首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Comprehensive observations of the nocturnal atmospheric oxidation of NO3 and N2O5 were conducted at a suburban site in Changzhou in the YRD using cavity ring-down spectroscopy (CRDS) from 27 May to 24 June, 2019. High concentrations of NO3 precursors were observed, and the nocturnal production rate of NO3 was determined to be 1.7 ± 1.2 ppbv/hr. However, the nighttime NO3 and N2O5 concentrations were relatively low, with maximum values of 17.7 and 304.7 pptv, respectively, illustrating the rapid loss of NO3 and N2O5. It was found that NO3 dominated the nighttime atmospheric oxidation, accounting for 50.7%, while O3 and OH only contributed 34.1% and 15.2%, respectively. For the reactions of NO3 with volatile organic compounds (VOCs), styrene was found to account for 60.3%, highlighting its dominant role in the NO3 reactivity. In general, the contributions of the reactions between NO3 and VOCs and the N2O5 uptake to NO3 loss were found to be about 39.5% and 60.5%, respectively, indicating that N2O5 uptake also played an important role in the loss of NO3 and N2O5, especially under the high humidity conditions in China. The formation of nitrate at night mainly originated from N2O5 uptake, and the maximum production rate of NO3 reached 6.5 ppbv/hr. The average NOx consumption rate via NO3 and N2O5 chemistry was found to be 0.4 ppbv/h, accounting for 47.9% of the total NOx removal. The predominant roles of NO3 and N2O5 in nitrate formation and NOx removal in the YRD region was highlighted in this study.  相似文献   

2.
Methyl-hydroxy-cyclohexadienyl radicals (OTAs) are the key products of the photooxidation of toluene, with implications for the fate of toluene. Hence, we investigated the photooxidation mechanisms and kinetics of three main OTAs (o-OTA, m-OTA, and p-OTA) with NO2 using quantum chemical calculations as well as the fate of OTAs under the different concentration ratios of NO2 and O2. The mechanism results show that the pathway of H-abstraction by NO2 to anti-HONO (anti-H-abstraction) is more favorable than the syn-H-abstraction pathway, because the strong interaction between OTAs and NO2 is formed in the transition states of the anti-H-abstraction pathways. The branching ratios of the anti-H-abstraction pathways are more than 99% in the temperature range of 216−298 K. The total rate constant of the OTA-NO2 reaction is 9.9 × 10−12 cm3/(molecule∙sec) at 298 K, which is contributed about 90% by o-OTA + NO2, and the main products are o-cresol and anti-HONO. The half-lives of the OTA-NO2 reaction in some polluted areas of China are 35 times longer than those of the OTA-O2 reaction. In the atmosphere, the NO2- and O2- initiated reactions of OTAs have the same ability to form cresols as [NO2] is up to 142.1 ppmV, which is impossible to achieve. It implies that under the experimental condition, the [NO2]/[O2] should be controlled to be less than 7.8 × 10−5 to simulate real atmospheric oxidation of toluene. Our results reveal that for the photooxidation of toluene, the yield of cresol is not affected by the concentration of NO2 under the atmospheric environment.  相似文献   

3.
Hel(21.22 eV)photoelectron spectrum of microwave-discharged(MD)species of CF2C12 is reported in this paper And HeI photoelectron spectra of reaction products between O2 and the species generated by MD of CF2CI 2,between CF2CI2 and the species generated by MD of O2,and between the products generated by MD of CF2Cl2 and O2 mixed gases are also given.The chlorine atomic species is obtained by the MD method.So the mechanism of ozone depletion in the stratosphere by the freon is conceived.  相似文献   

4.
The paper presented the results regarding the decomposition of gaseous CF2ClBr by cold plasma method.After two minutes discharge,the maximum decomposition rate of 2660 Pa CF2ClBr pure and 2660 Pa CF2ClBr plus 7980 Pa O2 reached 60% and 80%,respectively.The paper also studied the cold plasma gas phase chemistry reaction mechanism of CF2ClBr at low pressure,and the pressure effects of CF2ClBr and added gas(He,N2,O2 and dry air)on the CF2ClBr decomposition respectively by cold plasma method.These studies will be helpful to application of cold plasma method in the treatment of hazardous gaseous wastes.  相似文献   

5.
PM2.5 concentrations have dramatically reduced in key regions of China during the period 2013–2017, while O3 has increased. Hence there is an urgent demand to develop a synergetic regional PM2.5 and O3 control strategy. This study develops an emission-to-concentration response surface model and proposes a synergetic pathway for PM2.5 and O3 control in the Yangtze River Delta (YRD) based on the framework of the Air Benefit and Cost and Attainment Assessment System (ABaCAS). Results suggest that the regional emissions of NOx, SO2, NH3, VOCs (volatile organic compounds) and primary PM2.5 should be reduced by 18%, 23%, 14%, 17% and 33% compared with 2017 to achieve 25% and 5% decreases of PM2.5 and O3 in 2025, and that the emission reduction ratios will need to be 50%, 26%, 28%, 28% and 55% to attain the National Ambient Air Quality Standard. To effectively reduce the O3 pollution in the central and eastern YRD, VOCs controls need to be strengthened to reduce O3 by 5%, and then NOx reduction should be accelerated for air quality attainment. Meanwhile, control of primary PM2.5 emissions shall be prioritized to address the severe PM2.5 pollution in the northern YRD. For most cities in the YRD, the VOCs emission reduction ratio should be higher than that for NOx in Spring and Autumn. NOx control should be increased in summer rather than winter when a strong VOC-limited regime occurs. Besides, regarding the emission control of industrial processes, on-road vehicle and residential sources shall be prioritized and the joint control area should be enlarged to include Shandong, Jiangxi and Hubei Province for effective O3 control.  相似文献   

6.
Tropospheric ozone (O3) pollution is increasing in the Beijing-Tianjin-Hebei (BTH) region despite a significant decline in atmospheric fine aerosol particles (PM2.5) in recent years. However, the intrinsic reason for the elevation of the regional O3 is still unclear. In this study, we analyzed the spatio-temporal variations of tropospheric O3 and relevant pollutants (PM2.5, NO2, and CO) in the BTH region based on monitoring data from the China Ministry of Ecology and Environment during the period of 2014–2019. The results showed that summertime O3 concentrations were constant in Beijing (BJ, 0.06 µg/(m3•year)) but increased significantly in Tianjin (TJ, 9.09 µg/(m3•year)) and Hebei (HB, 6.06 µg/(m3•year)). Distinct O3 trends between Beijing and other cities in BTH could not be attributed to the significant decrease in PM2.5 (from -5.08 to -6.32 µg/(m3•year)) and CO (from -0.053 to -0.090 mg/(m3•year)) because their decreasing rates were approximately the same in all the cities. The relatively stable O3 concentrations during the investigating period in BJ may be attributed to a faster decreasing rate of NO2 (BJ: -2.55 µg/(m3•year); TJ: -1.16 µg/(m3•year); HB: -1.34 µg/(m3•year)), indicating that the continued reduction of NOx will be an effective mitigation strategy for reducing regional O3 pollution. Significant positive correlations were found between daily maximum 8 hr average (MDA8) O3 concentrations and vehicle population and highway freight transportation in HB. Therefore, we speculate that the increase in rural NOx emissions due to the increase in vehicle emissions in the vast rural areas around HB greatly accelerates regional O3 formation, accounting for the significant increasing trends of O3 in HB.  相似文献   

7.
Regional ozone (O3) pollution has drawn increasing attention in China over the recent decade, but the contributions from urban pollution and biogenic emissions have not been clearly elucidated. To better understand the formation of the regional O3 problem in the North China Plain (NCP), intensive field measurements of O3 and related parameters were conducted at a rural site downwind of Ji'nan, the capital city of Shandong province, in the summer of 2013. Markedly severe O3 pollution was recorded, with the O3 mixing ratios exceeding the Chinese national ambient air quality standard on 28?days (a frequency of 78%) and with a maximum hourly value of 198 ppbv. Extensive regional transport of well-processed urban plumes to the site was identified. An observation-constrained chemical box model was deployed to evaluate in situ photochemical O3 production on two episodes. The results show that the in situ formation accounted for approximately 46% of the observed O3 accumulation, while the remainder (~ 54%) was contributed by regional transport of the O3-laden urban plumes. The in situ ozone production was in a mixed controlled regime that reducing either NOx or VOCs would lead to a reduction of ozone formation. Biogenic VOCs played an important role in the local ozone formation. This study demonstrates the significant mixed effects of both anthropogenic pollution from urban zones and biogenic emission in rural areas on the regional O3 pollution in the NCP region, and may have general applicability in facilitating the understanding of the formation of secondary pollution over China.  相似文献   

8.
Fine particulate matter (PM2.5) and ozone (O3) pollutions are prevalent air quality issues in China. Volatile organic compounds (VOCs) have significant impact on the formation of O3 and secondary organic aerosols (SOA) contributing PM2.5. Herein, we investigated 54 VOCs, O3 and SOA in Tianjin from June 2017 to May 2019 to explore the non-linear relationship among O3, SOA and VOCs. The monthly patterns of VOCs and SOA concentrations were characterized by peak values during October to March and reached a minimum from April to September, but the observed O3 was exactly the opposite. Machine learning methods resolved the importance of individual VOCs on O3 and SOA that alkenes (mainly ethylene, propylene, and isoprene) have the highest importance to O3 formation; alkanes (Cn, n ≥ 6) and aromatics were the main source of SOA formation. Machine learning methods revealed and emphasized the importance of photochemical consumptions of VOCs to O3 and SOA formation. Ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) calculated by consumed VOCs quantitatively indicated that more than 80% of the consumed VOCs were alkenes which dominated the O3 formation, and the importance of consumed aromatics and alkenes to SOAFP were 40.84% and 56.65%, respectively. Therein, isoprene contributed the most to OFP at 41.45% regardless of the season, while aromatics (58.27%) contributed the most to SOAFP in winter. Collectively, our findings can provide scientific evidence on policymaking for VOCs controls on seasonal scales to achieve effective reduction in both SOA and O3.  相似文献   

9.
The performance of catalysts used in after-treatment systems is the key factor for the removal of diesel soot, which is an important component of atmospheric fine particle emissions. Herein, three-dimensionally ordered macroporous–mesoporous TixSi1-xO2 (3DOM-m TixSi1-xO2) and its supported MnOx catalysts doped with different alkali/alkaline-earth metals (AMnOx/3DOM-m Ti0.7Si0.3O2 (A: Li, Na, K, Ru, Cs, Mg, Ca, Sr, Ba)) were prepared by mesoporous template (P123)-assisted colloidal crystal template (CCT) and incipient wetness impregnation methods, respectively. Physicochemical characterizations of the catalysts were performed using scanning electron microscopy, X-ray diffraction, N2 adsorption–desorption, H2 temperature-programmed reduction, O2 temperature-programmed desorption, NO temperature-programmed oxidation, and Raman spectroscopy techniques; then, we evaluated their catalytic performances for the removal of diesel soot particles. The results show that the 3DOM-m Ti0.7Si0.3O2 supports exhibited a well-defined 3DOM-m nanostructure, and AMnOx nanoparticles with 10–50 nm were evenly dispersed on the inner walls of the uniform macropores. In addition, the as-prepared catalysts exhibited good catalytic performance for soot combustion. Among the prepared catalysts, CsMnOx/3DOM-m Ti0.7Si0.3O2 had the highest catalytic activity for soot combustion, with T10, T50, and T90 (the temperatures corresponding to soot conversion rates of 10%, 50%, and 90%) values of 285, 355, and 393°C, respectively. The high catalytic activity of the CsMnOx/3DOM-m Ti0.7Si0.3O2 catalysts was attributed to their excellent low-temperature reducibility and homogeneous macroporous–mesoporous structure, as well as to the synergistic effects between Cs and Mn species and between CsMnOx and the Ti0.7Si0.3O2 support.  相似文献   

10.
This study explored the effects of H2O2 on Cyanobacteria and non-target microbes using fluorometry, microscopy, flow cytometry, and high throughput DNA sequencing of the 16S rRNA gene during a series of mesocosm and whole-ecosystem experiments in a eutrophic pond in NY, USA. The addition of H2O2 (8 mg/L) significantly reduced Cyanobacteria concentrations during a majority of experiments (66%; 6 of 9) and significantly increased eukaryotic green and unicellular brown algae in 78% and 45% of experiments, respectively. While heterotrophic bacteria declined significantly following H2O2 addition in all experiments, bacteria indicative of potential fecal contamination (Escherichia coli, Enterococcus, fecal coliform bacteria) consistently and significantly increased in response to H2O2, evidencing a form of ‘pollution swapping’. H2O2 more effectively reduced Cyanobacteria in enclosed mesocosms compared to whole-ecosystem applications. Ten whole-pond H2O2 applications over a two-year period temporarily reduced cyanobacterial levels but never reduced concentrations below bloom thresholds and populations always rebounded in two weeks or less. The bacterial phyla of Cyanobacteria, Actinobacteria, and Planctomycetes were the most negatively impacted by H2O2. Microcystis was always reduced by H2O2, as was the toxin microcystin, but Microcystis remained dominant even after repeated H2O2 treatments. Although H2O2 favored the growth of eukaryotic algae over potentially harmful Cyanobacteria, the inability of H2O2 to end cyanobacterial blooms in this eutrophic waterbody suggests it is a non-ideal mitigation approach in high biomass ecosystems and should be used judiciously due to potential negative impacts on non-target organisms and promotion of bacteria indicative of fecal contamination.  相似文献   

11.
结合桐柏县的实例,对县域生态功能区划分的原则和方法进行初步探讨.综合利用3S技术对县域生态敏感性和生态服务功能重要性的分析和评价,提出桐柏县生态服务功能区划的初步方案.将桐柏县划分为生态支持区,产品供给区,生态调节区.简要分析了各功能区在桐柏县经济可持续发展中的地位和作用,指出各区协调发展的方向和途征.  相似文献   

12.
从水质变化过程、水体空间维度和边界条件三个方面简要回顾了水环境模拟的研究与发展进程。介绍了目前国内外广泛应用的综合性水质模型软件:QUAL2E/2K、CE-QUAL-RIV1、MIKE11、CE-QUAL-W2、MIKE21、Delft3D、WASP、EFDC、BASINS、WARMF、SMS的特点和适用范围,重点讨论了EFDC和WASP集成应用于复杂水环境模拟的优势。对复杂水环境模拟的发展趋势进行了展望。  相似文献   

13.
通过对比第一代和第二代与第三代移动通信系统的特点,总结出第三代移动通信的优点,并将其优点应用到防震救灾事业中,改善防震减灾系统的设计,使防震减灾步入一个崭新的3G阶段,提高防震减灾工作的有效性和实用性.  相似文献   

14.
O3查算表的建立及其在区域空气质量模式中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
利用光化学机制RADM2、CBM-Z建立箱模式,分析了影响O3生成的主要物理、化学因子,将这些因子进行分档计算,建立了能够描述光化学反应中O3及其前体物(挥发性有机物VOC、氮氧化物NOx)浓度变化的查算表,并在区域空气质量模式CALGRID中加以应用.通过对2006年1、4、7、10月珠江三角洲的模拟计算和比较分析表明,查表法显著提高了计算效率,运算时间减少45%~48%,并且与光化学机制直接耦合计算结果符合较好,其中基于RADM2的查算表对O3模拟效果较好,而基于CBM-Z的查算表对NOx模拟更佳.  相似文献   

15.
运用3S技术,分析和探讨了豫北平原的内黄县1979—2003年的生态系统服务价值变化. 土地利用变化直接影响生态服务价值,该区25年间的生态系统服务价值变化显著,呈增长趋势.耕地和林地生态系统服务功能约占总服务价值的80%~90%. 结果表明:25年来内黄县研究区域的生态环境质量呈不断上升的态势,生态系统服务价值增加逾2.6×108元. 研究区内的林地、园地面积不断增加,增加的面积部分主要源自未利用地,而另一部分则是由耕地转变而来. 这一方面反映了人口增长和经济建设需求对生态环境变化的积极影响,另一方面也反映了研究区人民和相关部门重视生态环境,环保意识增强.   相似文献   

16.
介绍了选用熟石灰Ca(OH)2作脱硫剂的半干法烟气脱硫工艺来脱除SO2;选用NH3作还原剂,活性炭作催化剂,在低温(<200℃)和氧气存在的条件下选择性催化还原(SCR法,属干法)NOx的技术来脱除NOx.实验表明:脱硫率>92.5%,脱硝率>74.6%,半干法烟气脱硫工艺和干法(SCR法)烟气脱硝技术适宜于中小型燃煤烟气的脱硫脱硝.  相似文献   

17.
LaFeO_3和SrFeO_(3-λ)对水溶性染料的光催化降解   总被引:5,自引:1,他引:5  
采用柠檬酸法合成钙钛矿型复合氧化物LaFeO3和SrFeO3 λ,并以其为光催化剂对不同水溶性染料进行光催化降解实验。结果表明 :SrFeO3 λ的光催化活性明显高于LaFeO3,这与A位离子 (La3+ 、Sr2 + )的电子构型的不同有关。  相似文献   

18.
利用湿法回收技术,对废旧锌锰电池中的锰进行回收处理,制取MnCO3。实验表明,HCl和HNO3的浓度、所用体积以及浸泡时间对MnCO3的产率影响较大。当HCl的浓度为5mol/L、体积为40mL、浸泡时间为180min时,MnCO3的产率可达64.85%;HNO3的浓度为6mol/L、体积为60mL、浸泡时间为80min时,MnCO3的产率可达63.76%。  相似文献   

19.
3H在黄土中迁移的滞后特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为证实3H在介质中的吸附,进行了饱和条件下的3H和Br-、3H和99Tc与非饱和条件下的3H和131I的溶质迁移野外现场实验和室内模拟实验.结果表明,3H的迁移速度滞后于Br-、99Tc和131I.模拟结果表明,3H在饱和黄土中迁移的延迟因子约为1.95~2.05,相当于在地下水中迁移的速度比地下水流速慢了50%.影响3H迁移滞后的因素主要有土壤黏土矿物的吸附,土壤中不流动水的存在及土壤的理化性质.该结果对用3H对地下水定年和测速的精度提出了质疑,也为中、低和极低放射性废物处置场中处置3H废物的安全评价提供依据.  相似文献   

20.
真空紫外光解-活性炭吸附去除甲苯及副产物臭氧   总被引:5,自引:1,他引:5       下载免费PDF全文
研究了不同条件下产O3低压汞灯对气相中低浓度甲苯的光化学降解,以及活性炭纤维(ACF)对甲苯光解尾气中残余甲苯及光解副产物O3的脱除.结果表明,气流相对湿度(RH)越高、气体流量越大、甲苯的初始浓度越高,甲苯的真空紫外光解速率越高,最高达0.070mg/m3,所产生的O3浓度也越低.气流RH越低,ACF对甲苯和O3的吸附脱除性能越好.负载Mn、Cu氧化物的ACF对O3有更好的分解性能,同时能催化氧化甲苯.在400℃下焙烧的催化剂性能最好,RH8%时对O3的去除率稳定在35%,但当RH增至40%时,对O3的去除率下降为16.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号