首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The treatment of 1,4-dioxane solution by electrochemical oxidation on boron-doped diamond was studied using a central composite design and the response surface methodology to investigate the use of SO4 2? and HCO3 ? as supporting electrolytes considering the applied electric current, initial chemical oxygen demand (COD) value, and treatment time. Two industrial effluents containing bicarbonate alkalinity, one just carrying 1,4-dioxane (S1), and another one including 1,4-dioxane and 2-methyl-1,3-dioxolane (S2), were treated under optimized conditions and subsequently subjected to biodegradability assays with a Pseudomonas putida culture. Electrooxidation was compared with ozone oxidation (O3) and its combination with hydrogen peroxide (O3/H2O2). Regarding the experimental design, the optimal compromise for maximum COD removal at minimum energy consumption was shown at the maximum tested concentrations of SO4 2? and HCO3 ? (41.6 and 32.8 mEq L?1, respectively) and the maximum selected initial COD (750 mg L?1), applying a current density of 11.9 mA cm?2 for 3.8 h. Up to 98 % of the COD was removed in the electrooxidation treatment of S1 effluent using 114 kWh per kg of removed COD and about 91 % of the COD from S2 wastewater applying 49 kWh per kg of removed COD. The optimal biodegradability enhancement was achieved after 1 h of electrooxidation treatment. In comparison with O3 and O3/H2O2 alternatives, electrochemical oxidation achieved the fastest degradation rate per oxidant consumption unit, and it also resulted to be the most economical treatment in terms of energy consumption and price per unit of removed COD.  相似文献   

2.
This research investigated the 1,4-dioxane (1,4-D) degradation efficiency and rate during persulfate oxidation at different temperatures, with and without Fe2+ addition, also considering the effect of pH and persulfate concentration on the oxidation of 1,4-D. Degradation pathways for 1,4-D have also been proposed based on the decomposition intermediates and by-products. The results indicate that 1,4-D was completely degraded with heat-activated persulfate oxidation within 3–80 h. The kinetics of the 1,4-D degradation process fitted well to a pseudo-first-order reaction model. Temperature was identified as the most important factor influencing the 1,4-D degradation rate during the oxidation process. As the temperature increased from 40 to 60 °C, the degradation rate improved significantly. At 40 °C, the addition of Fe2+ also increased the 1,4-D degradation rate. Interestingly, at 50 and 60 °C, the 1,4-D degradation rate decreased slightly with the addition of Fe2+. This reduced degradation rate may be attributed to the rapid conversion of Fe2+ to Fe3+ and the production of an Fe(OH)3 precipitate which limited the ultimate oxidizing capability of persulfate with Fe2+ under higher temperatures. Higher persulfate concentrations led to higher 1,4-D degradation rates, but pH adjustment had no significant effect on the 1,4-D degradation rate. The identification of intermediates and by-products in the aqueous and gas phases showed that acetaldehyde, acetic acid, glycolaldehyde, glycolic acid, carbon dioxide, and hydrogen ion were generated during the persulfate oxidation process. A carbon balance analysis showed that 96 and 93 % of the carbon from the 1,4-D degradation were recovered as by-products with and without Fe2+ addition, respectively. Overall, persulfate oxidation of 1,4-D is promising as an economical and highly efficient technology for treatment of 1,4-D-contaminated water.  相似文献   

3.

Background  

Cuttings and seedlings of Jatropha curcas L. were exposed to different regimes of lead (Pb) stress as Pb(NO3)2 at 0 (CK), 0.5, 1, 2, 3, and 4 mM kg−1 soil.  相似文献   

4.

Purpose  

The purpose this research is to investigate the interaction of Cr(VI) species, present as Cr2O72−, at ambient temperature with brick clay pre-fired at different temperatures.  相似文献   

5.

Background, aim, and scope  

Two new high phenol-degrading strains, Micrococcus sp. and Alcaligenes faecalis JH 1013, were isolated. The two isolates could grow aerobically in mineral salts medium containing phenol as a sole carbon source at concentration of 3,000 mg L−1. It was found that the binary mixed culture of the two isolates possessed good potential for phenol removal.  相似文献   

6.
As a groundwater contaminant, 1,4-dioxane is of considerable concern because of its toxicity, refractory nature to degradation, and rapid migration within an aquifer. Although landfill leachate has been reported to contain significant levels of 1,4-dioxane, the origin of 1,4-dioxane in leachate has not been clarified until now. In this study, the origins of 1,4-dioxane in landfill leachate were investigated at 38 landfill sites and three incineration plants in Japan. Extremely high levels of 1,4-dioxane 89 and 340 microg l(-1), were detected in leachate from two of the landfill sites sampled. Assessments of leachate and measurement of 1,4-dioxane in incineration residues revealed the most likely source of 1,4-dioxane in the leachate to be the fly ash produced by municipal solid waste incinerators. Effective removal of 1,4-dioxane in leachate from fly ash was achieved using heating dechlorination systems. Rapid leaching of 1,4-dioxane observed from fly ash in a sequential batch extraction indicated that the incorporation of a waste washing process could also be effective for the removal of 1,4-dioxane in fly ash.  相似文献   

7.

Introduction  

Isotope ratios of lead (207Pb/206Pb and 208Pb/206Pb) in Japanese women’s hair of the twentieth century were measured to evaluate lead contamination of human proximate environment of those days.  相似文献   

8.

Purpose  

The purpose of this paper is to assess fatal cancer risk after external and internal (inhalation and ingestion) exposure from natural radionuclides in soil like 238U, 232Th, 40K, and 226Ra on the territory of Bela Crkva, Serbia. Although receiving doses are low from sources like natural radionuclides in soil, because of stochastic effects of ionizing radiation, risk for developing cancer exists and can be quantified.  相似文献   

9.

Background, aim and scope  

Photocatalytic oxidation using UV irradiation of TiO2 has been studied extensively and has many potential industrial applications, including the degradation of recalcitrant contaminants in water and wastewater treatment. A limiting factor in the oxidation process is the recombination of conduction band electrons (e cb) with electron holes (hvb+) on the irradiated TiO2 surface; thus, in aqueous conditions, the presence of an effective electron scavenger will be beneficial to the efficiency of the oxidation process. Ferrate (FeO42−) has received much recent attention as a water treatment chemical since it behaves simultaneously as an oxidant and coagulant. The combination of ferrate [Fe(VI)] with UV/TiO2 photocatalysis offers an oxidation synergism arising from the Fe(VI) scavenging of e cb and the corresponding beneficial formation of Fe(V) from the Fe(VI) reduction. This paper reviews recent studies concerning the photocatalytic oxidation of problematic pollutants with and without ferrate.  相似文献   

10.

Background, aim, and scope  

Chlorinated volatile organic compounds (CVOCs), widely used in industry as solvents and chemical intermediates in the production of synthetic resins, plastics, and pharmaceuticals, are highly toxic to the environment and public health. Various studies reported that Fenton’s oxidation could degrade a variety of chlorinated VOCs in aqueous solutions. In acidic conditions, ferrous ion catalyzes the decomposition of H2O2 to form a powerful OH radical. In this study, wastewater from wash of ion-exchange resin containing typical CVOC, 1,2-dichloroethane, was treated using Fenton’s oxidation. To reduce environmental load and processing costs of wastewater, Fenton process as a simple and efficient treatment method was applied to degrade 1,2-dichloroethane of wash water.  相似文献   

11.

Purpose  

The purpose of this paper is to determine the activity concentrations of radionuclide 137Cs in soil samples on the territory of Belgrade and the province of Vojvodina. Also, the lifetime cancer mortality risk from external exposure during 1 year is assessed, and the effective dose is estimated.  相似文献   

12.

Introduction  

This study aimed to analyze antioxidant responses and oxidative damage induced by two inorganic forms of arsenic (As; AsIII and AsV) in an estuarine polychaete species, Laeonereis acuta (Nereididae). The capacity of arsenic biotransformation was also evaluated through the methylation process considering the activity of a key enzyme involved in the metabolization process.  相似文献   

13.

Background, aim, and scope  

Chemical oxygen demand (COD) is used as a discharge standard parameter in wastewater treatment plant design, environmental modelling and many other applications. Chloride interference is an important problem of COD measurement for wastewaters containing low organic matter and high chloride concentrations. In case of chloride concentrations up to 2,000 mg/L, mercury sulphate addition at a ratio of 10:1 (HgSO4:Cl) can adequately mask the interference. When chloride concentration exceeds 2,000 mg/L, this ratio becomes ineffective to hinder the interference. At this point, it is proposed to use a greater and constant ratio of mercury sulphate addition. However, this application sometimes results in extra mercury sulphate addition which is not necessary. Even in some cases, greater addition of mercury sulphate alone is not a solution to erroneous measurement results. The purpose of the study is to determine optimum HgSO4:Cl ratios according to the chloride concentrations of the samples and to show the importance of the strength of the digestion solution for the correct determination of the COD parameter.  相似文献   

14.

Purpose

The aim of this work was to improve the ability of electro-Fenton technique for the remediation of wastewater contaminated with synthetic dyes using a model azo dye such as Azure B.

Methods

Batch experiments were conducted to study the effects of main parameters, such as dye concentration, electrode surface area, treatment time, and voltage. In this study, central composite face-centered experimental design matrix and response surface methodology were applied to design the experiments and evaluate the interactive effects of the four studied parameters. A total of 30 experimental runs were set, and the kinetic data were analyzed using first- and second-order models.

Results

The experimental data fitted to the empirical second-order model of a suitable degree for the maximum decolorization of Azure B by electro-Fenton treatment. ANOVA analysis showed high coefficient of determination value (R 2?=?0.9835) and reasonable second-order regression prediction. Pareto analysis suggests that the variables, time, and voltage produce the largest effect on the decolorization rate.

Conclusion

Optimum conditions suggested by the second-order polynomial regression model for attaining maximum decolorization were dye concentration 4.83?mg/L, electrode surface area 15?cm2, voltage 14.19?V, and treatment time of 34.58?min.  相似文献   

15.

Purpose  

Gamma ray irradiation is considered as an effective way to degrade diclofenac. However, due to the extensive coexisting substances in natural waters, the use of gamma ray irradiation for degradation is often influenced by multiple factors. The various factors that affect degradation efficiency, such as initial diclofenac concentration, initial pH, and the concentration of the additives including H2O2 (·OH radical promoter), CH3OH (·OH radical scavenger), thiourea (·OH, H·, and eaq scavenger), humic acid, and NO3 (coexisting substances in natural waters), are investigated. Furthermore, possible intermediate products are identified and corresponding transformation pathways are proposed.  相似文献   

16.

Purpose  

The oxone process for azo dye decolorization has drawbacks such as difficulties with reuse, risks of secondary pollution, and high costs associated with UV irradiation. This study aims to explore the use of oxone for decolorization in the absence of catalyst and under natural sunlight conditions (i.e., oxone/natural sunlight system) and evaluate the impacts of operating parameters (reagent dosage, initial methyl orange (MO) concentration, and initial pH) and coexisting substances (humic acid, NO3, metal ions) on the system’s decolorization efficiency.  相似文献   

17.

Purpose

Biodegradation and biodecolorization of Drimarene blue K2RL (anthraquinone) dye by a fungal isolate Aspergillus flavus SA2 was studied in lab-scale immobilized fluidized bed bioreactor (FBR) system.

Method

Fungus was immobilized on 0.2-mm sand particles. The reactor operation was carried out at room temperature and pH?5.0 in continuous flow mode with increasing concentrations (50, 100, 150, 200, 300, 500?mg?l?1) of dye in simulated textile effluent on the 1st, 2nd, 5th, 8th, 11th, and 14th days. The reactors were run on fill, react, settle, and draw mode, with hydraulic retention time (HRT) of 24?C72?h. Total run time for reactor operation was 17?days.

Results

The average overall biological oxygen demand (BOD), chemical oxygen demand (COD), and color removal in the FBR system were up to 85.57%, 84.70%, and 71.3%, respectively, with 50-mg?l?1 initial dye concentration and HRT of 24?h. Reductions in BOD and COD levels along with color removal proved that the mechanism of biodecolorization and biodegradation occurred simultaneously. HPLC and LC?CMS analysis identified phthalic acid, benzoic acid, 1, 4-dihydroxyanthraquinone, 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione, and catechol as degradation products of Drimarene blue K2RL dye. Phytotoxicity analysis of bioreactor treatments provided evidence for the production of less toxic metabolites in comparison to the parent dye.

Conclusion

The present fluidized bed bioreactor setup with indigenously isolated fungal strain in its immobilized form is efficiently able to convert the parent toxic dye into less toxic by-products.  相似文献   

18.

Purpose

Owing to the present complexity and difficulty of concentrated dye wastewater treatment, this work aimed to synthesize a reproducible waste-sorbing material for the treatment of wastewater by forming the dye-conjugating complex hybrid.

Methods

The inorganic/organic hybridization was applied to prepare the objective material by immobilizing waster dye-Mordant blue 9 (MB) with barium sulfate (BaSO4). The composition and pattern of the formed material were determined by spectrometry and characterized by SEM and XRD, and their formation process was clarified. The adsorption of cationic dye-basic blue BO (BB) and copper ion was investigated..

Results

The hybrid of MB alone into growing BaSO4 formed the pineapple-like particles while that of the MB/BB-conjugating complex was the rhombus material. The adsorption of BB on the MB–BaSO4 hybrid was probably attributed to ion-pair equilibrium and that of Cu2+ may result from the complexation. The treatment of dye and heavy metal wastewaters indicated that the MB hybrid material removed 99.8% BB and 97% Cu2+ and the dye-conjugating hybrid with growing BaSO4 100% MB, 99.5% BB, and 44% Cu2+.

Conclusion

The waste MB–BaSO4 hybrid material is efficient to treat cationic dye and Cu2+ wastewater. The dye-conjugating hybridization method is the first to be advanced for in situ wastewater treatment, and it showed a combined effect for the removal of both organic dyes and heavy metals.  相似文献   

19.

Background, aim and scope  

Salt efflorescences markedly contribute to the alteration and deterioration of building material, in this case the Villamayor Sandstone of the facades in the Old Town of Salamanca, Spain (United Nations Educational, Scientific and Cultural Organization world cultural heritage site). A better understanding of the mechanisms of salt formation and the involved elements would allow more precise measures in monument conservation. The magnesium which is required for the salt precipitation originates from selective processes of hydrolysis. The source of sulphate, however, is presently not as clear. Identifying the source of the sulphur was the main goal of this research. Isotope ratio measurement of δ34S and δ18O was used to clarify the origins of Mg sulphate salts.  相似文献   

20.

Purpose  

Increases in dissolved organic carbon (DOC) concentrations have been reported in surface waters worldwide in the last 10 to 20 years. The causes behind these increases have been attributed to many factors, including climate change and decreasing depositions of atmospheric sulphate ( \textSO42 - {\text{SO}}_4^{{{2} - }} ). Trends in DOC concentrations and their potential causal factors were examined in a network of 30 lakes lying in undisturbed temperate and boreal catchments in the province of Quebec, Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号