首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How many species have gone extinct in modern times before being described by science? To answer this question, and thereby get a full assessment of humanity's impact on biodiversity, statistical methods that quantify undetected extinctions are required. Such methods have been developed recently, but they are limited by their reliance on parametric assumptions; specifically, they assume the pools of extant and undetected species decay exponentially, whereas real detection rates vary temporally with survey effort and real extinction rates vary with the waxing and waning of threatening processes. We devised a new, nonparametric method for estimating undetected extinctions. As inputs, the method requires only the first and last date at which each species in an ensemble was recorded. As outputs, the method provides estimates of the proportion of species that have gone extinct, detected, or undetected and, in the special case where the number of undetected extant species in the present day is assumed close to zero, of the absolute number of undetected extinct species. The main assumption of the method is that the per‐species extinction rate is independent of whether a species has been detected or not. We applied the method to the resident native bird fauna of Singapore. Of 195 recorded species, 58 (29.7%) have gone extinct in the last 200 years. Our method projected that an additional 9.6 species (95% CI 3.4, 19.8) have gone extinct without first being recorded, implying a true extinction rate of 33.0% (95% CI 31.0%, 36.2%). We provide R code for implementing our method. Because our method does not depend on strong assumptions, we expect it to be broadly useful for quantifying undetected extinctions.  相似文献   

2.
3.
The criteria as laid out by the International Union for the Conservation of Nature (IUCN) Red List are the gold standard by which the extinction risk of a species is assessed and where appropriate biological extinctions are declared. However, unlike all other categories, the category of extinct lacks a quantitative framework for assigning this category. Given its subjective nature, we surveyed expert assessors working on a diversity of taxa to explore the attributes they used to declare a species extinct. Using a choice experiment approach, we surveyed 674 experts from the IUCN Species Survival Commission specialist groups and taskforces. Data availability, time from the last sighting, detectability, habitat availability, and population decline were all important attributes favored by assessors when inferring extinction. Respondents with red-listing experience assigned more importance to the attributes data availability, time from the last sighting, and detectability when considering a species extinction, whereas those respondents working with well-known taxa gave more importance to the time from the last sighting. Respondents with no red-listing experience and those working with more well-known taxa (i.e., mammals and birds) were overall less likely to consider species extinct. Our findings on the importance assessors place on attributes used to declare a species extinct provide a basis for informing the development of specific criteria for more accurately assessing species extinctions.  相似文献   

4.
Extinction rates are expected to increase during the Anthropocene. Current extinction rates of plants and many animals remain unknown. We quantified extinctions among the vascular flora of the continental United States and Canada since European settlement. We compiled data on apparently extinct species by querying plant conservation databases, searching the literature, and vetting the resulting list with botanical experts. Because taxonomic opinion varies widely, we developed an index of taxonomic uncertainty (ITU). The ITU ranges from A to F, with A indicating unanimous taxonomic recognition and F indicating taxonomic recognition by only a single author. The ITU allowed us to rigorously evaluate extinction rates. Our data suggest that 51 species and 14 infraspecific taxa, representing 33 families and 49 genera of vascular plants, have become extinct in our study area since European settlement. Seven of these taxa exist in cultivation but are extinct in the wild. Most extinctions occurred in the west, but this outcome may reflect the timing of botanical exploration relative to settlement. Sixty-four percent of extinct plants were single-site endemics, and many occurred outside recognized biodiversity hotspots. Given the paucity of plant surveys in many areas, particularly prior to European settlement, the actual extinction rate of vascular plants is undoubtedly much higher than indicated here.  相似文献   

5.
Abstract: The consequences of rapid rainforest clearance on native avifauna are poorly understood. In Southeast Asia, Singapore, a newly developing country, has had 95% of its native lowland rainforest cleared. Most of the rainforest was lost in the mid- to late-nineteenth century. We compared avifauna checklists from 1923, 1949, and 1998 to determine the extent of extinctions between 1923 and 1998 in Singapore. Of 203 diurnal bird species, 65 were extirpated in Singapore in the past 75 years. Four of these species were nonforest- dependent species, whereas 61 (94%) were forest bird species dependent on the primary or old secondary forest to survive. Twenty-six forest bird species became extinct between 1923 and 1949, whereas 35 forest species disappeared after 1949. We compared the body lengths, feeding guilds, and vertical feeding zones between extinct and extant forest bird species to determine whether extinction patterns were dependent on these characteristics. Larger forest bird species went extinct between 1923 and 1949. Body sizes, however, did not affect the loss of forest bird species between 1949 and 1998. We observed high losses of insectivorous birds; the insectivore-carnivore and insectivore-granivore guilds lost> 80% of the species present in 1923. The highest losses were among birds that fed in the canopy. None of the forest bird species are currently common (>100 individuals/species) within Singapore. Our study shows that more than half the forest avifauna became locally extinct after extensive deforestation. Based on this fact, the countries within Southeast Asia should reconsider their heavy deforestation practices.  相似文献   

6.
The IUCN (International Union for Conservation of Nature) Red List categories and criteria are the most widely used framework for assessing the relative extinction risk of species. The criteria are based on quantitative thresholds relating to the size, trends, and structure of species’ distributions and populations. However, data on these parameters are sparse and uncertain for many species and unavailable for others, potentially leading to their misclassification or classification as data deficient. We devised an approach that combines data on land-cover change, species-specific habitat preferences, population abundance, and dispersal distance to estimate key parameters (extent of occurrence, maximum area of occupancy, population size and trend, and degree of fragmentation) and hence predict IUCN Red List categories for species. We applied our approach to nonpelagic birds and terrestrial mammals globally (∼15,000 species). The predicted categories were fairly consistent with published IUCN Red List assessments, but more optimistic overall. We predicted 4.2% of species (467 birds and 143 mammals) to be more threatened than currently assessed and 20.2% of data deficient species (10 birds and 114 mammals) to be at risk of extinction. Incorporating the habitat fragmentation subcriterion reduced these predictions 1.5–2.3% and 6.4–14.9% (depending on the quantitative definition of fragmentation) for threatened and data deficient species, respectively, highlighting the need for improved guidance for IUCN Red List assessors on the application of this aspect of the IUCN Red List criteria. Our approach complements traditional methods of estimating parameters for IUCN Red List assessments. Furthermore, it readily provides an early-warning system to identify species potentially warranting changes in their extinction-risk category based on periodic updates of land-cover information. Given our method relies on optimistic assumptions about species distribution and abundance, all species predicted to be more at risk than currently evaluated should be prioritized for reassessment.  相似文献   

7.
Abstract: There are few empirical data, particularly collected simultaneously from multiple sites, on extinctions resulting from human‐driven land‐use change. Southeast Asia has the highest deforestation rate in the world, but the resulting losses of biological diversity remain poorly documented. Between November 2006 and March 2008, we conducted bird surveys on six landbridge islands in Malaysia and Indonesia. These islands were surveyed previously for birds in the early 1900s, when they were extensively forested. Our bird inventories of the islands were nearly complete, as indicated by sampling saturation curves and nonparametric true richness estimators. From zero (Pulau Malawali and Pulau Mantanani) to 15 (Pulau Bintan) diurnal resident landbird species were apparently extirpated since the early 1900s. Adding comparable but published extinction data from Singapore to our regression analyses, we found there were proportionally fewer forest bird extinctions in areas with greater remaining forest cover. Nevertheless, the statistical evidence to support this relationship was weak, owing to our unavoidably small sample size. Bird species that are restricted to the Indomalayan region, lay few eggs, are heavier, and occupy a narrower habitat breadth, were most vulnerable to extinction on Pulau Bintan. This was the only island where sufficient data existed to analyze the correlates of extinction. Forest preservation and restoration are needed on these islands to conserve the remaining forest avifauna. Our study of landbridge islands indicates that deforestation may increasingly threaten Southeast Asian biodiversity.  相似文献   

8.
Climate Change, Elevational Range Shifts, and Bird Extinctions   总被引:4,自引:0,他引:4  
Abstract:  Limitations imposed on species ranges by the climatic, ecological, and physiological effects of elevation are important determinants of extinction risk. We modeled the effects of elevational limits on the extinction risk of landbirds, 87% of all bird species. Elevational limitation of range size explained 97% of the variation in the probability of being in a World Conservation Union category of extinction risk. Our model that combined elevational ranges, four Millennium Assessment habitat-loss scenarios, and an intermediate estimate of surface warming of 2.8° C, projected a best guess of 400–550 landbird extinctions, and that approximately 2150 additional species would be at risk of extinction by 2100. For Western Hemisphere landbirds, intermediate extinction estimates based on climate-induced changes in actual distributions ranged from 1.3% (1.1° C warming) to 30.0% (6.4° C warming) of these species. Worldwide, every degree of warming projected a nonlinear increase in bird extinctions of about 100–500 species. Only 21% of the species predicted to become extinct in our scenarios are currently considered threatened with extinction. Different habitat-loss and surface-warming scenarios predicted substantially different futures for landbird species. To improve the precision of climate-induced extinction estimates, there is an urgent need for high-resolution measurements of shifts in the elevational ranges of species. Given the accelerating influence of climate change on species distributions and conservation, using elevational limits in a tested, standardized, and robust manner can improve conservation assessments of terrestrial species and will help identify species that are most vulnerable to global climate change. Our climate-induced extinction estimates are broadly similar to those of bird species at risk from other factors, but these estimates largely involve different sets of species.  相似文献   

9.
Persecution and overexploitation by humans are major causes of species extinctions. Rare species, often confined to small geographic ranges, are usually at highest risk, whereas extinctions of superabundant species with very large ranges are rare. The Yellow‐breasted Bunting (Emberiza aureola) used to be one of the most abundant songbirds of the Palearctic, with a very large breeding range stretching from Scandinavia to the Russian Far East. Anecdotal information about rapid population declines across the range caused concern about unsustainable trapping along the species’ migration routes. We conducted a literature review and used long‐term monitoring data from across the species’ range to model population trend and geographical patterns of extinction. The population declined by 84.3–94.7% between 1980 and 2013, and the species’ range contracted by 5000 km. Quantitative evidence from police raids suggested rampant illegal trapping of the species along its East Asian flyway in China. A population model simulating an initial harvest level of 2% of the population, and an annual increase of 0.2% during the monitoring period produced a population trajectory that matched the observed decline. We suggest that trapping strongly contributed to the decline because the consumption of Yellow‐breasted Bunting and other songbirds has increased as a result of economic growth and prosperity in East Asia. The magnitude and speed of the decline is unprecedented among birds with a comparable range size, with the exception of the Passenger Pigeon (Ectopistes migratorius), which went extinct in 1914 due to industrial‐scale hunting. Our results demonstrate the urgent need for an improved monitoring of common and widespread species’ populations, and consumption levels throughout East Asia.  相似文献   

10.
Ecological Correlates of Extinction Proneness in Tropical Butterflies   总被引:7,自引:0,他引:7  
Abstract:  Widespread and rapid losses of natural habitats and biodiversity have made the identification of extinction-prone species a major challenge in conservation biology. We assessed the relative importance of biologically relevant species traits (e.g., body size, ecological specialization) obtained from published records to determine the extinction probability of butterflies in a highly disturbed tropical landscape (i.e., Singapore). We also developed a taxon-specific model to estimate the extinction proneness of butterflies in Southeast Asia. Logistic regression analyses showed that adult habitat specialization, larval host plant specificity, geographical distribution, sexual dichromatism, and congenor density were significant and independent determinants of butterfly extinctions in Singapore. Among these traits, specificity of larval host plant and adult habitat specialization were the best correlates of extinction risks. We used this phenomenological extinction-regression model to estimate the relative extinction proneness of 416 butterfly species in Southeast Asia. Our results illustrate the utility of available taxon-specific data for a localized area in estimating the extinction proneness of closely related species on a regional scale. When intensive field studies are not forthcoming, especially in regions suffering from rapid biodiversity losses (e.g., Southeast Asia), similar approaches could be used to estimate extinction threats for other taxonomic groups.  相似文献   

11.
Birds have been comprehensively assessed on the International Union for Conservation of Nature (IUCN) Red List more times than any other taxonomic group. However, to date, generation lengths have not been systematically estimated to scale population trends when undertaking assessments, as required by the criteria of the IUCN Red List. We compiled information from major databases of published life-history and trait data for all birds and imputed missing life-history data as a function of species traits with generalized linear mixed models. Generation lengths were derived for all species, based on our modeled values of age at first breeding, maximum longevity, and annual adult survival. The resulting generation lengths varied from 1.42 to 27.87 years (median 2.99). Most species (61%) had generation lengths <3.33 years, meaning that the period of 3 generations—over which population declines are assessed under criterion A—was <10 years, which is the value used for IUCN Red List assessments of species with short generation times. For these species, our trait-informed estimates of generation length suggested that 10 years is a robust precautionary value for threat assessment. In other cases, however, for whole families, genera, or individual species, generation length had a substantial impact on their estimated extinction risk, resulting in higher extinction risk in long-lived species than in short-lived species. Although our approach effectively addressed data gaps, generation lengths for some species may have been underestimated due to a paucity of life-history data. Overall, our results will strengthen future extinction-risk assessments and augment key databases of avian life-history and trait data.  相似文献   

12.
The International Union for Conservation of Nature (IUCN) Red List includes 832 species listed as extinct since 1600, a minuscule fraction of total biodiversity. This extinction rate is of the same order of magnitude as the background rate and has been used to downplay the biodiversity crisis. Invertebrates comprise 99% of biodiversity, yet the status of a negligible number has been assessed. We assessed extinction in the Hawaiian land snail family Amastridae (325 species, IUCN lists 33 as extinct). We did not use the stringent IUCN criteria, by which most invertebrates would be considered data deficient, but a more realistic approach comparing historical collections with modern surveys and expert knowledge. Of the 325 Amastridae species, 43 were originally described as fossil or subfossil and were assumed to be extinct. Of the remaining 282, we evaluated 88 as extinct and 15 as extant and determined that 179 species had insufficient evidence of extinction (though most are probably extinct). Results of statistical assessment of extinction probabilities were consistent with our expert evaluations of levels of extinction. Modeling various extinction scenarios yielded extinction rates of 0.4‐14.0% of the amastrid fauna per decade. The true rate of amastrid extinction has not been constant; generally, it has increased over time. We estimated a realistic average extinction rate as approximately 5%/decade since the first half of the nineteenth century. In general, oceanic island biotas are especially susceptible to extinction and global rate generalizations do not reflect this. Our approach could be used for other invertebrates, especially those with restricted ranges (e.g., islands), and such an approach may be the only way to evaluate invertebrates rapidly enough to keep up with ongoing extinction.  相似文献   

13.
There now appears to be a plausible pathway for reviving species that have been extinct for several decades, centuries, or even millennia. I conducted an ethical analysis of de‐extinction of long extinct species. I assessed several possible ethical considerations in favor of pursuing de‐extinction: that it is a matter of justice; that it would reestablish lost value; that it would create new value; and that society needs it as a conservation last resort. I also assessed several possible ethical arguments against pursuing de‐extinction: that it is unnatural; that it could cause animal suffering; that it could be ecologically problematic or detrimental to human health; and that it is hubristic. There are reasons in favor of reviving long extinct species, and it can be ethically acceptable to do so. However, the reasons in favor of pursuing de‐extinction do not have to do with its usefulness in species conservation; rather, they concern the status of revived species as scientific and technological achievements, and it would be ethically problematic to promote de‐extinction as a significant conservation strategy, because it does not prevent species extinctions, does not address the causes of extinction, and could be detrimental to some species conservation efforts. Moreover, humanity does not have a responsibility or obligation to pursue de‐extinction of long extinct species, and reviving them does not address any urgent problem. Therefore, legitimate ecological, political, animal welfare, legal, or human health concerns associated with a de‐extinction (and reintroduction) must be thoroughly addressed for it to be ethically acceptable. La Ética de Revivir Especies Extintas Hace Mucho Tiempo Sandler  相似文献   

14.
Local, regional, and global extinctions caused by habitat loss, degradation, and fragmentation have been widely reported for the tropics. The patterns and drivers of this loss of species are now increasingly well known in Amazonia, but there remains a significant gap in understanding of long‐term trends in species persistence and extinction in anthropogenic landscapes. Such a historical perspective is critical for understanding the status and trends of extant biodiversity as well as for identifying priorities to halt further losses. Using extensive historical data sets of specimen records and results of contemporary surveys, we searched for evidence of local extinctions of a terra firma rainforest avifauna over 200 years in a 2500 km2 eastern Amazonian region around the Brazilian city of Belém. This region has the longest history of ornithological fieldwork in the entire Amazon basin and lies in the highly threatened Belém Centre of Endemism. We also compared our historically inferred extinction events with extensive data on species occurrences in a sample of catchments in a nearby municipality (Paragominas) that encompass a gradient of past forest loss. We found evidence for the possible extinction of 47 species (14% of the regional species pool) that were unreported from 1980 to 2013 (80% last recorded between 1900 and 1980). Seventeen species appear on the International Union for Conservation of Nature Red List, and many of these are large‐bodied. The species lost from the region immediately around Belém are similar to those which are currently restricted to well‐forested catchments in Paragominas. Although we anticipate the future rediscovery or recolonization of some species inferred to be extinct by our calculations, we also expect that there are likely to be additional local extinctions, not reported here, given the ongoing loss and degradation of remaining areas of native vegetation across eastern Amazonia. Doscientos Años de Extinciones Locales de Aves en la Amazonia Oriental  相似文献   

15.
Abstract:  In recent centuries bird species have been deteriorating in status and becoming extinct at a rate that may be 2–3 orders of magnitude higher than in prehuman times. We examined extinction rates of bird species designated critically endangered in 1994 and the rate at which species have moved through the IUCN (World Conservation Union) Red List categories of extinction risk globally for the period 1988–2004 and regionally in Australia from 1750 to 2000. For Australia we drew on historical accounts of the extent and condition of species habitats, spread of invasive species, and changes in sighting frequencies. These data sets permitted comparison of observed rates of movement through the IUCN Red List categories with novel predictions based on the IUCN Red List criterion E, which relates to explicit extinction probabilities determined, for example, by population viability analysis. The comparison also tested whether species listed on the basis of other criteria face a similar probability of moving to a higher threat category as those listed under criterion E. For the rate at which species moved from vulnerable to endangered, there was a good match between observations and predictions, both worldwide and in Australia. Nevertheless, species have become extinct at a rate that, although historically high, is 2 (Australia) to 10 (globally) times lower than predicted. Although the extinction probability associated with the critically endangered category may be too high, the shortfall in realized extinctions can also be attributed to the beneficial impact of conservation intervention. These efforts may have reduced the number of global extinctions from 19 to 3 and substantially slowed the extinction trajectory of 33 additional critically endangered species. Our results suggest that current conservation action benefits species on the brink of extinction, but is less targeted at or has less effect on moderately threatened species.  相似文献   

16.
For species with five or more sightings, quantitative techniques exist to test whether a species is extinct on the basis of distribution of sightings. However, 70% of purportedly extinct mammals are known from fewer than five sightings, and such models do not include some important indicators of the likelihood of extinction such as threats, biological traits, search effort, and demography. Previously, we developed a quantitative method that we based on species' traits in which we used Cox proportional hazards regression to calculate the probability of rediscovery of species regarded as extinct. Here, we used two versions of the Cox regression model to determine the probability of extinction in purportedly extinct mammals and compared the results of these two models with those of stationary Poisson, nonparametric, and Weibull sighting-distribution models. For mammals with five or more sightings, the stationary Poisson model categorized all but two critically endangered (flagged as possibly extinct) species in our data set as extinct, and results with this model were consistent with current categories of the International Union for the Conservation of Nature. The scores of probability of rediscovery for individual species in one version of our Cox regression model were correlated with scores assigned by the stationary Poisson model. Thus, we used this Cox regression model to determine the probability of extinction of mammals with sparse records. On the basis of the Cox regression model, the most likely mammals to be rediscovered were the Montane monkey-faced bat (Pteralopex pulchra), Armenian myotis (Myotis hajastanicus), Alcorn's pocket gopher (Pappogeomys alcorni), and Wimmer's shrew (Crocidura wimmeri). The Cox model categorized two species that have recently disappeared as extinct: the baiji (Lipotes vexillifer) and the Christmas Island pipistrelle (Pipistrellus murrayi). Our new method can be used to test whether species with few records or recent last-sighting dates are likely to be extinct.  相似文献   

17.
Extinction and Colonization of Birds on Habitat Islands   总被引:2,自引:1,他引:1  
Abstract: We used point-count and transect surveys to estimate the distribution and abundance of eight scrub-breeding bird species in 34 habitat fragments and the urban matrix in southern California. We then calculated local extinction and colonization rates by comparing our data with surveys conducted in 1987. We classified factors that influence extinction and colonization rates into two types: (1) extrinsic factors, which are characteristics of the habitat fragments such as area, age, and isolation and (2) intrinsic factors, which are characteristics of the species that inhabit fragments, such as body size and population density. Over the past decade, at least one species went locally extinct in over 50% of the fragments, and local extinctions were almost twice as common as colonizations. Fragment size and, to a lesser extent, fragment age were the most important extrinsic factors determining extinction and colonization. Density indices of scrub birds were the most important intrinsic factors determining extinction rates, predicting the number of sites occupied, the probability of local extinction, relative area requirements, and time to local extinction.  相似文献   

18.
Abstract:  Mollusks are the group most affected by extinction according to the 2007 International Union for Conservation of Nature (IUCN) Red List, despite the group having not been evaluated since 2000 and the quality of information for invertebrates being far lower than for vertebrates. Altogether 302 species and 11 subspecies are listed as extinct on the IUCN Red List. We reevaluated mollusk species listed as extinct through bibliographic research and consultation with experts. We found that the number of known mollusk extinctions is almost double that of the IUCN Red List. Marine habitats seem to have experienced few extinctions, which suggests that marine species may be less extinction prone than terrestrial and freshwater species. Some geographic and ecologic biases appeared. For instance, the majority of extinctions in freshwater occurred in the United States. More than 70% of known mollusk extinctions took place on oceanic islands, and a one-third of these extinctions may have been caused precipitously by introduction of the predatory snail Euglandina rosea. We suggest that assessment of the conservation status of invertebrate species is neglected in the IUCN Red List and not managed in the same way as for vertebrate species .  相似文献   

19.
Unsustainable exploitation of wild species represents a serious threat to biodiversity and to the livelihoods of local communities and Indigenous peoples. However, managed, sustainable use has the potential to forestall extinctions, aid recovery, and meet human needs. We analyzed species-level data for 30,923 species from 13 taxonomic groups on the International Union for Conservation of Nature Red List of Threatened Species to investigate patterns of intentional biological resource use. Forty percent of species (10,098 of 25,009 species from 10 data-sufficient taxonomic groups) were used. The main purposes of use were pets, display animals, horticulture, and human consumption. Intentional use is currently contributing to elevated extinction risk for 28–29% of threatened or near threatened (NT) species (2752–2848 of 9753 species). Intentional use also affected 16% of all species used (1597–1631 of 10,098). However, 72% of used species (7291 of 10,098) were least concern, of which nearly half (3469) also had stable or improving population trends. The remainder were not documented as threatened by biological resource use, including at least 172 threatened or NT species with stable or improving populations. About one-third of species that had use documented as a threat had no targeted species management actions to directly address this threat. To improve use-related red-list data, we suggest small amendments to the relevant classification schemes and required supporting documentation. Our findings on the prevalence of sustainable and unsustainable use, and variation across taxa, can inform international policy making, including the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, the Convention on Biological Diversity, and the Convention on International Trade in Endangered Species.  相似文献   

20.
Abstract: In light of limited conservation funding, global conservation initiatives are increasingly focused on regions of the planet that have been identified as valuable on the basis of their species diversity, the vulnerability of resident species to extinction, or the perceived pristine nature of their ecosystems. Regions that have been resilient to high rates of extinction have not yet been systematically considered in conservation efforts. We used published range maps for 392 vertebrate species to compare historical and current species ranges. We used the results of the comparison to identify regions of the globe in which no known vertebrate species has been extirpated in the past 200 years. In 17 regions, no detectable vertebrate extinctions occurred in the past 200 years. In 6 other regions, reintroductions of species restored the full historic complement of vertebrate species. The effects of humans on a landscape, as measured by the human‐footprint index, although useful, was not a singularly good predictor of faunal intactness because more than 20% of intact land area was in heavily affected areas (50% of Earth's land area), and several regions where humans have had very little effect did not have intact faunas. Only 22% of intact land area was within protected‐area networks. High‐latitude areas were particularly underrepresented; they made up 3 of the 4 least‐protected areas in our analyses. Our results indicate that although protected areas are in some cases associated with the prevention of extinctions, there are many regions in which human activity coexists with intact vertebrate assemblages. In addition, our new approach for assessing the value of global regions for conservation identifies several regions that are not represented in other prioritization metrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号