首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 347 毫秒
1.
基于人体皮肤热模型的热防护服评价方法研究   总被引:1,自引:0,他引:1  
在热防护服热防护性能测试装置基础上,用自行研制的新型耐高温模拟皮肤传感器代替铜片热流计测量通过应急热防护服装面料的热流量,将热流量作为热波皮肤模型边界条件,得到人体皮肤表层下80μm处的温度值,从而得到一定条件下人体真实皮肤达到二级烧伤所需时间,用其评价热防护服用织物的热防护性能,并将热波皮肤模型(TWMBT)的测试值与Pennes模型以及铜片热流计的测试结果进行分析比较。采用热波皮肤模型分析织物层下的"皮肤"防热时间更接近实际皮肤达到二级烧伤时间值,可较为精确的量化织物热防护性能,为应急救援热防护服装的热设计提供理论依据。  相似文献   

2.
热防护性能(Thermal protective performance—TPP)是阻燃型服装或织物隔热防护性能重要指标。本文在已研制的一种模拟人体皮肤及体形的高温"圆筒仪"上进行了改进,并用其测试阻燃服装织物的热防护性能。用膜电偶测量模拟皮肤器表面温升率,并结合烧伤积分模型的评价方法来计算达到二级烧伤的防热时间。与其它一维平面测试装置相比,本装置可较为准确评估实际服装热收缩特征对服装热防护性能的影响。  相似文献   

3.
A numerical model of heat and moisture transport in thermal protective clothing during exposure to a flash fire was introduced. The model was developed with the assumption that textiles are treated as porous media. The numerical model predictions were compared with experimental data from different fabric systems and configurations. Additionally, with the introduction of a skin model, the parameters that affect the performance of thermal protective clothing were investigated.  相似文献   

4.
为提高消防服的热湿舒适性能,减少消防员在灭火救援过程中的热应激反应,基于现有消防服用织物材料的物性参数和单项热湿舒适性指标,采用多元回归分析的方法综合评价消防服各层材料的热湿舒适性能,研究各外层材料的单项热湿舒适性指标与物性参数之间的关系。结果表明:以黑色芳砜伦为外层材料、Goretex为防水透气层材料、Nomex针刺毡为隔热层材料、Nomex/FR-VISCOSE(50%Nomex,50%阻燃黏胶)为舒适层材料的消防服热湿舒适性最好,并得出织物的吸湿速率常数、透湿率和干燥率与物性参数之间的显著多元回归模型。  相似文献   

5.
The aim of this study was to analyse the transfer of steam through different types of textile layers as a function of sample parameters such as thickness and permeability. In order to simulate the human body, a cylinder releasing defined amounts of moisture was also used. The influence of sweating on heat and mass transfer was assessed.

The results show that in general impermeable materials offer better protection against hot steam than semi-permeable ones. The transfer of steam depended on the water vapour permeability of the samples, but also on their thermal insulation and their thickness. Increasing the thickness of the samples with a spacer gave a larger increase in protection with the impermeable samples compared to semi-permeable materials. Measurements with pre-wetted samples showed a reduction in steam protection in any case. On the other hand, the measurements with a sweating cylinder showed a beneficial effect of sweating.  相似文献   

6.
为评价常用类型高、低温防护服的防护性能,本研究应用热平板仪、人工气候室和暖体假人等研究设备,对高低温作业典型工种常用的耐高温防护服和低温防护服的隔热性能进行了研究。研究结果显示,不同类型高、低温防护服的服装面料、服装整体的隔热性表现出一定差异,模拟环境下的着装生理学测试结果也存在不同,防护服的面料、结构和工艺等均影响到其整体隔热性能。防护服装的全面评价通常涉及安全性、工效学特性等多个方面,有必要从服装的舒适性、工效学特性等方面进一步研究,并开展大规模的现场人体穿着实验,从而为高低温防护服的选用和设计改进等提供依据。  相似文献   

7.
A thermal wave skin model incorporating surface heat flux from a skin simulant sensor is developed to characterize the thermal performance of heat resistant fabrics covering the skin simulant sensor. Comparisons of time to 2nd-degree skin burn and temperature elevation of skin beneath a layer of fabric between the Pennes' equation and the newly developed thermal wave skin model are performed in this research. Results of tolerance time from the Stoll criterion method are also compared with those from 2 skin models in a thermal protective performance calorimeter. It is concluded that the thermal properties of heat resistant fabrics can be characterized more precisely than previously.  相似文献   

8.
For wearers of protective clothing in radiation environments there are no quantitative guidelines available for the effect of a radiative heat load on heat exchange. Under the European Union funded project ThermProtect an analytical effort was defined to address the issue of radiative heat load while wearing protective clothing. As within the ThermProtect project much information has become available from thermal manikin experiments in thermal radiation environments, these sets of experimental data are used to verify the analytical approach. The analytical approach provided a good prediction of the heat loss in the manikin experiments, 95% of the variance was explained by the model. The model has not yet been validated at high radiative heat loads and neglects some physical properties of the radiation emissivity. Still, the analytical approach provides a pragmatic approach and may be useful for practical implementation in protective clothing standards for moderate thermal radiation environments.  相似文献   

9.
Heat and mechanical protection properties of 6 fabric combinations commonly used in firefighters’ protective clothing were assessed before and after different heat treatment. It was shown that after heat exposure, the values obtained were generally lower than in the original state. The mechanical properties of the materials were more affected by heat than by heat protective properties. In 2 cases, degradation started before a visible change in the material could be observed, which might be potentially dangerous for the end user who will not realize the alteration of the material.  相似文献   

10.
The purpose of this study was to determine the usefulness of physiological studies in the evaluation of protective clothing for work in a cold environment. The study included the examination of the dynamics of changes in chosen physiological parameters (core and skin temperatures, heart rate, pulmonary minute ventilation) as well as physical ones (the temperature and relative humidity under the clothes) during work in protective clothing with unknown thermal insulation. The experiment was conducted in extreme environmental conditions (–10 and –15°C) at a work load defined by the clothing manufacturer as moderate. Results show that thermal equilibrium was achieved and maintained throughout the investigated work time (60 min) and that the protective clothing ensures safety on the time scale of a regular 8-hour work day. It was also shown that the dynamics of thermal stress physiological parameters can be used to determine the maximum duration of exposure for cold protective clothing with unknown thermal insulation.  相似文献   

11.
Wildland firefighters work in unfavourable environments involving both heat and moisture. Moisture in clothing systems worn by wildland firefighters may increase or decrease heat transfer, depending on its source and location in the clothing system, location on the body, timing of application and degree of sorption. In this experiment, 4 outerwear/underwear combinations were exposed to 1 of 5 different conditions varying on amount and location of moisture. The fabric systems were then exposed to either a high-heat-flux flame exposure (83 kW/m(2)) or a low-heat-flux radiant exposure (10 kW/m(2)). Under high-heat-flux flame exposures, external moisture tended to decrease heat transfer through the fabric systems, while internal moisture tended to increase heat transfer. Under low-heat-flux radiant exposures, internal moisture decreased heat transfer through the fabric systems. The nature and extent of such differences was fabric dependent. Implications for test protocol development are discussed.  相似文献   

12.
防护服装的全面评价通常涉及安全性、工效学特性等多个方面。在常用高、低温防护服隔热性能研究基础上,对服装的舒适性进行了初步研究,以期为高低温防护服的选用和设计改进等提供依据。本研究应用热平板仪、人工气候室等研究设备以及真人着装实验,对高低温作业典型工种常用的耐高温防护服和低温防护服的舒适性能进行了研究。研究结果显示,不同类型高、低温防护服的透气性、透湿性、着装压力、肢体活动角度等均表现出一定差异,防护服的面料、结构和工艺等均影响到其整体舒适性,并提出了相应的改善建议。  相似文献   

13.
Extensive use of pressurized steam in the oil and gas sectors has led to incidents where workers were seriously injured. In this study a test device and procedure to measure heat transfer through fabrics during steam exposure were developed and evaluated. Several factors were considered while designing the test device to simulate work site conditions. Fabrics were exposed to steam at 2 distances (50 and 100 mm) and 2 pressures (207 and 69 kPa). Theoretical considerations included heat and mass transfer, and fabric structure and performance properties. The test device and procedure differentiated well among both fabrics and exposure conditions. For all fabrics, maximum heat transfer was observed at highest steam pressure and shortest distance. Laminated and coated fabrics performed better than a fabric without such treatments.  相似文献   

14.
为提高相变调温防护服的阻燃性能,以保障工作人员的生命安全,系统开展阻燃型相变微胶囊涂层织物的制备与阻燃性能研究。选取2种相变温度的相变微胶囊、2种阻燃基布,利用干法涂层工艺制备相变微胶囊涂层织物;选取2种阻燃剂,以45%和75%的比例涂覆在相变微胶囊涂层的表面,制成16种阻燃型相变微胶囊涂层织物。基于锥形量热仪进行涂层织物阻燃性能测试,分析阻燃剂对涂层织物阻燃性能的影响。结果表明:与未进行阻燃整理的涂层织物相比,有机硅阻燃剂涂层织物的总热释放量平均下降42.22%,磷氮型阻燃剂涂层织物的总热释放量平均下降25.07%,并且随着阻燃剂含量的增加,总热释放量呈下降趋势。另外,有机硅型阻燃剂明显降低了热释放速率与总热释放量,而磷氮型阻燃剂有效地延长了织物开始释放热量的时间和热释放速率达到峰值的时间。因此,2种阻燃剂从不同角度优化了相变微胶囊涂层织物的阻燃性能,提高了相变调温防护服的使用安全性。  相似文献   

15.
The aim of this study was to analyse the transfer of steam through different types of textile layers as a function of sample parameters such as thickness and permeability. In order to simulate the human body, a cylinder releasing defined amounts of moisture was also used. The influence of sweating on heat and mass transfer was assessed. The results show that in general impermeable materials offer better protection against hot steam than semi-permeable ones. The transfer of steam depended on the water vapour permeability of the samples, but also on their thermal insulation and their thickness. Increasing the thickness of the samples with a spacer gave a larger increase in protection with the impermeable samples compared to semi-permeable materials. Measurements with pre-wetted samples showed a reduction in steam protection in any case. On the other hand, the measurements with a sweating cylinder showed a beneficial effect of sweating.  相似文献   

16.
The heat transferred through protective clothing under long wave radiation compared to a reference condition without radiant stress was determined in thermal manikin experiments. The influence of clothing insulation and reflectivity, and the interaction with wind and wet underclothing were considered. Garments with different outer materials and colours and additionally an aluminised reflective suit were combined with different number and types of dry and pre-wetted underwear layers. Under radiant stress, whole body heat loss decreased, i.e., heat gain occurred compared to the reference. This heat gain increased with radiation intensity, and decreased with air velocity and clothing insulation. Except for the reflective outer layer that showed only minimal heat gain over the whole range of radiation intensities, the influence of the outer garments’ material and colour was small with dry clothing. Wetting the underclothing for simulating sweat accumulation, however, caused differing effects with higher heat gain in less permeable garments.  相似文献   

17.
为明确不同极端低温环境与防护装备下,日间清醒和夜间睡眠状态下各部位皮肤温度变化特征,在-16 ℃~-30 ℃极端低温环境下,采用皮温测量系统对实验对象5个代表性部位(胸部、手臂、大腿、小腿和脚趾)皮肤温度进行测试。结果表明:日间测试胸部温度相对最高,大腿和小腿在实验中后期出现温度反转。夜间除脚趾外,各部位皮肤温度变化差异较小,大腿温度相对最高,小腿温度与其他部位分离。研究结果可为低温环境下防护服研发与保暖效果评价提供参考。  相似文献   

18.
建立了热颗粒和热辐射共同作用下阴燃点燃松针燃料床的二维数值模型,计算得到了热颗粒和热辐射单独点燃以及共同作用点燃的临界条件,分析了燃料床的点燃过程。与前人实验数据对比表明数值模型能够较好预测临界点燃条件。金属热颗粒单独作用时点火所需的临界温度与颗粒直径呈双曲线关系。金属热颗粒与热辐射共同作用时,临界辐射热通量呈现出随颗粒温度和直径的增加而显著减小的趋势。热辐射持续供热能有效维持表层炭氧化反应,两者共同作用下点燃危险性增加。研究同时发现,燃料含水率对共同作用下的临界辐射热通量有较大影响。  相似文献   

19.
N, N-Dinitroso pentamethylene tetramine, also known as H foaming agent, is a self-reactive chemical substance commonly used in the rubber industry. Decomposition, explosion and combustion may be caused by the presence of fire or high temperature. As a high-risk chemical that is strictly regulated in China, H foaming agent has ever triggered multiple accidents. During the study of the decomposition thermal process of H foaming agent, it was found that the presence of moisture content at different levels had a significant effect on its thermal stability. The thermal characteristics of H foaming agent under different moisture contents was studied through the test means such as adiabatic calorimetry and high-pressure differential scanning calorimetry. Through isothermal calorimetry experiment, it was found that the decomposition of H foaming agent had obvious auto-catalytic characteristics. In the moisture content within the range of 0–40%, with the increase of moisture content, the initial exothermic temperature Tonset of the mixture system of H foaming agent and water decreased, while the time from initial heat release to rapid temperature rise of the reaction system (induction period) was gradually prolonged, and the temperature increment of the reaction system was increased gradually. As the proportion of moisture content in the system increased, the adiabatic temperature rise ΔTad of the mixture system of H foaming agent and water gradually decreased, meanwhile the time to maximum rate under adiabatic condition (TMRad) gradually decreased. The research results have guiding significance for finding the reasonable moisture content of H foaming agent in the drying process and determining the upper temperature limit during storage and transportation.  相似文献   

20.
Phase-change materials (PCM) can be used to reduce thermal stress and improve thermal comfort for workers wearing protective clothing. The aim of this study was to investigate the effect of PCM in protective clothing used in simulated work situations. We hypothesized that it would be possible to optimize cooling performance with a design that focuses on careful positioning of PCM, minimizing total insulation and facilitating moisture transport. Thermal stress and thermal comfort were estimated through measurement of body heat production, body temperatures, sweat production, relative humidity in clothing and subjective ratings of thermal comfort, thermal sensitivity and perception of wetness. Experiments were carried out using 2 types of PCM, the crystalline dehydrate of sodium sulphate and microcapsules in fabrics. The results of 1 field and 2 laboratory experimental series were conclusive in that reduced thermal stress and improved thermal comfort were related to the amount and distribution of PCM, reduced sweat production and adequate transport of moisture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号