首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
饮水加矾除氟防治地方性氟中毒   总被引:1,自引:0,他引:1  
我国生活饮用水卫生标准规定,饮水中氟化物含量的适宜浓度为0.5~1.0毫克/升.许多调查资料表明,当水中氟化物小于0.5毫克/升,可造成龋齿流行;长期饮用大于1.0毫克/升的水会发生斑釉齿,  相似文献   

2.
矿井水中氟化物及放射性核素去除研究   总被引:2,自引:0,他引:2  
对淮北芦岭矿区饮用水源中氟化物及放射性核素去除工艺与机理进行了探讨,试验证明以聚合铝作混凝剂的混凝沉淀方法对去除氟化物及放射性核素非常有效,当PAC用量为20mg/L时,饮水中氟化物含量由1.85mg/L降至0.78mg/L?总α由0.13Bq/L降至0.03Bq/L?总β由0.26Bq/L降至0.18Bq/L?   相似文献   

3.
高氟饮用水中除氟研究   总被引:1,自引:0,他引:1  
本文通过对吸附法和混凝沉淀除氟进行实验 ,证明以PAC(聚合铝)作混凝剂的混凝沉淀法除氟非常有效 ,当PAC用量为20mg/L时 ,饮用水中氟可由1 85mg/L降至0 78mg/L ,符合饮用水标准 ,并对除氟机理进行了探讨。  相似文献   

4.
饮用水除氟     
氟是各种食物的正常组份,也被认为是必须的营养元素,为了防止龋牙,人们往往向饮水中投加少量氟。但是,如果水中的氟化物超过一定范围,就会使人的牙齿出现斑点,换牙期的儿童尤其容易得病。此种氟斑牙病改变牙齿珐琅层的结构和外表,从而导致恒牙发黑,牙齿发黑的程度随饮水中氟浓度的增加而加剧。尽管氟斑牙的问题由来已久,但直到1926年,人们才发现它与饮水中的含氟量有关。此外,摄入过量氟还会引起一些其它疾病:如(1)长期饮用含氟量为8~20mg/l的饮用水,会导致骨骼变形;(2)每日摄入的总氟量超过20mg,20年后就可能瘸腿;(3)  相似文献   

5.
永夏矿区陈四楼矿井位于豫东地方性氟病高发区,地下水中含氟量为2.53mg/L,超过《生活饮用水卫生标准》规定1mg/L。为了职工身体健康,该矿采用了分质供水的系统:对一般生产、生活用水不经除氟处理;而饮用水经过除氟处理,该方案实施两年多来,运行正常,出水含氟量小于1.0mg/L。1 除氟方法与工艺流程 陈四楼矿井饮用水除氟采用吸附过滤法,吸附剂为活性氧化铝,含氟地下水通过过滤,氟被吸附在吸附剂表面,生成难溶氟化物。出水含氟量  相似文献   

6.
本文通过对吸附法和混凝沉淀除氟进行实验,证明以PAC(聚合铝)作混凝剂的混凝沉淀法除氟非常有效,当PAC用量为2mg/L时,饮用水中氟可由1.85mg/L降至0.78mg/L,符合饮用水标准,并对除氟机理进行了探讨。  相似文献   

7.
目的:明确黑龙江某市泉水水质所包含的主要成分,对可能存在的超标物质进行健康风险评价,提出治理建议。方法:采用《生活饮用水卫生标准》(GB5749-2006)和《地下水质量标准》(GB/T14848-93)Ⅲ类标准对泉水水质进行监测和判定,采用NAS提出的四步法模式对泉水进行健康风险评价。结果:矿泉水中除含有钙、钾、钠等常见元素外还包含偏硅酸、锂、锶、硒等微量元素,在6例样品中发现1例砷含量超标,5例氟含量超标,砷的最大浓度为0.02mg/L,氟的最大浓度为1.41mg/L。经计算,砷的超额健康风险值为:4.34×10-5,氟为:0.25×10-6。结论:泉水中含有有益健康的微量元素,作为销售矿泉水饮用,水中的砷和氟化物不会对人体产生超额的健康风险。考虑到部分人群可能会将此矿泉水作为生活用水使用,建议矿泉水生产企业在该泉水出厂前对其进行降氟处理。  相似文献   

8.
为探讨饮水氟化在我国的可行性及饮水氟含量的安全值,在全国牙痛防治指导组1995年全国城乡居民口腔健康流行病学调查资料的基础上,对我国部分城市和地区饮用水氟含量进行了检测,对饮用水氟含量与居民龋均数据进行相关性分析。结果显示,在安全的饮水氟浓度范围内,龋均与饮用水氟浓度之间存在负相关关系,表明适度饮水氟化可以有效降低龋均;当水氟浓度超过安全临界点时,龋均与饮用水氟浓度呈正相关关系,说明高氟含量饮用水不仅可以导致氟中毒流行,也会提高龋病的发病率。我国饮用水氟含量的适宜范围为0.8~1.0 mg/L。研究发现饮用水氟浓度与龋均之间没有形成很好的线性关系,说明饮用水氟含量并不是龋病的唯一控制因素(说明龋病受多因素控制)。  相似文献   

9.
基于2014年10月(丰水期)和2015年6月(枯水期)对平度市南部地下水和土壤的采样调查,分析了不同季节地下水中氟化物的分布特征及影响因素。结果表明:调查区域地下中水氟化物浓度变化范围为0.68~16.54 mg/L,平均值为6.78 mg/L,超标率为90%;不同季节氟化物的超标区域分布基本相似,从东北向西南逐渐增加,高值区主要分布在西南部的北胶莱河沿岸。与枯水期相比,丰水期地下水中氟化物含量显著增加,明村镇的东南部、万家镇的南部、蓝底镇南部氟化物含量均超过10 mg/L,地下水类型以HCO_3~-·Cl·Na和Cl·SO_4·Na·Mg型为主。氟化物超标区域均在p H值为7.01~8.87的碱性水环境中,但并不都表现出随pH值的增大氟含量升高的变化趋势。不同季节地下水中氟化物的含量与水中的Cl~-、Ca~(2+)、SO_4~(2-)、HCO_3~-均有一定的相关性。干旱的气候、相对封闭的地下水环境、土壤中含氟矿物的溶解是形成平度市西南部高氟地下水的主要原因。  相似文献   

10.
为了解巴彦乌拉铀矿周围居民饮用水中放射性水平及其存在的健康风险,开采前采集了铀矿周围37份井水饮用水样品并测量了总α、总β放射性水平和放射性核素~(238)U、~(232)Th、~(226)Ra和~(40)K的活度浓度.采用世界卫生组织(WHO)推荐的方法计算了饮用井水引起的成人年有效剂量,利用美国环保部(USEPA)提出的致癌风险因子评估了居民终身健康风险,同时将测量结果与其它国家饮用水中放射性水平进行了对比分析.结果表明,巴彦乌拉铀矿周围饮用水中总α和总β平均值分别为1.059Bq/L和0.624Bq/L,其中分别有81.1%和5.4%样品中总放射性超出了WHO推荐的筛选值0.5Bq/L(总α)和1.0Bq/L(总β).饮用水中~(238)U、~(232)Th、~(226)Ra和~(40)K的活度浓度分别为(2.349±1.593)、(0.058±0.041)、(0.070±0.057)和(0.571±0.419)Bq/L.铀矿周围居民通过饮水产生的全年累计有效剂量为0.104m Sv/a.终生接触情形下居民经饮用水中的放射性暴露引起的终身致癌风险为2.4×10-11.巴彦乌拉铀矿周围居民饮用水中放射性活度浓度处于正常水平,对周围居民产生的健康风险非常低.  相似文献   

11.
氟是一种常见的化学物质,摄入过多或过少都会造成危害。以2020年国家地表水环境质量监测网监测数据进行分析,氟化物年均浓度介于0.016~4.448mg/L之间,满足地表水Ⅲ类水质标准(<1.0mg/L)断面数占97.7%。淮河流域地表水氟化物平均浓度为0.610mg/L,为各流域中最高;西南诸河地表水氟化物平均浓度为0.190mg/L,为各流域中最低。长江、珠江流域月度波动幅度较小,西北诸河、辽河流域月度波动幅度较大。影响地表水氟化物浓度水平的主要因素包括高氟地质背景、地下水流动补充、有利于氟富集的地形地貌和气候气象等自然条件,以及工农业污染和污染治理设施不完善等人为原因。  相似文献   

12.
为全面了解松花江流域不同地形分区内底栖动物群落对水质指标的响应规律,识别不同分区水质指标指示物种的差异,于2016—2018年对松花江流域97个采样点的水质指标〔EC、ρ(DO)、ρ(CODMn)、ρ(NH3-N)、ρ(TN)、ρ(TP)〕和大型底栖动物群落进行调查分析,采用临界指示物种分析法(threshold indicator taxa analysis,TITAN)分别探讨松花江流域山区、丘陵区和平原区水质指标的生态阈值,当污染物浓度超过负响应阈值时敏感种密度降低,当超过正响应阈值时耐受种也会受到明显影响,底栖动物群落结构会发生显著变化.将TITAN法所得的负响应阈值作为触发底栖动物群落发生变化的最低值,正响应阈值为底栖动物群落的耐受极限值.结果表明:①松花江流域水质指标在不同地形分区内的阈值不同,除ρ(DO)和ρ(CODMn)外,其他指标负响应阈值均表现为山区 < 丘陵区 < 平原区,ρ(DO)则表现相反,ρ(CODMn)在丘陵区出现最高阈值(5.46 mg/L)、山区出现最低阈值(4.01 mg/L).除ρ(DO)以外,其他指标的正响应阈值均呈山区 < 丘陵区 < 平原区的趋势,ρ(DO)正响应阈值的变化趋势则与之相反.②松花江流域内超过50%的采样点水质指标值均超过其负响应阈值,超出正响应阈值的采样点比例在6%~40%之间,说明流域受到一定的干扰,但干扰程度不严重.③同一物种在不同地形分区内对水体理化指标的指示方向可能相反.萝卜螺属在丘陵区为ρ(NH3-N)的正响应指示物种,在平原区则转变为负响应指示物种;短沟蜷属在丘陵区为ρ(TN)和ρ(TP)的正响应物种,在平原区则转变为负响应物种.研究显示,大型底栖动物群落结构的分布特征是影响水质指标阈值指示物种识别的主要原因,而不同分区的自然地理状况、栖境状况和水质状况则是造成大型底栖动物群落结构分布差异的主要因素.   相似文献   

13.
长江口水环境中纳米颗粒物初探   总被引:5,自引:3,他引:2  
付佳露  杨毅  彭欢  周立旻  侯立军  刘敏 《环境科学》2011,32(7):1924-1931
利用抽滤及切向超滤(cross-flow ultrafiltration,CFUF)技术对长江口水环境中的纳米级颗粒物(NP)进行了有效地分离,对其理化性质进行表征,进而初步探讨了水环境因子对NP理化特性的影响机制.结果表明,长江口水环境中NP粒径变化范围为69.5~263.5 nm,平均值为157.3 nm;Zeta...  相似文献   

14.
温州近海海域海水及滩涂沉积物中PFOS和PFOA污染特征分析   总被引:2,自引:1,他引:1  
为了解温州近海海域全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的污染状况和特征,采用固相萃取/高效液相串联质谱检测法分析了采自乐清湾、瓯江口、西湾、飞云江口及洞头半屏岛的近海海水和滩涂沉积物中PFOS和PFOA污染水平。结果显示,温州近海海水普遍存在PFOS和PFOA污染,其中,PFOS的浓度范围为<1.0~31.36 ng/L,中位浓度为2.29 ng/L;PFOA的浓度范围为<1.0~23.66 ng/L,中位浓度为5.29 ng/L。滩涂沉积物样品中PFOS和PFOA的浓度范围(干重)分别为(<1.0~11.91)×10-9(中位浓度为3.60×10-9)和(1.84~34.01)×10-9(中位浓度为6.83×10-9)。温州近海海水中PFOS和PFOA的污染水平明显高于香港沿岸、中国南海海水、韩国沿岸海水和近海珠江三角洲,与大连湾的海水相当,海岸滩涂沉积物中的PFOS和PFOA浓度远高于珠江和黄浦江沉积物中的浓度。  相似文献   

15.
采用气质联用分析,并应用自动识别与定量分析数据库(AIQS-DB)对黄河下游和长江下游水样中近1000种有机污染物进行了筛查.结果表明,黄河下游山东段和长江下游江苏段水样分别检出95种和121种化合物,主要包括正构烷烃、多环芳烃、酚类、硝基化合物、酞酸酯类、农药和药物等.其中,黄河和长江水样中正构烷烃平均浓度分别为1806ng/L和720ng/L;16种优控PAHs平均浓度分别为27ng/L和30ng/L;6种优控PAEs的平均浓度分别为77ng/L和2166ng/L;黄河和长江水样分别检出9种和17种农药.黄河各采样点间污染物浓度差别较大,而长江采样点间浓度相差较小.研究表明,气质联用结合AIQS-DB可有效用于区域性污染物的筛查.  相似文献   

16.
为了解华北平原地下水的有机污染状况,在石家庄市滹沱河冲洪积扇采集44个地下水水样,测定了被广泛应用的抗老剂BHT(2,6-二叔丁基对甲酚)和增塑剂TEP(磷酸三乙酯)的污染水平,分析了其分布受水文地质的影响及其对人体健康的风险.结果表明,ρ(BHT)在ND(低于检出限)~7.158 μg/L之间,中位值为0.010 μg/L,检出率为98%;ρ(TEP)在ND~5.081 μg/L之间,中位值为0.177 μg/L,检出率为70%.地下水的水文特性(如导水性、富水性和渗透系数)影响BHT和TEP的分布,二者在导水性、富水性较好和渗透性差的滹沱河冲洪积扇中部浅层孔隙水单元的质量浓度较高,分别为0.001~7.158和ND~3.604 μg/L.石家庄市滹沱河冲洪积扇地下水中ρ(BHT)和ρ(TEP)均低于国外报道值,但检出率高于国外报道值,其中11%的地下水水样中ρ(TEP)高于OECD(经济合作与发展组织)规定的饮用水风险特征阈值(2.4 μg/L).研究显示,石家庄市滹沱河冲洪积扇地区来自于地表的化工产品已淋溶到地下,并对该地区地下水造成了污染.   相似文献   

17.
长江武汉段水体邻苯二甲酸酯分布特征研究   总被引:22,自引:8,他引:14  
王凡  沙玉娟  夏星辉  刘虹 《环境科学》2008,29(5):1163-1169
分别采集了丰水期和枯水期时长江武汉段30个点位上的河水和沉积物样品,用气相色谱法对样品中的邻苯二甲酸酯类(PAEs)含量进行测定,分析其在长江武汉段水体中的分布特征.结果表明,[1]丰水期时支流和湖泊水中PAEs浓度范围为0.114~1.259 μg/L,枯水期时为0.25~132.12 μg/L.丰、枯水期干流水相中PAEs的浓度范围分别为0.034~0.456 μg/L和35.73~91.22 μg/L,均有沿程升高的趋势.[2]枯水期支流和湖泊沉积相中PAEs浓度范围为6.3~478.9 μg/g,邻苯二甲酸二丁酯(DBP)、邻苯二甲酸双(2-乙基己基)酯(DEHP)有由水中向沉积物中迁移的较强趋.丰、枯水期干流沉积相中PAEs浓度范围分别为151.7~450.0 μg/g和76.3~275.9 μg/g;丰水期时DBP由沉积相向水相迁移,枯水期时DEHP在沉积物中未达到吸附最大.[3]5种被研究的邻苯二甲酸酯类化合物中, DBP和DEHP是主要污染物,国家地表水环境质量标准规定这2种物质的标准限值分别为0.001、0.004 mg/L,丰水期时所有的干支流均符合此标准,枯水期时干支流超标率为82.4%.[4]长江武汉段PAEs污染水平与意大利Velino河以及黄河中下游水体相近,但丰水期时水相PAEs含量远低于国内外一般水平.  相似文献   

18.
利用电絮凝法处理受到污染的高氟地下水,研究了电极间距、原水pH值、电流密度对处理效果的影响。实验结果表明,电絮凝法去除地下水中的氟和TOC时,不需改变原水的pH值。在电极间距为1.0cm,电流密度为32.4A/m2,反应10min后,出水中F-浓度<1.0mg/L,符合国家生活饮用水卫生标准,TOC的去除率达到66%左右,优于传统给水处理工艺对TOC的去除效率。电絮凝对地下水中污染物的去除机理包括电絮凝、电化学氧化和还原以及电气浮等协同作用。  相似文献   

19.
长江口九段沙水域环境及生物体内多氯联苯分布   总被引:6,自引:1,他引:5  
对长江口九段沙湿地自然保护区的滩涂水样、泥样以及水生生物体内的多氯联苯进行GC-MS检测,研究多氯联苯各单体在不同环境介质及生物体中的分布状况. 结果表明:水样、泥样中的多氯联苯检出率为100%,其中四氯联苯(PCB52)含量最高; 与其他河口地区相比,九段沙水域水体中多氯联苯(PCBs)含量处于中等水平,ρ(PCBs)为23~95 ng/L;滩涂泥样多氯联苯含量则较低,w(PCBs)为1.77~4.51 ng/g; 该水域水生生物多氯联苯检出率为100%,w(PCBs)为0.12~9.40 μg/kg,低于国家标准限量; 软体动物、甲壳类以及鱼类检出单体均以高氯类PCB118和PCB138为主,而非环境中含量较高的PCB52,反映了水生生物对于高氯类多氯联苯富集能力强于低氯类多氯联苯.   相似文献   

20.
气相色谱氮磷检测器法测定饮用水中19种苯胺类化合物   总被引:1,自引:0,他引:1  
建立了气相色谱氮磷检测器法(GC-NPD)测定饮用水中19种苯胺类化合物。结果表明,19种苯胺类化合物的方法检出限在0.060.45μg/L之间,其线性定量范围均为0.050.45μg/L之间,其线性定量范围均为0.0510.0 mg/L,相关系数(R)在0.995 110.0 mg/L,相关系数(R)在0.995 10.999 8之间;方法平均加标回收率在70.7%0.999 8之间;方法平均加标回收率在70.7%108.2%之间,RSD(n=6)为2.9%108.2%之间,RSD(n=6)为2.9%18.5%。该法灵敏度高,快速准确,用于实际水样测定的结果令人满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号