首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Setegn, Shimelis G., Bijan Dargahi, Ragahavan Srinivasan, and Assefa M. Melesse, 2010. Modeling of Sediment Yield From Anjeni-Gauged Watershed, Ethiopia Using SWAT Model. Journal of the American Water Resources Association (JAWRA) 46(3):514-526. DOI: 10.1111/j.1752-1688.2010.00431.x Abstract: The Soil and Water Assessment Tool (SWAT) was tested for prediction of sediment yield in Anjeni-gauged watershed, Ethiopia. Soil erosion and land degradation is a major problem on the Ethiopian highlands. The objectives of this study were to evaluate the performance and applicability of SWAT model in predicting monthly sediment yield and assess the impacts of subbasin delineation and slope discretization on the prediction of sediment yield. Ten years monthly meteorological, flow and sediment data were used for model calibration and validation. The annual average measured sediment yield was 24.6 tonnes/ha. The annual average simulated sediment yield was 27.8 and 29.5 tones/ha for calibration and validation periods, respectively. The study found that the observed values showed good agreement with the simulated sediment yield with Nash-Sutcliffe efficiency (NSE) = 0.81, percent bias (PBIAS) = 28%, RMSE-observations standard deviation ratio (RSR) = 0.23, and coefficient of determination (R²) = 0.86 for calibration and NSE = 0.79, PBIAS = 30%, RSR = 0.29, and R² = 0.84 for validation periods. The model can be used for further analysis of different management scenarios that could help different stakeholders to plan and implement appropriate soil and water conservation strategies.  相似文献   

2.
Abstract: The Soil and Water Assessment Tool (SWAT) model combined with different snowmelt algorithms was evaluated for runoff simulation of an 114,345 km2 mountainous river basin (the headwaters of the Yellow River), where snowmelt is a significant process. The three snowmelt algorithms incorporated into SWAT were as follows: (1) the temperature‐index, (2) the temperature‐index plus elevation band, and (3) the energy budget based SNOW17. The SNOW17 is more complex than the temperature‐based snowmelt algorithms, and requires more detailed meteorological and topographical inputs. In order to apply the SNOW17 in the SWAT framework, SWAT was modified to operate at the pixel scale rather than the normal Hydrologic Response Unit scale. The three snowmelt algorithms were evaluated under two parameter scenarios, the default and the calibrated parameters scenarios. Under the default parameters scenario, the parameter values were determined based on a review of the current literature. The purpose of this type of evaluation was to assess the applicability of SWAT in ungauged basins, where there is little observed data available for calibration. Under the calibrated parameters scenario, the parameters were calibrated using an automatic calibration program, the Shuffled Complex Evolution (SCE‐UA). The purpose of this type of evaluation was to assess the applicability of SWAT in gauged basins. Two time periods (1975‐1985 and 1986‐1990) of monthly runoff data were used in this study to evaluate the performance of SWAT with different snowmelt algorithms. Under the default parameters scenario, the SWAT model with complex energy budget based SNOW17 performed the best for both time periods. Under the calibrated parameters scenario, the parameters were calibrated using monthly runoff from 1975‐1985 and validated using monthly runoff from 1986‐1990. After parameter calibration, the performance of SWAT with the three snowmelt algorithms was improved from the default parameters scenario. Further, the SWAT model with temperature‐index plus elevation band performed as well as the SWAT model with SNOW17. The SWAT model with temperature‐index algorithm performed the poorest for both time periods under both scenarios. Therefore, it is suggested that the SNOW17 model be used for modeling ungauged basins; however, for gauged basins, the SNOW17 and simple temperature‐index plus elevation band models could provide almost equally good runoff simulation results.  相似文献   

3.
Reliable water quality models are needed to forecast the water quality consequences of different agricultural nutrient management scenarios. In this study, the Soil and Water Assessment Tool (SWAT), version 2000, was applied to simulate streamflow, riverine nitrate (NO(3)) export, crop yield, and watershed nitrogen (N) budgets in the upper Embarras River (UER) watershed in east-central Illinois, which has extensive maize-soybean cultivation, large N fertilizer input, and extensive tile drainage. During the calibration (1994-2002) and validation (1985-1993) periods, SWAT simulated monthly and annual stream flows with Nash-Sutcliffe coefficients (E) ranging from 0.67 to 0.94 and R(2) from 0.75 to 0.95. For monthly and annual NO(3) loads, E ranged from -0.16 to 0.45 and R(2) from 0.36 to 0.74. Annual maize and soybean yields were simulated with relative errors ranging from -10 to 6%. The model was then used to predict the changes in NO(3) output with N fertilizer application rates 10 to 50% lower than original application rates in UER. The calibrated SWAT predicted a 10 to 43% decrease in NO(3) export from UER and a 6 to 38% reduction in maize yield in response to the reduction in N fertilizer. The SWAT model markedly overestimated NO(3) export during major wet periods. Moreover, SWAT estimated soybean N fixation rates considerably greater than literature values, and some simulated changes in the N cycle in response to fertilizer reduction seemed to be unrealistic. Improving these aspects of SWAT could lead to more reliable predictions in the water quality outcomes of nutrient management practices in tile-drained watersheds.  相似文献   

4.
One of the major factors contributing to surface water contamination in agricultural areas is the use of pesticides. The Soil and Water Assessment Tool (SWAT) is a hydrologic model capable of simulating the fate and transport of pesticides in an agricultural watershed. The SWAT model was used in this study to estimate stream flow and atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) losses to surface water in the Cedar Creek Watershed (CCW) within the St. Joseph River Basin in northeastern Indiana. Model calibration and validation periods consisted of five and two year periods, respectively. The National Agricultural Statistics Survey (NASS) 2001 land cover classification and the Soil Survey Geographic (SSURGO) database were used as model input data layers. Data from the St. Joseph River Watershed Initiative and the Soil and Water Conservation Districts of Allen, Dekalb, and Noble counties were used to represent agricultural practices in the watershed which included the type of crops grown, tillage practices, fertilizer, and pesticide application rates. Model results were evaluated based on efficiency coefficient values, standard statistical measures, and visual inspection of the measured and simulated hydrographs. The Nash and Sutcliffe model efficiency coefficients (E(NS)) for monthly and daily stream flow calibration and validation ranged from 0.51 to 0.66. The E(NS) values for atrazine calibration and validation ranged from 0.43 to 0.59. All E(NS) values were within the range of acceptable model performance standards. The results of this study indicate that the model is an effective tool in capturing the dynamics of stream flow and atrazine concentrations on a large-scale agricultural watershed in the midwestern USA.  相似文献   

5.
Watershed simulation models can be used to assess agricultural nonpoint-source pollution and for environmental planning and improvement projects. However, before application of any process-based watershed model, the model performance and reliability must be tested with measured data. The Soil and Water Assessment Tool version 2005 (SWAT2005) was used to model sediment and nitrogen loads from the Thomas Brook Watershed, which drains a 7.84 km rural landscape in the Annapolis Valley of Nova Scotia, Canada. The Thomas Brook SWAT model was comprised of 28 subbasins and 265 hydrologic response units, most of them containing agricultural land use, which is the main nonpoint nitrogen source in the watershed. Crop rotation schedules were incorporated into the model using field data collected within Agriculture and Agri-Food Canada's Watershed Evaluation of Beneficial Management Practices program. Model calibration (2004-2006) and validation (2007-2008) were performed on a monthly basis using continuous stream flow, sediment, and nitrogen export measurements. Model performance was evaluated using the coefficient of determination, Nash-Sutcliff efficiency (NSE), and percent bias (PBIAS) statistics. Study results show that the model performance was satisfactory (NSE > 0.4; > 0.5) for stream flow, sediment, nitrate-nitrogen, and total nitrogen simulations. Annual corn, barley, and wheat yields were also simulated well, with PBIAS values ranging from 0.3 to 7.2%. This evaluation of SWAT demonstrated that the model has the potential to be used as a decision support tool for agricultural watershed management in Nova Scotia.  相似文献   

6.
Accurate estimation of evapotranspiration (ET) is essential to improve water use efficiency of crop production systems managed under different water regimes. The Agricultural Policy/Environmental eXtender (APEX) model was used to simulate ET using four potential ET (ETp) methods. The objectives were to determine sensitive ET parameters in dryland and irrigated cropping systems and compare ET simulation in the two systems using multiple performance criteria. Measured ET and crop yield data from lysimeter fields located in the United States Department of Agriculture‐Agricultural Research Service Bushland, Texas were used for evaluation. The number of sensitive parameters was higher for dryland (11–14) than irrigated cropping systems (6–8). Only four input parameters: soil evaporation plant cover factor, root growth soil strength, maximum rain intercept, and rain intercept coefficient were sensitive in both cropping systems. Overall, it is possible to find a set of robust parameter values to simulate ET accurately in APEX in both cropping systems using any ETp method. However, more computation time is required for dryland than irrigated cropping system due to a relatively larger number of sensitive input parameters. When all inputs are available, the Penman–Monteith method takes the shortest computation time to obtain one model run with robust parameter values in both cropping systems. However, in areas with limited datasets, one can still obtain reasonable ET simulations using either Priestley–Taylor or Hargreaves. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

7.
This study simulated crop and water yields in the Missouri River Basin (MRB; 1,371,000 km2), one of the largest river basins in the United States, using the Soil and Water Assessment Tool (SWAT) at a fine resolution of 12‐digit Hydrological Unit Codes (HUCs) using the regionalization calibration approach. Very few studies have simulated the entire MRB, and those that have developed were at a coarser resolution of 8‐digit HUCs and were minimally calibrated. The MRB was first divided into three subbasins and was further divided into eleven regions. A “head watershed” was selected in each region and was calibrated for crop and water yields. The parameters from the calibrated head watershed were extrapolated to other subwatersheds in the region to complete comprehensive spatial calibration. The simulated crop yields at the head watersheds were in close agreement with observed crop yields. Spatial validation of the aggregated crop yields resulted in reasonable predictions for all crops except dryland corn in a few regions. Simulated and observed water yields in head watersheds and also in the validation locations were in close agreement in naturalized streams and poor agreement in streams with high groundwater‐surface water interactions and/or reservoirs found upstream of the gauges. Overall, the SWAT model was able to reasonably capture the hydrological and crop growth dynamics occurring in the basin despite some limitations.  相似文献   

8.
ABSTRACT: The performance of the Soil and Water Assessment Tool (SWAT) and artificial neural network (ANN) models in simulating hydrologic response was assessed in an agricultural watershed in southeastern Pennsylvania. All of the performance evaluation measures including Nash‐Sutcliffe coefficient of efficiency (E) and coefficient of determination (R2) suggest that the ANN monthly predictions were closer to the observed flows than the monthly predictions from the SWAT model. More specifically, monthly streamflow E and R2 were 0.54 and 0.57, respectively, for the SWAT model calibration period, and 0.71 and 0.75, respectively, for the ANN model training period. For the validation period, these values were ?0.17 and 0.34 for the SWAT and 0.43 and 0.45 for the ANN model. SWAT model performance was affected by snowmelt events during winter months and by the model's inability to adequately simulate base flows. Even though this and other studies using ANN models suggest that these models provide a viable alternative approach for hydrologic and water quality modeling, ANN models in their current form are not spatially distributed watershed modeling systems. However, considering the promising performance of the simple ANN model, this study suggests that the ANN approach warrants further development to explicitly address the spatial distribution of hydrologic/water quality processes within watersheds.  相似文献   

9.
Surendran Nair, Sujithkumar, Kevin W. King, Jonathan D. Witter, Brent L. Sohngen, and Norman R. Fausey, 2011. Importance of Crop Yield in Calibrating Watershed Water Quality Simulation Tools. Journal of the American Water Resources Association (JAWRA) 47(6):1285–1297. DOI: 10.1111/j.1752‐1688.2011.00570.x Abstract: Watershed‐scale water‐quality simulation tools provide a convenient and economical means to evaluate the environmental impacts of conservation practices. However, confidence in the simulation tool’s ability to accurately represent and capture the inherent variability of a watershed is dependent upon high quality input data and subsequent calibration. A four‐stage iterative and rigorous calibration procedure is outlined and demonstrated for Soil Water Analysis Tool (SWAT) using data from Upper Big Walnut Creek (UBWC) watershed in central Ohio, USA. The four stages and the sequence of their application were: (1) parameter selection, (2) hydrology calibration, (3) crop yield calibration, and (4) nutrient loading calibration. Following the calibration, validation was completed on a 10 year period. Nash‐Sutcliffe efficiencies for streamflow over the validation period were 0.5 for daily, 0.86 for monthly, and 0.87 for annual. Prediction efficiencies for crop yields during the validation period were 0.69 for corn, 0.54 for soybeans, and 0.61 for wheat. Nitrogen loading prediction efficiency was 0.66. Compared to traditional calibration approaches (no crop yield calibration), the four‐stage approach (with crop yield calibration) produced improved prediction efficiencies, especially for nutrient balances.  相似文献   

10.
Using Landsat data to estimate evapotranspiration of winter wheat   总被引:1,自引:0,他引:1  
An evapotranspiration (ET) model that accurately estimates daily water use and soil moisture on a regional basis is required for many agricultural and hydrological studies. The model should use meterological data that are readily available and crop information that is responsive to the changing vigor of the plants.We evaluated an ET model with a weighing lysimeter and then applied it to winter wheatfields at four Kansas locations. Model inputs are solar radiation, temperature, precipitation, and leaf area index (LAI); included in the outputs are estimates of transpiration, evaporation, and soil moisture. An equation was developed to estimate LAI from Landsat data. Because LAI can be estimated from satellites, the ET model can potentially be used on a regional basis.  相似文献   

11.
Data limitations often challenge the reliability of water quality models, especially in intensively managed watersheds. While numerous studies report successful hydrological model setup and calibration, few have addressed in detail the data challenges for multisite and multivariable model calibration to an intensively managed watershed. In this study, we address some of these challenges based on our reflective experience calibrating the Soil and Water Assessment Tool (SWAT) to the Upper Sangamon River Watershed in central Illinois based on daily flow, annual crop yield, and monthly sediment, nitrate, and total phosphorus loads. We highlight some challenges in SWAT calibration processes due to data errors and inconsistencies, and insufficient precipitation and water quality observations. Following, we demonstrate the merits of additional weather and water quality observations that could help reduce input uncertainties, and we provide suggestions for selecting appropriate observations for the model calibration. After dealing with the data issues, we show that the SWAT model could be calibrated with acceptable results for the case study watershed.  相似文献   

12.
ABSTRACT: The State of Texas has initiated the development of a Total Maximum Daily Load program in the Bosque River Watershed, where point and nonpoint sources of pollution are a concern. Soil Water Assessment Tool (SWAT) was validated for flow, sediment, and nutrients in the watershed to evaluate alternative management scenarios and estimate their effects in controlling pollution. This paper discusses the calibration and validation at two locations, Hico and Valley Mills, along the North Bosque River. Calibration for flow was performed from 1960 through 1998. Sediment and nutrient calibration was done from 1993 through 1997 at Hico and from 1996 through 1997 at Valley Mills. Model validation was performed for 1998. Time series plots and statistical measures were used to verify model predictions. Predicted values generally matched well with the observed values during calibration and validation (R2≥ 0.6 and Nash‐Suttcliffe Efficiency ≥ 0.5, in most instances) except for some underprediction of nitrogen during calibration at both locations and sediment and organic nutrients during validation at Valley Mills. This study showed that SWAT was able to predict flow, sediment, and nutrients successfully and can be used to study the effects of alternative management scenarios.  相似文献   

13.
ABSTRACT: Precipitation and streamflow data from three nested subwatersheds within the Little Washita River Experimental Watershed (LWREW) in southwestern Oklahoma were used to evaluate the capabilities of the Soil and Water Assessment Tool (SWAT) to predict streamflow under varying climatic conditions. Eight years of precipitation and streamflow data were used to calibrate parameters in the model, and 15 years of data were used for model validation. SWAT was calibrated on the smallest and largest sub‐watersheds for a wetter than average period of record. The model was then validated on a third subwatershed for a range in climatic conditions that included dry, average, and wet periods. Calibration of the model involved a multistep approach. A preliminary calibration was conducted to estimate model parameters so that measured versus simulated yearly and monthly runoff were in agreement for the respective calibration periods. Model parameters were then fine tuned based on a visual inspection of daily hydrographs and flow frequency curves. Calibration on a daily basis resulted in higher baseflows and lower peak runoff rates than were obtained in the preliminary calibration. Test results show that once the model was calibrated for wet climatic conditions, it did a good job in predicting streamflow responses over wet, average, and dry climatic conditions selected for model validation. Monthly coefficients of efficiencies were 0.65, 0.86, and 0.45 for the dry, average, and wet validation periods, respectively. Results of this investigation indicate that once calibrated, SWAT is capable of providing adequate simulations for hydrologic investigations related to the impact of climate variations on water resources of the LWREW.  相似文献   

14.
Watershed simulation models such as the Soil & Water Assessment Tool (SWAT) can be calibrated using “hard data” such as temporal streamflow observations; however, users may find upon examination of model outputs, that the calibrated models may not reflect actual watershed behavior. Thus, it is often advantageous to use “soft data” (i.e., qualitative knowledge such as expected denitrification rates that observed time series do not typically exist) to ensure that the calibrated model is representative of the real world. The primary objective of this study is to evaluate the efficacy of coupling SWAT‐Check (a post‐evaluation framework for SWAT outputs) and IPEAT‐SD (Integrated Parameter Estimation and Uncertainty Analysis Tool‐Soft & hard Data evaluation) to constrain the bounds of soft data during SWAT auto‐calibration. IPEAT‐SD integrates 59 soft data variables to ensure SWAT does not violate physical processes known to occur in watersheds. IPEAT‐SD was evaluated for two case studies where soft data such as denitrification rate, nitrate attributed from subsurface flow to total discharge ratio, and total sediment loading were used to conduct model calibration. Results indicated that SWAT model outputs may not satisfy reasonable soft data responses without providing pre‐defined bounds. IPEAT‐SD provides an efficient and rigorous framework for users to conduct future studies while considering both soft data and traditional hard information measures in watershed modeling.  相似文献   

15.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) model was used to assess the effects of potential future climate change on the hydrology of the Upper Mississippi River Basin (UMRB). Calibration and validation of SWAT were performed using monthly stream flows for 1968–1987 and 1988–1997, respectively. The R2 and Nash‐Sutcliffe simulation efficiency values computed for the monthly comparisons were 0.74 and 0.69 for the calibration period and 0.82 and 0.81 for the validation period. The effects of nine 30‐year (1968 to 1997) sensitivity runs and six climate change scenarios were then analyzed, relative to a scenario baseline. A doubling of atmospheric CO2 to 660 ppmv (while holding other climate variables constant) resulted in a 36 percent increase in average annual streamflow while average annual flow changes of ?49, ?26, 28, and 58 percent were predicted for precipitation change scenarios of ?20, ?10, 10, and 20 percent, respectively. Mean annual streamflow changes of 51,10, 2, ?6, 38, and 27 percent were predicted by SWAT in response to climate change projections generated from the CISRO‐RegCM2, CCC, CCSR, CISRO‐Mk2, GFDL, and HadCMS general circulation model scenarios. High seasonal variability was also predicted within individual climate change scenarios and large variability was indicated between scenarios within specific months. Overall, the climate change scenarios reveal a large degree of uncertainty in current climate change forecasts for the region. The results also indicate that the simulated UMRB hydrology is very sensitive to current forecasted future climate changes.  相似文献   

16.
Abstract: Physically based regional scale hydrologic modeling is gaining importance for planning and management of water resources. Calibration and validation of such regional scale model is necessary before applying it for scenario assessment. However, in most regional scale hydrologic modeling, flow validation is performed at the river basin outlet without accounting for spatial variations in hydrological parameters within the subunits. In this study, we calibrated the model to capture the spatial variations in runoff at subwatershed level to assure local water balance, and validated the streamflow at key gaging stations along the river to assure temporal variability. Ohio and Arkansas‐White‐Red River Basins of the United States were modeled using Soil and Water Assessment Tool (SWAT) for the period from 1961 to 1990. R2 values of average annual runoff at subwatersheds were 0.78 and 0.99 for the Ohio and Arkansas Basins. Observed and simulated annual and monthly streamflow from 1961 to 1990 is used for temporal validation at the gages. R2 values estimated were greater than 0.6. In summary, spatially distributed calibration at subwatersheds and temporal validation at the stream gages accounted for the spatial and temporal hydrological patterns reasonably well in the two river basins. This study highlights the importance of spatially distributed calibration and validation in large river basins.  相似文献   

17.
Abstract: The Soil and Water Assessment Tool (SWAT) model was evaluated for estimation of continuous daily flow based on limited flow measurements in the Upper Oyster Creek (UOC) watershed. SWAT was calibrated against limited measured flow data and then validated. The Nash‐Sutcliffe model Efficiency (NSE) and mean relative error values of daily flow estimations were 0.66 and 15% for calibration, and 0.56 and 4% for validation, respectively. Also, further evaluation of the model’s estimation of flow at multiple locations was conducted with parametric paired t‐test and nonparametric sign test at a 95% confidence level. Among the five main stem stations, four stations were statistically shown to have good agreement between predicted and measured flows. SWAT underestimated the flow of the fifth main stem station possibly because of the existence of complex flood control measures near to the station. SWAT estimated the daily flow at one tributary station well, but with relatively large errors for the other two tributaries. The spatial pattern of predicted flows matched the measured ones well. Overall, it was concluded from the graphical comparisons and statistical analyses of the model results that SWAT was capable of reproducing continuous daily flows based on limited flow data as is the case in the UOC watershed.  相似文献   

18.
Abstract: The Soil and Water Assessment Tool (SWAT) has been applied successfully in temperate environments but little is known about its performance in the snow‐dominated, forested, mountainous watersheds that provide much of the water supply in western North America. To address this knowledge gap, we configured SWAT to simulate the streamflow of Tenderfoot Creek (TCSWAT). Located in central Montana, TCSWAT represents a high‐elevation watershed with ~85% coniferous forest cover where more than 70% of the annual precipitation falls as snow, and runoff comes primarily from spring snowmelt. Model calibration using four years of measured daily streamflow, temperature, and precipitation data resulted in a relative error (RE) of 2% for annual water yield estimates, and mean paired deviations (Dv) of 36 and 31% and Nash‐Sutcliffe (NS) efficiencies of 0.90 and 0.86 for monthly and daily streamflow, respectively. Model validation was conducted using an additional four years of data and the performance was similar to the calibration period, with RE of 4% for annual water yields, Dv of 43% and 32%, and NS efficiencies of 0.90 and 0.76 for monthly and daily streamflow, respectively. An objective, regression‐based model invalidation procedure also indicated that the model was validated for the overall simulation period. Seasonally, SWAT performed well during the spring and early summer snowmelt runoff period, but was a poor predictor of late summer and winter base flow. The calibrated model was most sensitive to snowmelt parameters, followed in decreasing order of influence by the surface runoff lag, ground water, soil, and SCS Curve Number parameter sets. Model sensitivity to the surface runoff lag parameter reflected the influence of frozen soils on runoff processes. Results indicated that SWAT can provide reasonable predictions of annual, monthly, and daily streamflow from forested montane watersheds, but further model refinements could improve representation of snowmelt runoff processes and performance during the base flow period in this environment.  相似文献   

19.
The ability of a watershed model to mimic specified watershed processes is assessed through the calibration and validation process. The Soil and Water Assessment Tool (SWAT) watershed model was implemented in the Beaver Reservoir Watershed of Northwest Arkansas. The objectives were to: (1) provide detailed information on calibrating and applying a multisite and multivariable SWAT model; (2) conduct sensitivity analysis; and (3) perform calibration and validation at three different sites for flow, sediment, total phosphorus (TP), and nitrate‐nitrogen (NO3‐N) plus nitrite‐nitrogen (NO2‐N). Relative sensitivity analysis was conducted to identify parameters that most influenced predicted flow, sediment, and nutrient model outputs. A multi objective function was defined that consisted of optimizing three statistics: percent relative error (RE), Nash‐Sutcliffe Coefficient (RNS2), and coefficient of determination (R2). This function was used to successfully calibrate and validate a SWAT model of Beaver Reservoir Watershed at multi‐sites while considering multivariables. Calibration and validation of the model is a key factor in reducing uncertainty and increasing user confidence in its predictive abilities, which makes the application of the model effective. Information on calibration and validation of multisite, multivariable SWAT models has been provided to assist watershed modelers in developing their models to achieve watershed management goals.  相似文献   

20.
Hydrological models have been increasingly used by hydrologists and water resource managers to understand natural processes and human activities that affect watersheds. In this study, we use the physically based model, Soil and Water Assessment Tool (SWAT), to investigate the hydrological processes in the East River Basin in South China, a coastal area dominated by monsoonal climate. The SWAT model was calibrated using 8-year (1973–1980) record of the daily streamflow at the basin outlet (Boluo station), and then validated using data collected during the subsequent 8 years (1981–1988). Statistical evaluation shows that SWAT can consistently simulate the streamflow of the East River with monthly Nash–Sutcliffe efficiencies of 0.93 for calibration and 0.90 for validation at the Boluo station. We analyzed the model simulations with calibrated parameters, presented the spatiotemporal distribution of the key hydrological components, and quantified their responses to different land uses. Watershed managers can use the results of this study to understand hydrological features and evaluate water resources of the East River in terms of sustainable development and effective management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号