首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Richardson JL 《Ecology》2006,87(3):780-787
Organisms in aquatic ecosystems must often tolerate variable environmental conditions, including an uncertain risk of predation. Individuals that can maintain plastic defenses against predation will increase their survival when predators are present, but will not incur the costs of these defenses when the risk of predation is low and the defense is not induced. Larvae of the pond-breeding anuran Hyla chrysoscelis develop a conspicuous phenotype in the presence of predators consisting of a brightly colored tail and a deeper tail fin. In this study, I attempted to identify the source of the chemical signal that induces this defensive morphology in this species. I tested whether metabolites alone, originating from the prey but passing through the predator, were able to induce the same morphological response as the combination of alarm signals released directly by attacked conspecifics, and metabolites. I used morphometric and tail conspicuousness data to assess tadpole response to the perceived risk of predation by larval odonate predators (Anax junius). I also tested whether this inducing cue could be recognized across species by measuring the morphological response of H. chrysoscelis tadpoles exposed to cues emitted when tadpoles of a closely related genus (Pseudacris crucifer) were consumed. Tadpoles exhibited a clean graded response of both overall shape and tail morphology in response to all cues, corresponding to their relative reliability as indicators of a risk of predation. H. chrysoscelis tadpoles were also able to respond to cues emitted when tadpoles of a closely related genus were consumed by predators. These results illustrate that tadpoles of this species are able to respond to metabolites alone without alarm signals, and that interspecific chemical communication is a primary mechanism for predator avoidance in this inducible defense system.  相似文献   

2.
Geographic variation in a predator-induced defense and its genetic basis   总被引:1,自引:0,他引:1  
Kishida O  Trussell GC  Nishimura K 《Ecology》2007,88(8):1948-1954
Predator-induced morphological defenses are a well-known form of phenotypic plasticity, but we continue to have a limited understanding of geographic variation in these responses and its genetic basis. Here we examine genetic variation and geographic differentiation in the inducible defenses of tadpoles (Rana pirica) in response to predatory salamander larvae (Hynobius retardatus). To do so, we crossed male and female frogs from a "mainland" Japanese island having predaceous salamanders and a more isolated island not having predaceous salamanders and raised resulting offspring in the presence and absence of H. retardatus. Mainland tadpoles exhibited a higher capacity to express the inducible morphology (a more bulgy body) than those from the predator-free island, and expression of the bulgy morph in mainland-island hybrids produced phenotypes that were intermediate to those produced by pure crosses. In addition, parental sex had no effect on expression of the bulgy morph. Our results support the hypothesis that geographic variation in inducible defenses is linked to the additive effects of autosomal alleles that are shaped by differences in historical exposure to the inducing predator.  相似文献   

3.
Hoverman JT  Relyea RA 《Ecology》2007,88(3):693-705
Inducible defenses allow prey to modulate their phenotypic responses to the level of predation risk in the environment and reduce the cost of constitutive defenses. Inherent in this statement is that prey must alter their phenotypes during development in order to form these defenses. This has lead many ecologists and evolutionary biologists to call for studies that examine developmental plasticity to provide insights into the importance of development in controlling the trajectories of trait formation, the integration of phenotypes over ontogeny, and the establishment of developmental windows for trait formation and reversal. By moving away from studies that focus on a single point in development, we can obtain a more complete understanding of the phenotypic decisions and limitations of prey. We exposed freshwater snails (Helisoma trivolvis) to environments in which predatory water bugs (Belostoma flumineum) were always absent, always present, or added and removed at different points in development. We discovered that snails formed morphological defenses against water bugs. Importantly, after the initial induction of defenses, snails showed similar developmental trajectories as snails reared without predators. Further, the snails possessed wide developmental windows for inducible defenses that extended past sexual maturity. However, being induced later in development appeared to have an associated cost (i.e., decreased shell thickness) that was not found when water bugs were always present. This epiphenotype (i.e., new shell formation as an extension of the current shell) suggests that resource limitation plays an important role in responses to temporal variation in predation risk and may have critical ecological costs that limit the benefits of the inducible defense. Lastly, the ability of snails to completely reverse their defenses was limited to early in ontogeny due to the constraints associated with modular growth of shell material. In sum, we demonstrate that taking a developmental perspective is extremely valuable for understanding the ecology of inducible defenses.  相似文献   

4.
Organisms in natural habitats participate in complex ecological interactions that include competition, predation, and foraging. Under natural aquatic environmental conditions, amphibian larvae can simultaneously receive multiple signals from conspecifics, predators, and prey, implying that predator-induced morphological defenses can occur in prey and that prey-induced offensive morphological traits may develop in predators. Although multiple adaptive plasticity, such as inducible defenses and inducible offensive traits, can be expected to have not only ecological but also evolutionary implications, few empirical studies report on species having such plasticity. The broad-headed larval morph of Hynobius retardatus, which is induced by crowding with heterospecific anuran (Rana pirica) larvae, is a representative example of prey-induced polyphenism. The morph is one of two distinct morphs that have been identified in this species; the other is the typical morph. In this paper, we report that typical larval morphs of Hynobius can respond rapidly to a predatory environment and show conspicuous predator-induced plasticity of larval tail depth, but that broad-headed morphs cannot respond similarly to a predation threat. Our findings support the hypothesis that induction or maintenance of adaptive plasticity (e.g., predator-induced polyphenism) trades off against other adaptive plastic responses (e.g., prey-induced polyphenism). For a species to retain both an ability to forage for larger prey and an ability to more effectively resist predation makes sense in light of the range of environments that many salamander larvae experience in nature. Our results suggest that the salamander larvae clearly discriminate between cues from prey and those from predators and accurately respond to each cue; that is, they adjust their phenotype to the current environment.  相似文献   

5.
《Ecological modelling》2007,200(1-2):99-108
It has been reported that, in order to reduce mortality, prey are able to change their phenotype in response to cues released from predators. These short-time responses constitute effective antipredator strategies in variable environments, and involve changes in morphology, behavior, physiology or life-history traits of prey individuals belonging to a wide spectrum of taxa. Defenses can be classified into pre-encounter and post-encounter, depending on the phase of the predation process in which they take place. Also, inducible defenses should be costly.Despite the current knowledge of inducible defenses at the individual level, our understanding of their dynamic consequences at the population and community level is limited. In this work we construct and analyze numerically a predator–prey system, parameterized from published experimental data, in which prey exhibit inducible defenses of the type pre-encounter (affecting attack rate) or post-encounter (affecting handling time) and entailing either metabolic or feeding costs. The above assumptions were analyzed over a gradient of resource availability.Our results indicated that both types of cost have a similar effect on the dynamics of the model system, but we expect that different costs will produce different outcomes in a more complex model community. Conversely, pre-encounter and post-encounter IDs define domains of attraction with different size and shape within the studied sections of the multidimensional parameter space. Roughly speaking, post-encounter IDs determine a more rich dynamics when plausible parameter values are chosen, and the effect of resource density is different if the ID is handling-time based or attack-rate based. In agreement with previous works, our analyses indicate that IDs can damp population oscillations and prevent the paradox of enrichment.  相似文献   

6.
Laurila A  Lindgren B  Laugen AT 《Ecology》2008,89(5):1399-1413
Antipredator defenses are expected to decrease toward higher latitudes because predation rates are predicted to decrease with latitude. However, latitudinal variation in predator avoidance and defense mechanisms has seldom been studied. We studied tadpole antipredator defenses in seven Rana temporaria populations collected along a 1500-km latitudinal gradient across Sweden, along which previous studies have found increasing tadpole growth and development rates. In a laboratory common garden experiment, we measured behavioral and morphological defenses by raising tadpoles in the presence and absence of a predator (Aeshna dragonfly larva) in two temperature treatments. We also estimated tadpole survival in the presence of free-ranging predators and compared predator densities between R. temporaria breeding ponds situated at low and high latitudes. Activity and foraging were generally positively correlated with latitude in the common garden experiment. While all populations responded to predator presence by decreasing activity and foraging, high-latitude populations maintained higher activity levels in the presence of the predator. All populations exhibited defensive morphology in body and tail shape. However, whereas tail depth tended to increase with latitude in the presence of predator, it did not change with latitude in the absence of the predator. Predator presence generally increased larval period and decreased growth rate. In the southern populations, predator presence tended to have a negative effect on metamorphic size, whereas in the northern populations predators had little or a positive effect on size. Latitude of origin had a strong effect on survival in the presence of a free-ranging predator, with high-latitude tadpoles experiencing higher mortality than those from the low latitudes. In the wild, predator densities were significantly lower in high-latitude than in mid-latitude breeding ponds. Although the higher activity level in the northern populations seems to confer a significant survival disadvantage under predation risk, it is probably needed to maintain the high growth and development rates. However, the occurrence of R. temporaria at high latitudes may be facilitated by the lower predator densities in the north.  相似文献   

7.
Recent investigations have indicated that animals are able to use chemical cues of predators to assess the magnitude of predation risk. One possible source of such cues is predator diet. Chemical cues may also be important in the development of antipredator behaviour, especially in animals that possess chemical alarm substances. Tadpoles of the common toad (Bufo bufo) are unpalatable to most vertebrate predators and have an alarm substance. Tadpoles of the common frog (Rana temporaria) lack both these characters. We experimentally studied how predator diet, previous experience of predators and body size affect antipredator behaviour in these two tadpole species. Late-instar larvae of the dragonfly Aeshna juncea were used as predators. The dragonfly larvae were fed a diet exclusively of insects, R. temporaria tadpoles or B. bufo tadpoles. R. temporaria tadpoles modified their behaviour according to the perceived predation risk. Depending on predator diet, the tadpoles responded with weak antipredatory behaviour (triggered by insect-fed predators) or strong behaviour (triggered by tadpole-fed predators) with distinct spatial avoidance and lowered activity level. The behaviour of B. bufo in predator diet treatments was indistinguishable from that in the control treatment. This lack of antipredator behaviour is probably related to the effective post-encounter defenses and more intense competitive regime experienced by B. bufo. The behaviour of both tadpole species was dependent on body size, but this was not related to predator treatments. Our results also indicate that antipredator behaviour is largely innate in tadpoles of both species and is not modified by a brief exposure to predators. Received: 22 August 1996 / Accepted after revision: 31 January 1997  相似文献   

8.
Hammond JI  Luttbeg B  Sih A 《Ecology》2007,88(6):1525-1535
Predator and prey spatial distributions have important population and community level consequences. However, little is known either theoretically or empirically about behavioral mechanisms that underlie the spatial patterns that emerge when predators and prey freely interact. We examined the joint space use and behavioral rules governing movement of freely interacting groups of odonate (dragonfly) predators and two size classes of anuran (tadpole) prey in arenas containing two patches with different levels of the prey's resource. Predator and prey movement and space use was quantified both when they were apart and together. When apart from predators, large tadpoles strongly preferred the high resource patch. When apart from prey, dragonflies weakly preferred the high resource patch. When together, large prey shifted to a uniform distribution, while predators strongly preferred the high resource patch. These patterns qualitatively fit the predictions of several three trophic level, ideal free distribution models. In contrast, the space use of small prey and predators did not deviate from uniform. Three measures of joint space use (spatial correlations, overlap, and co-occurrence) concurred in suggesting that prey avoidance of predators was more important than predator attraction to prey in determining overall spatial patterns. To gain additional insight into behavioral mechanisms, we used a model selection approach to identify behavioral movement rules that can potentially explain the observed, emergent patterns of space use. Prey were more likely to leave patches with more predators and more conspecific competitors; resources had relatively weak effects on prey movements. In contrast, predators were more likely to leave patches with low resources (that they do not consume) and more competing predators; prey had relatively little effect on predator movements. These results highlight the importance of investigating freely interacting predators and prey, the potential for simple game theory models to predict joint spatial distributions, and the utility of using model choice methods to identify potential key factors that govern movement.  相似文献   

9.
When predator chemical cues are present, low activity of prey is a commonly seen defensive behavior. However, few studies have explored the functional implications of the defensive behaviors and, thus, elucidated the possible linkages between behavioral responses and its consequences. In this study, we experimentally investigated how behavioral responses of Hyla japonica tadpoles to predator chemical cues affect vulnerability to a dragonfly nymph Anax parthenope julius. The frequency of tadpoles attacked by dragonfly nymphs was lower with chemical cues of predator was present than without chemical cues, and most of attacks occurred when tadpoles were mobile. When tadpoles were exposed to chemical cues, on the other hand, their swimming speed was quicker and swimming distance was longer, respectively, and the rates of being approached of the swimming tadpoles by dragonfly nymph was lower than those not exposed to chemical cues. We found that the tadpoles are induced by predator chemical cues not only to generally lower activity but also to swim in bursts as additional behavior and that the suite of their behavioral responses reduce the vulnerability against dragonfly nymph. Tadpoles can receive information about the predation risks by chemical cues and adjust their defensive behavior accordingly.  相似文献   

10.
Population density regulates the strength of intraspecific competition and may thereby be reflected in life-history variables, such as development time, growth rate, or investment in immune defense. However, population density may also affect the fitness payoffs of different behaviors and consequently shape the development of personality. Here we studied if population density during nymphal development (one, four, or ten individuals raised together) affects the level of boldness, measured as the latency time to recover from freezing and emerge from a shelter, aggressiveness towards conspecifics or their correlation at the adult stage in the field crickets, Gryllus integer. In addition, we tested if individuals invest more resources in immune function or speed up their development in response to a high conspecifics density during ontogeny. Nymphal density did not affect adult boldness or aggressiveness towards conspecific males per se, but these variables showed a negative association, i.e., indicated an unconventional behavioral syndrome in the highest density treatment. Supporting the effectiveness of density treatments in inducing plastic responses, individuals reached maturity sooner and invested more resources in immune function in the highest nymphal density group compared to groups consisting of one or four individuals. Our results suggest that population density may play an important role in shaping both the realized life history and development of behavioral syndromes.  相似文献   

11.
Long JD  Hamilton RS  Mitchell JL 《Ecology》2007,88(5):1232-1240
Species may compete indirectly by altering the traits of a shared resource. For example, herbivore-induced responses in plants may make plants more resistant or susceptible to additional herbivorous insect species. Herbivore-induced plant responses can significantly affect interspecific competition and herbivore population dynamics. These herbivore-herbivore indirect interactions have been overlooked in aquatic ecosystems where previous studies used the same herbivore species to induce changes and to assess the effects of these changes. We asked whether seaweed grazing by one of two herbivorous, congeneric snail species (Littorina obtusata or Littorina littorea) with different feeding strategies and preferences would affect subsequent feeding preferences of three herbivore species (both snails and the isopod Idotea baltica) and population densities of three herbivore species (both snails and a third periwinkle snail, Lacuna vincta). In addition, we measured phlorotannin concentrations to test the hypothesis that these metabolites function as induced defenses in the Phaeophyceae. Snail herbivory induced cue-specific responses in apical tissues of the seaweed Fucus vesiculosus that affected the three herbivore species similarly. When compared to ungrazed controls, direct grazing by Littorina obtusata reduced seaweed palatability by at least 52% for both snail species and the isopod species. In contrast, direct grazing by L. littorea did not decrease seaweed palatability for any herbivore, indicating herbivore-specific responses. Previous grazing by L. obtusata reduced populations of L. littorea on outplanted seaweeds by 46% but had no effect on L. obtusata populations. Phlorotannins, a potential class of inducible chemicals in brown algae, were not more concentrated in grazed seaweed tissues, suggesting that some other trait was responsible for the induced resistance. Our results indicate that marine herbivores may compete via inducible responses in shared seaweeds. These plant-mediated interactions were asymmetric with a specialist (L. obtusata) competitively superior to a generalist (L. littorea).  相似文献   

12.
Intraguild predation constitutes a widespread interaction occurring across different taxa, trophic positions and ecosystems, and its endogenous dynamical properties have been shown to affect the abundance and persistence of the involved populations as well as those connected with them within food webs. Although optimal foraging decisions displayed by predators are known to exert a stabilizing influence on the dynamics of intraguild predation systems, few is known about the corresponding influence of adaptive prey decisions in spite of its commonness in nature. In this study, we analyze the effect that adaptive antipredator behavior exerts on the stability and persistence of the populations involved in intraguild predation systems. Our results indicate that adaptive prey behavior in the form of inducible defenses act as a stabilizing mechanism and show that, in the same direction that adaptive foraging, enhances the parameter space in which species can coexist through promoting persistence of the IG-prey. At high levels of enrichment, the intraguild predation system exhibits unstable dynamics and zones of multiples attractors. In addition, we show that the equilibrium density of the IG-predator could be increased at intermediate values of defense effectiveness. Finally we conclude that adaptive prey behavior is an important mechanism leading to species coexistence in intraguild predation systems and consequently enhancing stability of food webs.  相似文献   

13.
Summary. Jasmonic acid (JA) is a wound-related hormone found in most plants that, when applied exogenously, can induce increases in levels of chemical defenses in patterns similar to those induced by mechanical damage or insect feeding. Relative to responses to insect and pathogen attack, chemical responses of herbaceous plants to mammalian herbivore attack have been little studied. In a field experiment, we compared the effects of JA treatment and naturally occurring mammalian herbivory on the expression of trypsin inhibitors, glucosinolates, peroxidase activity and growth of wild mustard (Brassica kaber). Exogenous JA significantly increased trypsin inhibitor activity and glucosinolate concentration, and moderately increased peroxidase activity in the eighth true leaves of five-week-old plants, relative to untreated controls. In contrast, levels of these chemical defenses in the eighth true leaves or in regrowth foliage of plants that had ∼80% of their leaf area removed by groundhogs (Marmota monax) did not differ from that in undamaged and untreated controls. Although exogenous JA significantly elevated levels of chemical defenses, it did not affect height of plants through the season and only slightly reduced time to first flower. Groundhog herbivory significantly reduced height and delayed or abolished flowering, but these effects were not substantial unless coupled with apical meristem removal. We hypothesize that the lack of effect of groundhog herbivory on chemical defenses may be due in part to the speed and pattern of leaf area removal by groundhogs, or physiological constraints caused by leaf area loss. Despite having no effect on chemical defense production, leaf area loss by groundhogs was more costly to growth and fitness than the effects of JA application in this study, but only substantially so if coupled with apical meristem removal. We suggest that in general, costs of defense production in plants are likely to be minimal when compared to the risk of losing large amounts of leaf area or primary meristematic tissue. Thus, if they are effective at deterring herbivory, the benefits of inducible defense production likely outweigh the costs in most cases. Received 20 December 2000; accepted 3 May 2001  相似文献   

14.
Vaughn D 《Ecology》2007,88(4):1030-1039
While there are numerous reports of predator-induced morphological defenses for freshwater zooplankton, freshwater larvae, and benthic marine animals, a literature search revealed no reports of predator-induced morphological defenses for marine zooplankton. Rarity of predator-induced morphological defenses in marine zooplankton would imply a difference in predation risks compared to those experienced by freshwater organisms and benthic marine adults, whereas the presence of such plasticity in defenses would imply that risks are modified by developmental responses. This study reports a predator-induced change in defenses and vulnerability of a marine planktonic larva. Specifically, when reared in the presence of zoea larvae of Cancer spp., veliger larvae of the intertidal snail Littorina scutulata developed significantly smaller shell apertures and rounder shells than did cohort veligers reared in the absence of predator cues. Pairwise predation trials demonstrated that veligers reared with caged zoeas throughout development had greater survival than predator-naive veligers during short-term exposure to zoeas. The development of predator-induced morphological defenses by some marine larvae introduces a range of testable hypotheses on developmental plasticity that reduces vulnerability of planktonic larvae and other marine zooplankton to predators.  相似文献   

15.
Tadpoles can alter their behavior, morphology, and life history in response to habitat change. Although chemical signals from conspecifics or predators play an important role in tadpole habitat assessment, little is known about the role of visual cues and the extent to which tadpoles rely on their vision for intraspecific social assessment. The aim of our experiments was to determine whether larval anurans use visual images of other tadpoles as indicators of density and to analyze how, and to what extent, images of conspecifics alone affect tadpole development, growth, and behavior. To assess this, we raised both Rana sylvatica and Bufo americanus tadpoles in aquaria with either quarter- or half-mirrored walls. Both physically increased density and increased density simulated with mirrors decreased tadpole growth and developmental rates, and increased activity in Rana tadpoles. Bufo tadpoles did not significantly alter their growth and development in response to visually increased density. Only true, i.e., physically, increased density had an effect on growth and activity in Bufo tadpoles. Our data show that images of conspecifics are used as visual cues by Rana tadpoles and can induce phenotypically plastic changes in several traits. This response to visual cues is taxon-specific. An erratum to this article can be found at  相似文献   

16.
Despite the importance of acquired predator recognition in mediating predator–prey interactions, we know little about the specific characteristics that prey use to distinguish predators from non-predators. Recent experiments with mammals and fish indicate that some prey lacking innate predator recognition have the ability to display anti-predator responses upon their first encounter with those predators if they are similar to predators that the prey has recently learned to recognize. This phenomenon is referred to as generalization of predator recognition. In this experiment, we documented for the first time that larval amphibians (woodfrog, Rana sylvatica) have the ability to generalize the recognition of known predators to closely related novel predators. Moreover, we demonstrated that this ability is dependent on the level of risk associated with the known predator. When red-bellied newt, Cynops pyrrhogaster (known predator), was paired with simulated low risk, tadpoles displayed fright responses to newts and novel tiger salamanders, Ambystoma tigrinum, but not to novel African clawed frogs, Xenopus laevis. However, when the newt was paired with simulated high risk, tadpoles generalized their responses to both tiger salamanders and African clawed frogs. Larval anurans seem to have a wider generalization frame than other animals.  相似文献   

17.
In aquatic environments, many prey rely on chemosensory information from injured (alarm cues) or stressed conspecifics (disturbance cues) to assess predation risk. Alarm cues are considered as a sign of higher risk than disturbance cues. These cues could be used by prey to learn potential new predators. In this study, we tested whether Iberian green frog tadpoles (Pelophylax perezi) exhibited antipredator responses to alarm and disturbance cues of conspecifics and whether tadpoles could associate new predators with alarm or disturbance cues. Tadpoles reduced their activity in the presence of disturbance cues, but only weakly when compared with their response to alarm cues. Also, tadpoles learned to recognize new predators from association with alarm or disturbance cues. However, the period of retention of the learned association was shorter for disturbance than alarm cues. Our results indicate that tadpoles are able to modify their antipredatory behavior according to (1) the degree of risk implied by the experimental cues (2) their previous experience of chemical cues of the predator.  相似文献   

18.
The congeneric spiny lobsters Panulirus argus and P. guttatus co-occur throughout the Caribbean Sea, where they may share the coral reef habitat. Despite their phylogenetic closeness, both species have many different life-history traits that may partially explain their coexistence. However, even though both species may face the same predators, their defense mechanisms and antipredator strategies had not been compared. We compared the performance between species in 18 morphological and behavioral defense mechanisms commonly expressed by most spiny lobsters, including predator-avoidance mechanisms (activity schedule, sheltering behavior, delay to disturbance, and effect of conspecific damage-released scents on shelter choice) as well as antipredator mechanisms (body size, several parameters of the escape response and limb autospasy, clinging strength, antennal strength, and cooperative defense). As hypothesized, both species expressed all these defense mechanisms (except cooperative defense, shown only by P. argus), reflecting their phylogenetic closeness, but performed significantly differently in most, in accordance with their particular ontogenetic traits. Their comparative performance in individual defense mechanisms as well as the antipredator strategies displayed by groups of lobsters of each species in the presence of a common predator (the triggerfish Balistes vetula) showed that, in general, the defensive behavioral type of P. argus is more bold and that of P. guttatus more shy. Therefore, their distinct defensive behaviors contribute to their niche differentiation.  相似文献   

19.
Higginson AD  Ruxton GD 《Ecology》2010,91(9):2756-2768
In many taxa the timing of metamorphosis is plastic in response to predation risk during the pre-metamorphic stage, and trends in both age and body size at metamorphosis have been the subject of much study. The responses to cues of predators are predominantly to be larger or equal-sized at the same age or older at metamorphosis. These observations are in direct contrast with existing theoretical treatments of this plasticity, which mostly predict earlier and smaller metamorphosis and never later and larger metamorphosis without invoking indirect effects on growth rate. Here we resolve the discrepancy between theory and observation using a dynamic state-dependent model that incorporates morphological and behavioral responses to predation risk. We allow prey to choose the optimal activity level and/or investment in defense over the growth period. We show that under certain conditions, metamorphosis at a larger size and later time is likely to be optimal. Our analysis allows us to make testable predictions about the changes in activity level of prey as they grow and how the effect of providing refuges will vary with predator type. Several of these predictions are supported by a meta-analysis of metamorphic responses to caged predators by larval amphibians and insects. Our predictions lead to insights about the feedback effects of antipredator responses on growth and subsequent implications for life history.  相似文献   

20.
Summary A study of social organization in an herbivorous lizard Ctenosaura hemilopha investigated the role of dominance in group member behavior. Attention focused on a very populous (16 ind.) colony to examine causes and effects of crowding with respect to competitive factors. Lizards were colonial, with a top-rank male, one or more adult females, and various subadults and juveniles. Top-rank males defended harems, with colonies female-biased (1:4 in focal colony). Dominance hierarchy was observed, with females more aggressive than males, except for the top-rank male. Group awareness facilitated adaptive responses to threatening dominants and predators. Strong correlations existed among individual size, rank, and aggression. Top-rank male aggressiveness was partly explained by harem defense. Food resource competition, which causes aggression in female insectivorous lizards, did not explain female C. hemilopha behavior. Response to predators, predator fecal pellet analysis, and tail break frequencies implicate crevice escape sites for predator avoidance as a prime controller of social and population structure in these lizards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号