the socio-economic and adaptation implications of these changes for coastal communities. Grande Riviere, Trinidad, was used as a case study. Primary fieldwork investigated unsustainable coastal management practices. A questionnaire was administered to examine livelihoods, including ecotourism based on leatherback turtle nesting, and knowledge and awareness of climate change. One key finding of the study was that the community’s livelihoods were natural resources dependent, and that natural beach dynamics and unsustainable coastal management practices posed major threats to natural resource and economic sustainability. Another key finding was that, despite these impacts, community knowledge and awareness of climate change in general was low, and there was a perception of state responsibility for climate change adaptation. The research findings have global applicability for coastal communities at risk of exposure and that are highly vulnerable to natural resources damage arising from anthropogenic stress and potential climate change. These communities require policy reforms to strengthen current coastal management practices and adaptation responses aimed at ensuring long-term sustainability.  相似文献   

19.
Many studies have identified climate warming to be among the most important threats to biodiversity. Climate change is expected to have stronger effects on species with low genetic diversity, ectothermic physiology, small ranges, low effective populations sizes, specific habitat requirements and limited dispersal capabilities. Despite an ever-increasing number of studies reporting climate change-induced range shifts, few of these have incorporated species’ specific dispersal constraints into their models. Moreover, the impacts of climate change on genetic variation within populations and species have rarely been assessed, while this is a promising direction for future research. Here we explore the effects of climate change on the potential distribution and genetic variation of the endemic Pyrenean newt Calotriton asper over the period 2020–2080. We use species distribution modelling in combination with high-resolution gridded climate data while subsequently applying four different dispersal scenarios. We furthermore use published data on genetic variation of both mtDNA and AFLP loci to test whether populations with high genetic diversity (nucleotide diversity and expected heterozygosity) or evolutionary history (unique haplotypes and K clusters) have an increased extinction risk from climate change. The present study indicates that climate change drastically reduces the potential distribution range of C. asper and reveals dispersal possibilities to be minimal under the most realistic dispersal scenarios. Despite the major loss in suitable climate, the models highlight relatively large stable areas throughout the species core distribution area indicating persistence of populations over time. The results, however, show a major loss of genetic diversity and evolutionary history. This highlights the importance of accounting for intraspecific genetic variation in climate change impact studies. Likewise, the integration of species’ specific dispersal constraints into projections of species distribution models is an important step to fully explore the effects of climate change on species potential distributions.  相似文献   

20.
Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation may experience enhanced volatilization of POPs and pesticides to the atmosphere. Reduced precipitation will also increase air pollution in urbanized regions resulting in negative health effects, which may be exacerbated by temperature increases. Regions subject to increased precipitation will have lower levels of air pollution, but will likely experience enhanced surface deposition of airborne POPs and increased run-off of pesticides. Moreover, increases in the intensity and frequency of storm events linked to climate change could lead to more severe episodes of chemical contamination of water bodies and surrounding watersheds. Changes in salinity may affect aquatic organisms as an independent stressor as well as by altering the bioavailability and in some instances increasing the toxicity of chemicals. A paramount issue will be to identify species and populations especially vulnerable to climate–pollutant interactions, in the context of the many other physical, chemical, and biological stressors that will be altered with climate change. Moreover, it will be important to predict tipping points that might trigger or accelerate synergistic interactions between climate change and contaminant exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号