首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Total mercury concentrations (as a sum of vapor and particulate mercury) were measured in 24-h samples of ambient air in 20 different localities of the Slovak Republic eight times during the period 1996-1997. Vapor mercury was analyzed on site by atomic fluorescence with amalgamation technique. Particulate mercury was determined by vapor hydride atomic absorption spectrometry after wet digestion of filters with particulate air samples. The results showed that 34% of the 160 individual total mercury concentrations exceeded 5 ng/m3--the ambient air quality guideline value recommended by the WHO. The range of total mercury concentrations in the ambient air of Slovakia was: 1.13-3.98 ng/m3 (geom. mean 2.63) in the background area; 2.25-5.27 ng/m3 (geom. mean 3.64) in the agricultural areas; 1.73-20.53 ng/m3 (geom. mean 4.57) in the urban areas; and 1.53-39.85 ng/m3 (geom. mean 5.28) in the industrial areas. The highest mercury levels occurred in areas with metallurgical industry and coal combustion. The predominant form of mercury present in air was vapor mercury. The particulate fraction of mercury in ambient air (as a percentage of total mercury) varied widely from 0.4% to 42.1% (geom. mean = 4.4%). This fraction was lower in agricultural areas (2.3%) than in urban areas (5.3%). Although the atmospheric vapor mercury concentrations were slightly higher in summer than in winter, a direct correlation of vapor mercury concentrations and ambient air temperature was not found. Furthermore, the particulate mercury concentrations did not correlate with total particulate levels.  相似文献   

2.
We studied the concentration of 10 primary aromatic amines (AA), which are classified as suspected carcinogens, in indoor and outdoor air in Italy. The measured AA included: aniline, o-toluidine, m-toluidine, p-toluidine, 2,3-dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, 2-naphtylamine and 4-aminobiphenyl. In the indoor environment (homes, offices and public buildings) the level of contamination (expressed as sum of 9 AA, excluding aniline) varied from 3 ng/m3 (hospital ward) to 207 ng/m3 (discotheque). In most indoor environments with no contamination from cigarette smoke the AA levels were below 20 ng/m3, whereas in the presence of smokers higher values were observed. Aniline levels were more erratic (varying from 53 ng/m3 (office of non-smokers) to 1929 ng/m3 (discotheque) and were not related to cigarette smoke. The concentration range of AA (excluding aniline) in the outside air varied from 3 ng/m3 (Siena) to 104 ng/m3 (Brindisi); aniline concentration was extremely variable. Most samples of outdoor air had AA levels lower than 40 ng/m3. In conclusion, AA are widespread air contaminants and attain a high concentration in heavily contaminated indoor environments, due to smoking and poor ventilation. AA occasionally attain a high level in outdoor air as well. Therefore, a strategy of reduction of the exposure to AA should consider the abatement of multiple sources of contamination.  相似文献   

3.
INTRODUCTION: Exposure to trace metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed on particulates is of a serious health concern. Levels of some trace metals in total suspended particulate and 13 PAHs of fine particulate matter were measured from nomadic tents in the southern Tibetan Plateau in summer 2010. RESULTS AND DISCUSSION: The indoor air within the tents was seriously polluted, mainly due to yak dung combustion. Average trace metal concentrations were much higher (range of indoor/outdoor ratio 61-291) than those of the outdoor air. Additionally, enrichment factors of most trace metals of indoor air were similar to those of outdoor air, indicating outdoor air quality of the studied area was possibly influenced by pollutants emitted from local tents. Mean concentrations of total PAHs and BaP within tents was 5372.45 and 364.79 ng/m(3), hundred times higher than that of outdoor air of the Tibetan Plateau. Three- and four-ring PAHs were the predominant components. The diagnostic ratio of BaA/(BaA + Chr) was 0.33. Since Tibetan women typically spend longer time within the tents, they were exposed to PAHs (BaP exposure = 1.81 μg/m(3)) about two times of other family members. Among all the PAHs, Bap contributed the most (82.6%) of the total carcinogenicity. Similarly, the excess lifetime cancer risk for women and other family members were 2.75 × 10(-4) and 1.27 × 10(-4), respectively, indicating Tibetan herdsmen, especially women who are in charge of most house chores were at risk for adverse health effects.  相似文献   

4.
This study investigated the seasonal variation and spatial distribution of gaseous and particulate mercury at a unique mercury-contaminated remediation site located at the near-coastal region of Tainan City, Taiwan. Gaseous elemental mercury (GEM), particulate mercury (PTM), and dustfall mercury (DFM) were measured at six nearby sites from November 2009 to September 2010. A newly issued Method for Sampling and Analyzing Mercury in Air (National Institute of Environmental Analysis [NIEA] Method A304.10C) translated from U.S. Environmental Protection Agency (EPA) Method 10-5, was applied for the measurement of atmospheric mercury in this particular study. One-year field measurements showed that the seasonal averaged concentrations of GEM and PTM were in the range of 5.56-12.60 and 0.06-0.22 ng/m3, respectively, whereas the seasonal averaged deposition fluxes of DFM were in the range of 27.0-56.8 g/km2-month. The maximum concentrations of GEM and PTM were 38.95 and 0.58 ng/m3, respectively. The atmospheric mercury apportioned as 97.42-99.87% GEM and 0.13-2.58% PTM. As a whole, the concentrations of mercury species were higher in the springtime and summertime than those in the wintertime and fall. The southern winds generally brought higher mercury concentrations, whereas the northern winds brought relatively lower mercury concentrations, to the nearby fishing villages. This study revealed that the mercury-contaminated remediation site, an abandoned chlor-alkali manufacturing plant, was the major mercury emission source that caused severe atmospheric mercury contamination over the investigation region. The hot spot of mercury emissions was allocated at the southern tip of the abandoned chlor-alkali manufacturing plant. On-site continuous monitoring of GEM at the mercury-contaminated remediation site observed that GEM concentrations during the open excavation period were 2-3 times higher than those during the nonexcavation period.  相似文献   

5.

Background, aims, and scope

Preschool indoor air quality (IAQ) is believed to be different from elementary school or higher school IAQ and preschool is the first place for social activity. Younger children are more susceptible than higher-grade children and spend more time indoors. The purpose of this study was to compare the indoor air quality by investigating the concentrations of airborne particulates and gaseous materials at preschools in urban and rural locations in Korea.

Methods

We investigated the concentrations of airborne particulates and gaseous materials in 71 classrooms at 17 Korean preschools. For comparison, outdoor air was sampled simultaneously with indoor air samples. Airborne concentrations of total suspended particulates, respirable particulates, lead, asbestos, total volatile organic compounds and components, formaldehyde, and CO2 were measured with National Institute for Occupational Safety and Health and/or Environmental Protection Agency analytical methods.

Results

The concentration profiles of the investigated pollutants in indoor and urban settings were higher than those in outdoor and rural areas, respectively. The ratios of indoor/outdoor concentrations (I/O) of particulates and gaseous pollutants were characterized in urban and rural preschools. Total dust concentration was highest in urban indoor settings followed by urban outdoor, rural indoor, and rural outdoor locations with an I/O ratio of 1.37 in urban and 1.35 in rural areas. Although I/O ratios of lead were close to 1, lead concentrations were much higher in urban than in rural areas. The I/O ratio of total VOCs was 2.29 in urban and 2.52 in rural areas, with the highest level in urban indoor settings. The I/O ratio of formaldehyde concentrations was higher in rural than in urban areas because the outdoor rural level was much lower than the urban concentration. Since an I/O ratio higher than 1 implies the presence of indoor sources, we concluded that there are many indoor sources in preschools.

Conclusions

We confirmed that pollutants in indoor and urban settings were higher than those in outdoor and rural areas, respectively. Preschool children are expected to spend more time inside preschool facilities and therefore to be more exposed to pollutants. As far as we know, preschool IAQ is different from elementary school or higher school IAQ. Also, they are more vulnerable than higher-grade children. We found that the indoor and urban concentration profiles of the studied pollutants in preschools were higher than those in outdoor and rural areas. We believe that our findings may be useful for understanding the potential health effects of exposure and intervention studies in preschools.  相似文献   

6.
Measurements of carbonyls in a 13-story building   总被引:1,自引:0,他引:1  
BACKGROUND, AIM AND SCOPE: Formaldehyde and acetaldehyde are emitted by many mobile and stationary sources and secondary aldehydes are intermediates in the photo-oxidation of organic compounds in the atmosphere. These aldehydes are emitted indoors by many materials such as furniture, carpets, heating and cooling systems, an by smoking. Carbonyls, mainly formaldehyde and acetaldehyde, have been studied because of their adverse health effects. In addition, formaldehyde is a suspected carcinogen. Therefore, the concentrations of formaldehyde and acetaldehyde were determined to assess the inhalation exposure doses to carbonyls for people who work in a 13-story building and in order to evaluate the cancer hazard. METHODS: Carbonyl compounds in indoor and outdoor air were measured at a 13-story building located in Mexico City. The mezzanine, fifth and tenth floors, and the third level-parking garage were selected for sampling. Samples were collected in two sampling periods, the first from April 20 to 29, 1998 and the second from December 1 to 20, 1998. Carbonyls were sampled by means of DNHP-coated cartridges at a flow rate of 1 l min(-1) from 9:00 to 19:00 hours, during 2-hour time intervals and analyzed by HPLC with hours, during 2-hour time intervals and analyzed by HPLC with UV/VIS detection. RESULTS: Mean carbonyl concentrations were highest in the 3rd level-parking garage, with the formaldehyde concentration being the highest ranging from 108 to 418 microg m(-3). In working areas, the highest carbonyl arithmetic mean concentrations (AM) were observed on the 5th floor. Acetone and formaldehyde concentrations were highest in April ranging from 161 to 348 microg m(-3) (AM = 226) and from 157 to 270 microg m(-3) (AM = 221), respectively. Propionaldehyde and butyraldehyde were present in smaller concentrations ranging from 2 to 25 and 1 to 28 microg m(-3), respectively, considering all the samples. Mean indoor/outdoor ratios of carbonyls ranged from 1.8 to 9.6. A reduction of inhalation exposure doses of 41% and 45% was observed in the fifth floor air after the air conditioning systems had been repaired. Formaldehyde and acetaldehyde concentrations were higher in smoking environments. CONCLUSION: Indoor carbonyl concentrations were significantly greater than outdoor concentrations. Tobacco smoke seems to be the main indoor source of formaldehyde. After the air conditioning system was maintained and repaired (as was recommended), an important reduction in the emission of formaldehyde and acetaldehyde was achieved on all floors, except for the 3rd level parking garage, thereby reducing the inhalation exposure doses. RECOMMENDATION: The results obtained in this research demonstrated that maintenance of air conditioning systems must be carried out regularly in order to avoid possible adverse effects on health. Additionally, it is mandatory that isolated smoking areas, with air extraction systems, be installed in every public building.  相似文献   

7.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples were collected in the indoor environments of 15 urban homes and their adjacent outdoor environments in Alexandria, Egypt, during the spring time. Indoor and outdoor carbon dioxide (CO2) levels were also measured concurrently. The results showed that indoor and outdoor PM2.5 concentrations in the 15 sites, with daily averages of 45.5 ± 11.1 and 47.3 ± 12.9 µg/m3, respectively, were significantly higher than the ambient 24-hr PM2.5 standard of 35 µg/m3 recommended by the U.S. Environmental Protection Agency (EPA). The indoor PM2.5 and CO2 levels were correlated with the corresponding outdoor levels, demonstrating that outdoor convection and infiltration could lead to direct transportation indoors. Ventilation rates were also measured in the selected residences and ranged from 1.6 to 4.5 hr?1 with median value of 3.3 hr?1. The indoor/outdoor (I/O) ratios of the monitored homes varied from 0.73 to 1.65 with average value of 0.99 ± 0.26 for PM2.5, whereas those for CO2 ranged from 1.13 to 1.66 with average value of 1.41 ± 0.15. Indoor sources and personal activities, including smoking and cooking, were found to significantly influence indoor levels.

Implications: Few studies on indoor air quality were carried out in Egypt, and the scarce data resulted from such studies do not allow accurate assessment of the current situation to take necessary preventive actions. The current research investigates indoor levels of PM2.5 and CO2 in a number of homes located in the city of Alexandria as well as the potential contribution from both indoor and outdoor sources. The study draws attention of policymakers to the importance of the establishment of national indoor air quality standards to protect human health and control air pollution in different indoor environments.  相似文献   

8.
Atmospheric mercury monitoring survey in Beijing,China   总被引:20,自引:0,他引:20  
Liu S  Nadim F  Perkins C  Carley RJ  Hoag GE  Lin Y  Chen L 《Chemosphere》2002,48(1):97-107
With the aid of one industrial, two urban, two suburban, and two rural sampling locations, diurnal patterns of total gaseous mercury (TGM) were monitored in January, February and September of 1998 in Beijing, China. Monitoring was conducted in six (two urban, two suburban, one rural and the industrial sites) of the seven sampling sites during January and February (winter) and in four (two urban, one rural, and the industrial sites) of the sampling locations during September (summer) of 1998. In the three suburban sampling stations, mean TGM concentrations during the winter sampling period were 8.6, 10.7, and 6.2 ng/m3, respectively. In the two urban sampling locations mean TGM concentrations during winter and summer sampling periods were 24.7, 8.3, 10, and 12.7 ng/m3, respectively. In the suburban-industrial and the two rural sampling locations, mean mercury concentrations ranged from 3.1-5.3 ng/m3 in winter to 4.1-7.7 ng/m3 in summer sampling periods. In the Tiananmen Square (urban), and Shijingshan (suburban) sampling locations the mean TGM concentrations during the summer sampling period were higher than winter concentrations, which may have been caused by evaporation of soil-bound mercury in warm periods. Continuous meteorological data were available at one of the suburban sites, which allowed the observation of mercury concentration variations associated with some weather parameters. It was found that there was a moderate negative correlation between the wind speed and the TGM concentration at this suburban sampling location. It was also found that during the sampling period at the same site, the quantity of TGM transported to or from the sampling site was mainly influenced by the duration and frequency of wind occurrence from certain directions.  相似文献   

9.
An ozone (O3) exposure study was conducted in Nashville, TN, using passive O3 samplers to measure six weekly outdoor, indoor, and personal O3 exposure estimates for a group of 10- to 12-yr-old elementary school children. Thirty-six children from two Nashville area communities (Inglewood and Hendersonville) participated in the O3 sampling program, and 99 children provided additional time-activity information by telephone interview. By design, this study coincided with the 1994 Nashville/Middle Tennessee Ozone Study conducted by the Southern Oxidants Study, which provided enhanced continuous ambient O3 monitoring across the Nashville area. Passive sampling estimated weekly average outdoor O3 concentrations from 0.011 to 0.O30 ppm in the urban Inglewood community and from 0.015 to 0.042 ppm in suburban Hendersonville. The maximum 1- and 8-hr ambient concentrations encountered at the Hendersonville continuous monitor exceeded the levels of the 1- and 8-hr metrics for the O3 National Ambient Air Quality Standard. Weekly average personal O3 exposures ranged from 0.0013 to 0.0064 ppm (7-31% of outdoor levels). Personal O3 exposures reflected the proportional amount of time spent in indoor and outdoor environments. Air-conditioned homes displayed very low indoor O3 concentrations, and homes using open windows and fans for ventilation displayed much higher concentrations.  相似文献   

10.
BACKGROUND, AIM AND SCOPE: All across Europe, people live and work in indoor environments. On average, people spend around 90% of their time indoors (homes, workplaces, cars and public transport means, etc.) and are exposed to a complex mixture of pollutants at concentration levels that are often several times higher than outdoors. These pollutants are emitted by different sources indoors and outdoors and include volatile organic compounds (VOCs), carbonyls (aldehydes and ketones) and other chemical substances often adsorbed on particles. Moreover, legal obligations opposed by legislations, such as the European Union's General Product Safety Directive (GPSD) and Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), increasingly require detailed understanding of where and how chemical substances are used throughout their life-cycle and require better characterisation of their emissions and exposure. This information is essential to be able to control emissions from sources aiming at a reduction of adverse health effects. Scientifically sound human risk assessment procedures based on qualitative and quantitative human exposure information allows a better characterisation of population exposures to chemical substances. In this context, the current paper compares inhalation exposures to three health-based EU priority substances, i.e. benzene, formaldehyde and acetaldehyde. MATERIALS AND METHODS: Distributions of urban population inhalation exposures, indoor and outdoor concentrations were created on the basis of measured AIRMEX data in 12 European cities and compared to results from existing European population exposure studies published within the scientific literature. By pooling all EU city personal exposure, indoor and outdoor concentration means, representative EU city cumulative frequency distributions were created. Population exposures were modelled with a microenvironment model using the time spent and concentrations in four microenvironments, i.e. indoors at home and at work, outdoors at work and in transit, as input parameters. Pooled EU city inhalation exposures were compared to modelled population exposures. The contributions of these microenvironments to the total daily inhalation exposure of formaldehyde, benzene and acetaldehyde were estimated. Inhalation exposures were compared to the EU annual ambient benzene air quality guideline (5 microg/m3-to be met by 2010) and the recommended (based on the INDEX project) 30-min average formaldehyde limit value (30 microg/m3). RESULTS: Indoor inhalation exposure contributions are much higher compared to the outdoor or in-transit microenvironment contributions, accounting for almost 99% in the case of formaldehyde. The highest in-transit exposure contribution was found for benzene; 29.4% of the total inhalation exposure contribution. Comparing the pooled AIRMEX EU city inhalation exposures with the modelled exposures, benzene, formaldehyde and acetaldehyde exposures are 5.1, 17.3 and 11.8 microg/m3 vs. 5.1, 20.1 and 10.2 microg/m3, respectively. Together with the fact that a dominating fraction of time is spent indoors (>90%), the total inhalation exposure is mostly driven by the time spent indoors. DISCUSSION: The approach used in this paper faced three challenges concerning exposure and time-activity data, comparability and scarce or missing in-transit data inducing careful interpretation of the results. The results obtained by AIRMEX underline that many European urban populations are still exposed to elevated levels of benzene and formaldehyde in the inhaled air. It is still likely that the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended formaldehyde 30-min average limit value of 30 microg/m3 are exceeded by a substantial part of populations living in urban areas. Considering multimedia and multi-pathway exposure to acetaldehyde, the biggest exposure contribution was found to be related to dietary behaviour rather than to inhalation. CONCLUSIONS: In the present study, inhalation exposures of urban populations were assessed on the basis of novel and existing exposure data. The indoor residential microenvironment contributed most to the total daily urban population inhalation exposure. The results presented in this paper suggest that a significant part of the populations living in European cities exceed the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended (INDEX project) formaldehyde 30-min average limit value of 30 microg/m3. RECOMMENDATIONS AND PERSPECTIVES: To reduce exposures and consequent health effects, adequate measures must be taken to diminish emissions from sources such as materials and products that especially emit benzene and formaldehyde in indoor air. In parallel, measures can be taken aiming at reducing the outdoor pollution contribution indoors. Besides emission reduction, mechanisms to effectively monitor and manage the indoor air quality should be established. These mechanisms could be developed by setting up appropriate EU indoor air guidelines.  相似文献   

11.
Gaseous elemental mercury (GEM) concentration measurements were made during the Alert 2000 campaign in Alert, Nunavut, Canada, between February and May 2000. GEM exhibits dramatic mercury depletion events (MDE) concurrently with ozone in the troposphere during the Arctic springtime. Using a cold regions pyrolysis unit, it was confirmed that GEM is converted to more reactive mercury species during the MDEs. It was determined that on average 48% of this converted GEM was recovered through pyrolysis suggesting that the remaining converted GEM is deposited on the snow surfaces. Samples collected during this campaign showed an approximate 20 fold increase in mercury concentrations in the snow from the dark to light periods. Vertical gradient air profiling experiments were conducted. In the non-depletion periods GEM was found to be invariant in the air column between surface and 1–2 m heights. During a depletion period, GEM was found to be invariant in the air column except at the surface where a noticeable increase in the GEM concentration was observed. Concurrent ozone concentration profiles showed a small gradient in the air column but a sharp decrease in ozone concentration at the surface. Other profile studies showed a 41% average GEM concentration difference between the interstitial air in the snow pack and ∼2 m above the surface suggesting that GEM is emitted from the snow pack. Further profile studies showed that during MDEs surface level GEM exhibits spikes of mercury concentrations that were over double the ambient GEM concentrations. It is thought that the solar radiation may reduce reactive mercury that is deposited on the snow surface during a MDE back to its elemental form which is then increasingly released from the snow pack as the temperature increases during the day. This is observed when wind speeds are very low.  相似文献   

12.
Daily PM2.5 samples, Hg0 and speciated polycyclic aromatic hydrocarbon (PAH) were simultaneously collected at Potsdam and Stockton site in NY during the summers of 2000 and 2001. Samples for determination of the mass concentration and chemical composition of the PM2.5 were obtained with a speciation network PM2.5 sampler. Chemical composition including trace elemental composition, water-soluble ions, and elemental carbon were analyzed. Elemental mercury and PAHs were sampled separately. Daily PM2.5 concentrations ranged from 0.47 to 53.7 microg m(-3) at the Potsdam site, and from 0.82 to 47.23 microg m(-3) at the Stockton site with large daily differences between the two sites. Potsdam consistently had lower mass values than Stockton. The greatest contributors to the PM2.5 mass (generally >0.1 microg/m(3)) were sulfate, nitrate, ammonium, and BC at both sites. Seventeen PAHs were identified at each site in 2000 and the average total concentrations were 3.2 ng/m(3) and 2.9 ng/m(3) at the Potsdam and Stockton sites, respectively. The mean vapor phase mercury concentration at the Potsdam site (2.4 +/-1.2 ng m(-3), n=93) was higher than that at the Stockton site (1.2 +/- 1.0 ng m(-3), n=60) in 2000, whereas in 2001, the average concentrations were 1.1 ng m(-3) and 1.6 ng m(-3) at the Potsdam and Stockton sites, respectively. In general, vapor phase mercury concentrations increased with increasing ambient temperature at the Stockton site in 2000. These differences in values between 2000 and 2001 can be largely explained by distinct differences in the meteorological regimes that dominated in the different years.  相似文献   

13.
The Mechanistic Indicators of Childhood Asthma (MICA) study in Detroit, Michigan introduced a participant-based approach to reduce the resource burden associated with collection of indoor and outdoor residential air sampling data. A subset of participants designated as MICA-Air conducted indoor and outdoor residential sampling of nitrogen dioxide (NO2), volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). This participant-based methodology was subsequently adapted for use in the Vanguard phase of the U.S. National Children’s Study. The current paper examines residential indoor and outdoor concentrations of these pollutant species among health study participants in Detroit, Michigan.Pollutants measured under MICA-Air agreed well with other studies and continuous monitoring data collected in Detroit. For example, NO2 and BTEX concentrations reported for other Detroit area monitoring were generally within 10–15% of indoor and outdoor concentrations measured in MICA-Air households. Outdoor NO2 concentrations were typically higher than indoor NO2 concentration among MICA-Air homes, with a median indoor/outdoor (I/O) ratio of 0.6 in homes that were not impacted by environmental tobacco smoke (ETS) during air sampling. Indoor concentrations generally exceeded outdoor concentrations for VOC and PAH species measured among non-ETS homes in the study. I/O ratios for BTEX species (benzene, toluene, ethylbenzene, and m/p- and o-xylene) ranged from 1.2 for benzene to 3.1 for toluene. Outdoor NO2 concentrations were approximately 4.5 ppb higher on weekdays versus weekends. As expected, I/O ratios pollutants were generally higher for homes impacted by ETS.These findings suggest that participant-based air sampling can provide a cost-effective alternative to technician-based approaches for assessing indoor and outdoor residential air pollution in community health studies. We also introduced a technique for estimating daily concentrations at each home by weighting 2- and 7-day integrated concentrations using continuous measurements from regulatory monitoring sites. This approach may be applied to estimate short-term daily or hourly pollutant concentrations in future health studies.  相似文献   

14.
In this investigation, the concentrations of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate bound mercury (PBM) in ambient air were measured at the Hung Kuang (traffic) sampling site during September 27 to October 6, 2014. An ambient air mercury collection system (AAMCS) was utilized to measure simultaneously PBM, GEM, and RGM concentrations in ambient air. The results thus obtained demonstrate that the mean concentrations of PBM, GEM, and RGM were 38.57 ± 11.4 (pg/m3), 17.67 ± 5.56 (ng/m3) and 10.78 ± 2.8 (pg/m3), respectively, at this traffic-sampling site. The mean GEM/PBM and GEM/RGM concentration ratios were 458 and 1639, respectively. The results obtained herein demonstrate that AAMCS can be utilized to collect three phases of mercury simultaneously. The mean PBM, GEM, and RGM concentrations herein were compared with others found in Asia, America, Europe and Antarctica. The mean PBM, GEM, and RGM concentrations were found to be lowest in Asia and Antarctica. The mean PBM concentration in Europe was approximately eight times that in this investigation. The mean GEM and RGM concentrations in this study were 1.21 and 170 times those found in the United States.  相似文献   

15.
Abstract

Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in indoor air concentrations of size-resolved particles (0.01-20 μm) caused by (1) diurnal and seasonal variation of outdoor air concentrations and meteorological variables, (2) indoor sources such as cooking and using candles, and (3) activities affecting air change rates such as opening windows and using fans. A second objective was to test and compare available instruments for their suitability in providing real-time estimates of particle levels and ancillary variables.

Despite different measuring principles, the instruments employed in this study agreed reasonably well for particles less than 10 μm in diameter. The three instruments measuring fine and coarse particles (aerodynamic diameter between 0.3 and 20 μm) agreed to within 30% in their overall estimates of total volume. Two of these instruments employed optical scattering, and the third used an aerodynamic acceleration principle. However, several lines of evidence indicated that the instrument employing aerodynamic acceleration overestimated concentrations for particle diameters greater than 10 μm. A fourth instrument measuring ultrafine and accumulation-mode particles (0.01-1 μm) was operated with two different inlets providing somewhat different particle size ranges. The two inlets agreed in the ultrafine region (<0.1 μm) but diverged increasingly for larger particles (up to 0.445 μm).

Indoor sources affecting ultrafine particle concentrations were observed 22% of the time, and sources affecting fine and coarse particle concentrations were observed 12 and 15% of the time, respectively. When an indoor source was operating, particle concentrations for different sizes ranged from 2 to 20 times the average concentrations when no indoor source was apparent. Indoor sources, such as cooking with natural gas, and simple physical activities, such as walking, accounted for a majority (50-90%) of the ultrafine and coarse particle concentrations, whereas outdoor sources were more important for accumulation-mode particles between 0.1 and 1 um in diameter. Averaged for the entire year and including no periods when indoor sources were apparent, the number distribution was bimodal, with a peak at ~10 nm (possibly smaller), a shallow minimum at ~14 nm, and a second broad peak at ~68 nm. The volume distribution was also bimodal, with a broad peak at ~200 nm, a minimum at ~1.2 μm, and then an upward slope again through the remaining size fractions.

A database was created on a 5-min averaging time basis. It contains more than 90,000 measurements by two of the instruments and approximately 30,000 by the two optical scattering instruments. About 4500 hour-long average air change rates were also calculated throughout the year using a dedicated gas chromatograph with electron capture detection (GC/ECD). At high air change rates [>0.8 air changes per hour (hr?1)], particle concentrations were either elevated (when no source was present) or depressed (when an indoor source was operating) by factors of up to 2 compared with low air change rates.  相似文献   

16.
Twenty-one carbonyl compounds were measured simultaneously at four hotel ballrooms in urban Guangzhou during the autumn, 2002. In each ballroom, measurements were carried out in business hours in the evening (20:30–24:00) on 7 consecutive days without any disturbance of the ballroom's normal operation. Nineteen out of the 21 target carbonyl compounds were identified in indoor and outdoor air. In the outdoor environment, formaldehyde was the most abundant carbonyl, followed by acetaldehyde, and there existed a strong correlation between formaldehyde and acetaldehyde. In the indoor air, however, acetaldehyde was the most abundant carbonyl, its concentrations seemed to be affected significantly by smoking. The indoor concentrations of carbonyls were found higher than their outdoor counterparts with only a few exceptions. Further studies concerning the indoor/outdoor ratios and mutual correlation of the carbonyls indicated that apart from direct emission from indoor materials and infiltration of outdoor air, other anthropogenic sources, e.g. tobacco smoke, also significantly contributed to carbonyl compounds. The possible sources of some high molecular weight carbonyls, e.g. nonanaldehyde, were also discussed briefly. Preliminary estimate of the exposures and risks due to carbonyls in the ballrooms was made, which indicated that long-term exposure in such places might cause increased chance of developing cancers.  相似文献   

17.
Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in indoor air concentrations of size-resolved particles (0.01-20 microm) caused by (1) diumal and seasonal variation of outdoor air concentrations and meteorological variables, (2) indoor sources such as cooking and using candles, and (3) activities affecting air change rates such as opening windows and using fans. A second objective was to test and compare available instruments for their suitability in providing real-time estimates of particle levels and ancillary variables. Despite different measuring principles, the instruments employed in this study agreed reasonably well for particles less than 10 microm in diameter. The three instruments measuring fine and coarse particles (aerodynamic diameter between 0.3 and 20 microm) agreed to within 30% in their overall estimates of total volume. Two of these instruments employed optical scattering, and the third used an aerodynamic acceleration principle. However, several lines of evidence indicated that the instrument employing aerodynamic acceleration overestimated concentrations for particle diameters greater than 10 microm. A fourth instrument measuring ultrafine and accumulation-mode particles (0.01-1 microm) was operated with two different inlets providing somewhat different particle size ranges. The two inlets agreed in the ultrafine region (< 0.1 microm) but diverged increasingly for larger particles (up to 0.445 microm). Indoor sources affecting ultrafine particle concentrations were observed 22% of the time, and sources affecting fine and coarse particle concentrations were observed 12 and 15% of the time, respectively. When an indoor source was operating, particle concentrations for different sizes ranged from 2 to 20 times the average concentrations when no indoor source was apparent. Indoor sources, such as cooking with natural gas, and simple physical activities, such as walking, accounted for a majority (50-90%) of the ultrafine and coarse particle concentrations, whereas outdoor sources were more important for accumulation-mode particles between 0.1 and 1 microm in diameter. Averaged for the entire year and including no periods when indoor sources were apparent, the number distribution was bimodal, with a peak at approximately 10 nm (possibly smaller), a shallow minimum at approximately 14 nm, and a second broad peak at approximately 68 nm. The volume distribution was also bimodal, with a broad peak at approximately 200 nm, a minimum at approximately 1.2 microm, and then an upward slope again through the remaining size fractions. A database was created on a 5-min averaging time basis. It contains more than 90,000 measurements by two of the instruments and approximately 30,000 by the two optical scattering instruments. About 4500 hour-long average air change rates were also calculated throughout the year using a dedicated gas chromatograph with electron capture detection (GC/ECD). At high air change rates [> 0.8 air changes per hour (hr(-1))], particle concentrations were either elevated (when no source was present) or depressed (when an indoor source was operating) by factors of up to 2 compared with low air change rates.  相似文献   

18.
Indoor and outdoor concentrations of HCl, HNO3, HCOOH and CH3COOH were determined in two medieval churches in Cyprus, during July 2003 and March 2004. The high air exchange rate through the open windows and doors led to lower indoor, compared to outdoor, acid concentrations in July 2003. Indoor pollutant emissions and a low air exchange rate resulted in higher indoor compared to outdoors acid concentrations in both churches during March 2004. Indoor to outdoor inorganic acid ratios were higher than the corresponding indoor to outdoor organic acid ratios during July 2003, whilst the opposite trend was observed during March 2004. Direct acid emission from candle burning appears to play a major role in the observed indoor acid concentrations. Emissions of volatile organic compounds from other sources, like humans, cleaning products and incense, led also to formation or depletion of the gaseous acids via homogeneous photochemical, heterogeneous and dark reaction sequences. Chemical reaction pathways were extensively investigated and appear to explain the observed results. The apparent indoor acid deposition velocities ranged between 0.05 and 0.15 cm s−1.  相似文献   

19.
PAHs and PCBs were collected simultaneously indoors and outdoors at eight non-smoking homes located in four buildings in high-traffic areas of Rome. The purpose was to evaluate the relevance of indoor air in contributing to the overall exposure of the urban population. The vertical distribution was also investigated by collecting outdoor samples at both road and roof level, and indoor samples in both a high and a low floor flat of each building. At one coal-heated building, samples were collected during both the heating and the non-heating season. No evident PAH source was present indoors. Indoor and outdoor daily concentrations of benzo[a]pyrene (BaP) ranged, respectively, 0.1–4.6 ng m−3 and 0.7–2.3 ng m−3. With the heating on, indoor PAH concentrations equalled or exceeded those outdoors, with BaP indoor/outdoor ratios up to 4; during the warm season, ratios decreased to 0.2–0.6. Indoor PAHs at the low floors exceeded the high-floor ones when the heating was off (vehicle exhausts being the dominant source), while being equal or lower with the heating on; the vertical gradient of indoor PAHs between different floors was within a factor of 2. Outdoor PAHs at roof level were 20–70% of those at road level, which in turn exceeded those at the medium-traffic station up to a factor of 4. The outdoor concentrations of Σ6 indicator PCBs ranged 0.1–1.6 ng m−3. Indoor PCB concentrations exceeded those outdoors by an approximate factor of 2–50. No vertical gradient was observed. The results indicated that indoor air may contribute to the overall exposure to PAHs and PCBs more than the urban air. They were also consistent with recent findings suggesting that indoor air can be a relevant source of PCBs for outdoor air.  相似文献   

20.
Chan LY  Kwok WS  Chan CY 《Chemosphere》2000,41(1-2):93-99
The aim of this study is to evaluate the particulate air pollution in selected roadside microenvironments of Hong Kong through an intensive field study dated from January 1997 to February 1997. The study employed the microenvironment monitoring technique to access the exposure of pedestrians to respirable suspended particulate and airborne lead (Pb) at heavily trafficked roadsides. A total of 62 roadside sites in 14 districts covering the most urbanized and densely populated areas were selected. It was found that pedestrians were exposed to a 24 h average of respirable suspended particulate, PM10, and airborne Pb (APb), typically ranged from 25.56 to 337.40 microg/m3 and 70.71 to 285.71 ng/m3, respectively. The average PM10 concentrations at different roadside microenvironments corresponding to urban residential, urban commercial, urban industrial and new town areas were 91.84, 129.08, 83.83, and 118.89 microg/m3 respectively. The corresponding values for APb were 130.01, 143.40, 127.40 and 173.17 ng/m3, respectively. It was found that measurement at EPD nearby rooftop monitoring stations might not reflect the actual roadside PM10 exposure. Most APb field study data was significantly higher than the nearby fixed station data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号