首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
李明玉  曾凡银  房献宝  王君  宋琳 《生态环境》2010,19(10):2474-2478
用热氧化法制备了TiO2/Ti薄膜电极,并用XRD和AFM对TiO2/Ti薄膜电极的晶形和表面形貌进行了表征。结果表明:热氧化法制备的TiO2主要为锐钛型纳米颗粒,直径在40 nm左右。设计了一种新型双槽光电化学反应器,用于废水的处理。以热氧化法制备的TiO2/Ti薄膜电极为阳极进行光电催化反应,同时以石墨电极为阴极用于产生双氧水,并与紫外光组成UV/H2O2体系。考察了双槽反应器中活性艳红X-3B在不同条件下的降解效果。降解结果表明:在新型反应器的阴阳两极槽中,活性艳红不仅在TiO2/Ti阳极槽中被降解,而且在石墨阴极槽中也得到降解;活性艳红在酸性条件下的降解效果最好;相对于单纯的电化学氧化和光催化,光电化学协同作用对X-3B的降解效果最好。  相似文献   

2.
● SMX promotes hydrogen production from dark anaerobic sludge fermentation. ● SMX significantly enhances the hydrolysis and acidification processes. ● SMX suppresses the methanogenesis process in order to reduce hydrogen consumption. ● SMX enhances the relative abundance of hydrogen-VFAs producers. ● SMX brings possible environmental risks due to the enrichment of ARGs. The impact of antibiotics on the environmental protection and sludge treatment fields has been widely studied. The recovery of hydrogen from waste activated sludge (WAS) has become an issue of great interest. Nevertheless, few studies have focused on the impact of antibiotics present in WAS on hydrogen production during dark anaerobic fermentation. To explore the mechanisms, sulfamethoxazole (SMX) was chosen as a representative antibiotic to evaluate how SMX influenced hydrogen production during dark anaerobic fermentation of WAS. The results demonstrated SMX promoted hydrogen production. With increasing additions of SMX from 0 to 500 mg/kg TSS, the cumulative hydrogen production elevated from 8.07 ± 0.37 to 11.89 ± 0.19 mL/g VSS. A modified Gompertz model further verified that both the maximum potential of hydrogen production (Pm) and the maximum rate of hydrogen production (Rm) were promoted. SMX did not affected sludge solubilization, but promoted hydrolysis and acidification processes to produce more hydrogen. Moreover, the methanogenesis process was inhibited so that hydrogen consumption was reduced. Microbial community analysis further demonstrated that the introduction of SMX improved the abundance of hydrolysis bacteria and hydrogen-volatile fatty acids (VFAs) producers. SMX synergistically influenced hydrolysis, acidification and acetogenesis to facilitate the hydrogen production.  相似文献   

3.

The rising occurrence of emerging contaminants in sludges both inhibits the anaerobic digestion of sludges and induces health issues when sludges are recycled in agriculture, calling for methods to remove contaminants. Here we review emerging pollutants in wastewater treatment plants, before and after anaerobic digestion. We present their inhibitory effects and remediation methods to alleviate inhibition. Pharmaceuticals have been detected in about 50% of the sludge samples. Sewage sludge contaminants include 19% of diuretics, 16–21% of lipid-modifying agents, hydrochlorothiazide, diclofenac, furosemide, clarithromycin, atorvastatin, and carbamazepine. Levels of antibiotics, azithromycin, ciprofloxacin, and estrone range from 500 to 600 ng/g in sludges from wastewater treatment plants. Remediation methods comprise electrooxidation, ultrasonication, thermal hydrolysis, ozonation, and bioaugmentation. Fermenting the sludges with acidogenic bacteria reduces the level of emerging pollutants in the supernatant. Nonetheless, liquid digestates still contains emerging pollutants such as sunscreen octocrylene at 147 ug/L and acetaminophen at 58.6 ug/L. As a result, pretreatment of sludge containing emerging pollutants is required.

  相似文献   

4.
为明确环氟菌胺的水解动力学规律,采用室内模拟试验方法,探究了温度、p H值、表面活性剂和不同种类水体对环氟菌胺水解的影响。结果表明:随着温度的升高,环氟菌胺的水解速率加快;环氟菌胺在碱性条件下降解最快;十二烷基磺酸钠(sodium dodecyl sulfonate,SDS)抑制环氟菌胺的水解;腐植酸的浓度低于1 mg·L-1时促进环氟菌胺的水解,浓度高于1 mg·L-1时抑制环氟菌胺的水解;环氟菌胺在不同水体中的水解速率顺序为:海水>江水>河水,环氟菌胺在自然条件下的降解速率显著高于室内模拟条件。  相似文献   

5.
? The Cu–Ni/γ-Al2O3 catalyst was prepared to study HCN hydrolysis ? On catalyst calcined at 400°C, the HCN removal efficiency reaches a maximum. ? HCN removal is the highest at 480 min at a H 2 O/HCN volume ratio of 150 ? The presence of CO facilitates HCN hydrolysis and increases NH 3 production. ? O 2 increases the HCN removal and NOx production but decreases NH 3 production GRAPHIC ABSTRACT To decompose efficiently hydrogen cyanide (HCN) in exhaust gas, g-Al2O3-supported bimetallic-based Cu–Ni catalyst was prepared by incipient-wetness impregnation method. The effects of the calcination temperature, H2O/HCN volume ratio, reaction temperature, and the presence of CO or O2 on the HCN removal efficiency on the Cu–Ni/g-Al2O3 catalyst were investigated. To examine further the efficiency of HCN hydrolysis, degradation products were analyzed. The results indicate that the HCN removal efficiency increases and then decreases with increasing calcination temperature and H2O/HCN volume ratio. On catalyst calcined at 400°C, the efficiency reaches a maximum close to 99% at 480 min at a H2O/HCN volume ratio of 150. The HCN removal efficiency increases with increasing reaction temperature within the range of 100°C–500°C and reaches a maximum at 500°C. This trend may be attributed to the endothermicity of HCN hydrolysis; increasing the temperature favors HCN hydrolysis. However, the removal efficiencies increases very few at 500°C compared with that at 400°C. To conserve energy in industrial operations, 400°C is deemed as the optimal reaction temperature. The presence of CO facilitates HCN hydrolysis andincreases NH3 production. O2 substantially increases the HCN removal efficiency and NOx production but decreases NH3 production.  相似文献   

6.
The leather industry uses conventional tanning methods which cause environmental pollution due mainly to the presence of chromium. This study suggests a treatment for solid leather waste containing chromium as an ecological alternative to the pollution generated by tanneries. The study uses an original approach to the optimisation of chromium recovery by mathematical and statistical treatment of the experimental data. Several factors that influence recovery, such as temperature, concentration, time and solid/liquid ratio through acid and basic hydrolysis were analysed with the aid of experimental design. Tanning liquor was obtained by adjusting pH, alkalinity and concentration when hydrolysis finished. An appropriate response surface model was constructed using alkaline hydrolysis experiments with sodium hydroxide, leading to conditions for maximum recovery of Cr2O3. The optimal NaOH concentration (1.58%), temperature (63.7 °C), time (3 h) and solid/liquid ratio (1/70 g·mL?1) were established. The results indicate that sodium hydroxide as an hydrolysis agent is a highly efficient means of recovering chromium from solid leather waste in order to produce tanning liquor.  相似文献   

7.
NiW systems are known as one of the best catalysts for various desulfurization processes. In this study, we examined catalytic properties of NiW electrodeposits, produced from two different electrolytes, towards sulfide ion oxidation in alkaline solution. Despite the big difference in morphology and structure of both materials, they exhibit almost the same catalytic activity for the examined reaction. A possible explanation of this experimental fact is that the overall reaction is controlled by the transport of oxygen through the catalyst samples.  相似文献   

8.
To investigate the influence of illumination on the fermentative hydrogen production system, the hydrogen production efficiencies of two kinds of anaerobic activated sludge (floc and granule) from an anaerobic baffled reactor were detected under visible light, dark and light-dark, respectively. The 10 mL floc sludge or granular sludge was respectively inoculated to 100 mL diluted molasses (chemical oxygen demand of 8000 mg·L-1) in a 250 mL serum bottle, and cultured for 24 h at 37°C under different illumination conditions. The results showed that the floc was more sensitive to illumination than the granule. A hydrogen yield of 19.8 mL was obtained in the dark with a specific hydrogen production rate of 3.52 mol·kg-1MLVSS·d-1 (floc), which was the highest among the three illumination conditions. Under dark condition, the hydrogen yield of floc sludge reached the highest with the specific hydrogen production rate of 3.52 mol·kg-1MLVSS·d-1, and under light-dark, light, the specific hydrogen production rate was 3.11 and 2.21 mol·kg-1MLVSS·d-1, respectively. The results demonstrated that the illumination may affect the dehydrogenase activity of sludge as well as the activity of hydrogen-producing acetogens and then impact hydrogen production capacity.  相似文献   

9.
In this study, the environmental fate of thymol, including hydrolysis, aqueous photolysis, soil sorption and soil degradation, was studied under conditions that simulated the tropical agricultural environment. This study was undertaken to supply basic information for evaluating the environmental risks of applying this new botanical pesticide to tropical crop production. The results showed that the hydrolysis of thymol was pH-dependent and accelerated by acidic conditions and high temperatures. However, the hydrolysis rate was far lower than the aqueous photolysis rate, indicating that direct photolysis is an important dissipation pathway for thymol in water. The sorption of thymol by three tropical soils was consistently well described by the Freundlich model, and the sorption coefficients increased in the order sandy soil < loamy soil < clay soil, a characterization that depended on the organic carbon contents of the soil. The soil degradation rate of thymol decreased in the order sandy soil > loamy soil > clay soil, which has a negative correlation with the sorption of thymol in soils. We concluded that the degradation rates of thymol in tropical soil and water are fast: thymol in water is photodegraded (50%) by sunlight within 28 h, and the thymol in soils is degraded (50%) within 8.4 d. Therefore, the environmental risk to the surrounding soils and water of thymol application for tropical crop production is low.  相似文献   

10.
A particularly strong reduction of metabolic activity is a precondition for long-term survival ofHalicryptus spinulosus von Siebold under anoxic habitat conditions because of its relatively low fuel reserves (mainly glycogen). The present study analyses the mechanism of this metabolic slow-down. For this purpose the effects of environmental anoxia and exposure to hydrogen sulfide on the activity and selected kinetic properties of glycolytic enzymes [glycogen phosphorylase (GP), pyruvate kinase (PK)] and the concentrations of fructose-2,6-bisphosphate in the body wall ofH. spinulosus were analysed. Anoxia and hydrogen sulfide exposure stimulated modifications of the properties of the enzymes, in both cases due to probable covalent modification of the enzyme proteins. Under both conditions phosphorylase activity was depressed by about 1/3, the result of changes in the percentage of enzyme in the activea-form as well as the total amount of enzyme activity expressed (a +b). Effects of anoxia on the properties of pyruvate kinase included reducedV max , decreasedS 0.5 for phospho-enolpyruvate, changes inK a for fructose-1,6-bisphosphate (an initial decrease was followed by a later increase). TheI 50 forL-alanine of PK was extremely reduced under anoxia and showed an even greater sensitivity to the presence of hydrogen sulfide. Anoxia stimulated a slight reduction in the content of fructose-2,6-bisphosphate, whereas exposure to hydrogen sulfide caused a dramatic decrease of this allosteric activator of phos-phofructokinase. The study gives evidence that mechanisms of glycolytic rate depression are conserved within a wide variety of vertebrate and invertebrate phyla. With two exceptions (fructose-2,6-bisphosphate levels and alanine inhibition of PK) the responses to hydrogen sulfide were the same as those to anoxia, suggesting that at a metabolic level, the consequences of each stress on energy metabolism are similar.  相似文献   

11.
Nanoscale iron particles (nZVI) is one of the most important engineered nanomaterials applied to environmental pollution control and abatement. Although a multitude of synthesis approaches have been proposed, a facile method to screen the reactivity of candidate nZVI materials produced using different methods or under varying synthesis conditions has yet been established. In this study, four reaction parameters were adjusted in the preparation of borohydride-reduced nZVI. The reductive properties of the resultant nanoparticles were assayed independently using two model aqueous contaminants, Cu(II) and nitrate. The results confirm that the reductive reactivity of nZVI is most sensitive to the initial concentration of iron precursor, borohydride feed rate, and the loading ratio of borohydride to ferric ion during particle synthesis. Solution mixing speed, in contrast, carries a relative small weight on the reactivity of nZVI. The two probing reactions (i.e., Cu(II) and nitrate reduction) are able to generate consistent and quantitative inference about the mass-normalized surface activity of nZVI. However, the nitrate assay is valid in dilute aqueous solutions only (50 mg·L−1 or lower) due to accelerated deactivation of iron surface at elevated nitrate concentrations. Additional insights including the structural and chemical makeup of nZVI can be garnered from Cu(II) reduction assessments. The reactivity assays investigated in this study can facilitate screening of candidate materials or optimization of nZVI production parameters, which complement some of the more sophisticated but less chemically specific material characterization methods used in the nZVI research.  相似文献   

12.
In this paper selected references about experience gained with photosynthetic bacteria in anaerobic process for either water treatment or hydrogen production are given. In particular experimental data about the hydrogen evolution rate, hydrogen yield and substrate efficiency in relationship to the nutrient conditions as well as about the behavior of some different species are presented. The limiting role of the nitrogen source is being discussed.  相似文献   

13.
To decompose efficiently hydrogen cyanide (HCN) in exhaust gas, g-Al2O3-supported bimetallicbased Cu–Ni catalyst was prepared by incipient-wetness impregnation method. The effects of the calcination temperature, H2O/HCN volume ratio, reaction temperature, and the presence of CO or O2 on the HCN removal efficiency on the Cu–Ni/g-Al2O3 catalyst were investigated. To examine further the efficiency of HCN hydrolysis, degradation products were analyzed. The results indicate that the HCN removal efficiency increases and then decreases with increasing calcination temperature and H2O/HCN volume ratio. On catalyst calcined at 400°C, the efficiency reaches a maximum close to 99% at 480 min at a H2O/HCN volume ratio of 150. The HCN removal efficiency increases with increasing reaction temperature within the range of 100°C–500°C and reaches a maximum at 500°C. This trend may be attributed to the endothermicity of HCN hydrolysis; increasing the temperature favors HCN hydrolysis. However, the removal efficiencies increases very few at 500°C compared with that at 400°C. To conserve energy in industrial operations, 400°C is deemed as the optimal reaction temperature. The presence of CO facilitates HCN hydrolysis andincreases NH3 production. O2 substantially increases the HCN removal efficiency and NO x production but decreases NH3 production.
  相似文献   

14.
• Carbon availability was partially solved by POM recovery and fermentation. • 12% carbon sources were regenerated by fermentation of the entrapped 35% TCOD. • The unique microbial communities facilitated the efficient hydrolysis of the POM. • Considerable economic benefits in aeration power and ECS dosage were anticipated. To address the availability of carbon sources for denitrification, the accelerated hydrolysis of the most abundant but low-availability fraction of particulate organic matter (POM) was investigated. Mesh sieves with different pore sizes were used as primary pretreatment at the start-up-stage of the biological process to separate some POM from the liquid system. The changes in soluble carbohydrates and proteins were monitored to investigate the hydrolysis performance of the sieved POM, with waste activated sludge (WAS) as the control test. The results showed that an average of 35% POM could be entrapped before filtrate mat development. In addition, benefiting from the high polysaccharides concentration, as well as the high availability due to the relatively loose physical structure, a 23% hydrolysis efficiency of POM was obtained, in contrast to that of WAS (3.4%), with a hydrolysis constant of 0.39 h1. The prominent performance was also attributed to the unique microbial communities having been domesticated at a lower temperature, especially the cellulose-degrading bacteria Paraclostridium and psychrophile Psychrobacter, making up 6.94% and 2.56%, respectively. Furthermore, the potential benefits and application of improved POM hydrolysis by start-up stage recovery via mesh sieves combined with anaerobic fermentation were evaluated, including selective POM entrapment, alleviation of blockage and wear, and a reduction in aeration energy. By the proposed strategy, carbon availability for biological nutrient removal (BNR) processes is anticipated to be improved more economically than that can be achieved by primary clarifier elimination.  相似文献   

15.
农药在环境中的水解机理及其影响因子研究进展   总被引:8,自引:0,他引:8  
欧晓明 《生态环境》2006,15(6):1352-1359
农药的水降解与其在环境中的持久性是密切相关的,它是影响农药在环境中的归宿机制的重要依据之一,也是评价农药在水体中残留特性的重要指标。近些年来,国内外不少学者对农药尤其是有机磷、氨基甲酸酯、拟除虫菊酯和磺酰脲类等的水解进行了大量研究,其内容涉及到农药水化学降解机理及其各种因子如pH值、温度和黏土矿物等对农药水解的影响等,并取得了很多新的进展。但是所有这些研究主要集中于实验室内,而对其自然环境中各因子的贡献及其水解机制的了解则相对较少。今后应加强农药在自然条件下的水解动力学与机理以及黏土矿物和腐殖酸对农药在水体中的催化水解研究,以更好地评价农药在环境中的行为与归宿,为农药的合理使用提高科学依据。  相似文献   

16.
按化学农药环境安全评价试验准则的要求进行了三十烷醇在水体中光解与水解的试验研究。结果表明,三十烷醇在该试验条件下光降解缓慢,半衰期为564d;在50d的试验期内,三十烷醇在不同酸度的水体中几乎不发生水解。  相似文献   

17.
铁氧体—高压水解一步除氰,镍的机理研究   总被引:3,自引:0,他引:3  
程少军  王郁 《环境化学》1997,16(4):364-368
本文研究了在1.013MPa,180℃条件下,废水中CN^-,NH3,Ni^2+并存时,以形成铁氧体同时进行高压水解一步除氰,除镍的反应机理。结果发现,镍铁氧体的形成是由于镍离子取代了Fe3O4中的两价铁的晶格位置形成的,新生太的Fe3O4具有表面吸附作用,但随着反应时间的延长吸附量会有所下降;氰水解是镍形成铁氧体的前提,为含氰、含镍废水在高压水解条件下铁氧体一步法治理奠定了理论基础。  相似文献   

18.
• Hydrothermal treatment can greatly improve resource recovery from sewage sludge. • tCOD removal during WO was ~55% compared with ~23% after TH. • TOC solubilization during hydrothermal treatment followed first-order kinetics. • Solids and carbon balance confirmed loss of organics during thermal hydrolysis. • Reaction pathways for thermal hydrolysis and wet oxidation are proposed. We evaluated the effect of hydrothermal pretreatments, i.e., thermal hydrolysis (TH) and wet oxidation (WO) on sewage sludge to promote resource recovery. The hydrothermal processes were performed under mild temperature conditions (140°C–180°C) in a high pressure reactor. The reaction in acidic environment (pH= 3.3) suppressed the formation of the color imparting undesirable Maillard’s compounds. The oxidative conditions resulted in higher volatile suspended solids (VSS) reduction (~90%) and chemical oxygen demand (COD) removal (~55%) whereas TH caused VSS and COD removals of ~65% and ~27%, respectively at a temperature of 180°C. During TH, the concentrations of carbohydrates and proteins in treated sludge were 400–1000 mg/L and 1500–2500 mg/L, respectively. Whereas, WO resulted in solids solubilization followed by oxidative degradation of organics into smaller molecular weight carboxylic acids such as acetic acid (~400–500 mg/L). Based on sludge transformation products generated during the hydrothermal pretreatments, simplified reaction pathways are predicted. Finally, the application of macromolecules (such as proteins), VFAs and nutrients present in the treated sludge are also discussed. The future study should focus on the development of economic recovery methods for various value-added compounds.  相似文献   

19.
微乳液中2,4—二硝基氯苯水解反应的研究   总被引:3,自引:0,他引:3  
柴金岭  肖利华 《环境化学》1999,18(4):349-353
研究了2,4-硝基氯苯在十二烷基磺酸钠/油/醇/水组成的O/W型微乳液中的水解反应。考察了烃,醇与表面活性剂的种类及用量,OH^-浓度和温度等对O/W型微乳液中2,4-二硝基氯苯水解反应的影响。  相似文献   

20.
利用脂肪酶提高鱼油中多不饱和脂肪酸(PUFAs)甘油酯   总被引:3,自引:0,他引:3  
利用脂肪酶选择性的水解作用研究提高鱼油中多不饱和脂肪酸(PUFAs)甘油酯的含量.通过对5种不同来源脂肪酶的筛选,以来源于米曲霉脂肪酶为最佳酶种;同时研究该酶水解鱼油的最佳工艺条件:反应温度、加酶量、反应转速、添加剂影响;最后确定最佳的富集PUFAs甘油酯时间.在此工艺条件下,鱼油中EPA由3.0%提高到9.0%,DHA由4.3%提高到16.5%,EPA DHA由7.3%提高到25.5%.图3表1参8  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号