首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composts improve organic carbon content and nutrients of calcareous soils but the accumulation and distribution of phosphorus and heavy metals among various fractions in soil may vary under the south Florida conditions. The accumulation of P, Cd, Ni, and Pb with depth and the distribution of water soluble, exchangeable, carbonate, Fe-Mn oxides, organic and residual forms of each element were investigated in soils amended with municipal solid waste (MSW) compost, co-compost and biosolids compost and inorganic fertilizer (as control). Total concentrations of P, Cd, Ni, and Pb were higher in the 0-22 cm soil layers and decreased considerably in the rock layers. These elements were in the decreasing order of P > Pb > Ni > Cd. Amounts of water soluble and exchangeable forms of P, Cd, Ni and Pb were negligible at 0-22 cm soil depths except for Cd in the 10-22 cm depth. Amending calcareous soil with either organic or inorganic amendments rendered phosphorus, nickle and lead in the residual form followed by Fe-Mn oxides form in the 0-10 and 10-22 cm soil layers. Cadmium was predominantly in the Fe-Mn oxides fraction followed by the residual and carbonate forms in both soil layers. A significant positive correlation was found between various organic carbon fractions and organic forms of P, Cd and Pb in the surface soil layer. Soil amended with MSW compost had higher concentration of Cd in the organic fraction whereas, co-compost and MSW compost amended soil had higher concentrations of organic Ni fraction in the 0-10 cm soil layer.  相似文献   

2.
Abstract

Composts improve organic carbon content and nutrients of calcareous soils but the accumulation and distribution of phosphorus and heavy metals among various fractions in soil may vary under the south Florida conditions. The accumulation of P, Cd, Ni, and Pb with depth and the distribution of water soluble, exchangeable, carbonate, Fe–Mn oxides, organic and residual forms of each element were investigated in soils amended with municipal solid waste (MSW) compost, co-compost and biosolids compost and inorganic fertilizer (as control). Total concentrations of P, Cd, Ni, and Pb were higher in the 0–22 cm soil layers and decreased considerably in the rock layers. These elements were in the decreasing order of P ? Pb > Ni > Cd. Amounts of water soluble and exchangeable forms of P, Cd, Ni and Pb were negligible at 0–22 cm soil depths except for Cd in the 10–22 cm depth. Amending calcareous soil with either organic or inorganic amendments rendered phosphorus, nickle and lead in the residual form followed by Fe–Mn oxides form in the 0–10 and 10–22 cm soil layers. Cadmium was predominantly in the Fe–Mn oxides fraction followed by the residual and carbonate forms in both soil layers. A significant positive correlation was found between various organic carbon fractions and organic forms of P, Cd and Pb in the surface soil layer. Soil amended with MSW compost had higher concentration of Cd in the organic fraction whereas, co-compost and MSW compost amended soil had higher concentrations of organic Ni fraction in the 0–10 cm soil layer.  相似文献   

3.
Little is known about the effects of applying composted urban wastes on the phytoavailability and distribution of iron (Fe) and manganese (Mn) among chemical fractions in soil. In order to study this concern several experiments in pots containing calcareous soil were carried out. The received treatments by adding separately two rates (20 and 80 Mg ha?1) of municipal solid waste (MSW) compost and/or municipal solid waste and sewage sludge (MSW-SS) co-compost. The cropping sequence was a lettuce crop followed by a barley crop. It was observed that treatments amended with composted urban wastes tended to promote slight increases in lettuce yield compared to the control. The highest Fe levels in lettuce were found when higher rates of MSW-SS co-compost were applied; these values were significant compared to those obtained in the other treatments. In all cases, the application of organic materials increased the concentration and uptake of Mn in lettuce compared to the control; however, these increases were significant only when higher rates of MSW compost were applied. The organic amendments had beneficial delayed effects on barley yields, showing, in most cases, significant increases compared to the control. In this context, treatments with MSW compost were found to be more effective than the equivalent treatments amended with MSW-SS co-compost. Compared to the control, composted urban wastes increased Fe concentration in straw and rachis, and decreased Fe concentration in barley grain. Similarly, a decreased concentration of Mn in the dry matter of barley crop grown in soils treated with composted urban wastes was observed.  相似文献   

4.
Little is known about the effects of applying composted urban wastes on the phytoavailability and distribution of iron (Fe) and manganese (Mn) among chemical fractions in soil. In order to study this concern several experiments in pots containing calcareous soil were carried out. The received treatments by adding separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost and/or municipal solid waste and sewage sludge (MSW-SS) co-compost. The cropping sequence was a lettuce crop followed by a barley crop. It was observed that treatments amended with composted urban wastes tended to promote slight increases in lettuce yield compared to the control. The highest Fe levels in lettuce were found when higher rates of MSW-SS co-compost were applied; these values were significant compared to those obtained in the other treatments. In all cases, the application of organic materials increased the concentration and uptake of Mn in lettuce compared to the control; however, these increases were significant only when higher rates of MSW compost were applied. The organic amendments had beneficial delayed effects on barley yields, showing, in most cases, significant increases compared to the control. In this context, treatments with MSW compost were found to be more effective than the equivalent treatments amended with MSW-SS co-compost. Compared to the control, composted urban wastes increased Fe concentration in straw and rachis, and decreased Fe concentration in barley grain. Similarly, a decreased concentration of Mn in the dry matter of barley crop grown in soils treated with composted urban wastes was observed.  相似文献   

5.
A greenhouse experiment was conducted under simulated field conditions using large-capacity plastic pots, filled each one with 25 kg of air-dried calcareous soil. Besides the control, four treatments were prepared by applying separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost, and co-composted municipal solid waste and sewage sludge (MSW-SS). Lettuce was planted and harvested 2.5 months later. The application of composted urban wastes tended to increase Cu concentration in lettuce with respect to the control, but it was only significant when the higher rate of MSW compost was applied. The control showed values of Zn concentration in plant within a deficient range. In general, composted urban wastes treatments had increased Zn concentration values, which were within the sufficiency range. Both treatments with MSW compost increased Cu and Zn uptake in comparison with MSW-SS co-compost treatments. At the postharvest, all composted urban wastes treatments increased significantly DTPA-extractable Cu content in soil with respect to the control; it was also significant the increase in AAAc-EDTA-extractable Cu in soil produced by the addition of the higher rate of MSW compost. The application of composted urban wastes increased significantly DTPA-extractable and AAAc-EDTA-extractable Zn contents in soil versus the control, except for the lower rate of MSW-SS co-compost. The values of DTPA-extractable/total ratio for Cu and Zn were under 10%, except for the treatment applying the higher rate of MSW compost which promoted higher values. The values of AAAc-EDTA-extractable/total ratio for Cu were above 10% in all treatments including the control. This tendency was also observed in AAAc-EDTA-extractable/total ratio for Zn when applying both rates of MSW compost or the higher rate of MSW-SS co-compost.  相似文献   

6.
Abstract

Land disposal of olive oil wastewater using it as a soil amendment requires a knowledge of the effects that its application may produce on the status of the mineral nutrients in the plant‐soil system. A pot experiment using calcareous soil was performed in a growth chamber to examine the effects of olive oil wastewater on the availability and postharvest soil extractability of K, Mg and Mn. The experiment included 6 treatments: two rates of olive oil wastewater, two mineral fertilizer treatments containing K (which supplied K in amounts equivalent to the K supplied by the olive oil wastewater treatments), a K‐free mineral fertilizer treatment, and a control. The pots were sown with ryegrass as the test plant, harvesting 3 times at intervals of one month. Olive oil wastewater has demonstrated a considerable capacity for supplying K that can be assimilated by the plant, tending in fact to surpass the mineral potassium fertilizer tested. The application of olive oil wastewater tends to reduce the concentration of Mg in the plant, similarly to the effect of adding mineral potassium fertilizer. An enhancement of Mn availability takes place in the soil amended with olive oil wastewater, which on occasion has produced Mn concentrations in plant that could be considered phytotoxic or at least excessive. After harvesting, we observed an increase in the amount of exchangeable K in soil with added industrial wastewater. However, these increases are lower than those in soil treated with mineral potassium fertilizer. The levels of exchangeable, carbonate‐bound, organic‐bound and residual Mg in soil were higher in treatments incorporating olive oil wastewater than in those with added mineral K, with the opposite tendency occurring in the amount of Fe‐Mn oxides‐bound Mg in soil. Treatments based on olive oil wastewater, especially in high doses, increased the amount of exchangeable and carbonate‐bound Mn in soil, in comparison with treatments adding mineral fertilizers with or without K. In contrast, the addition of industrial wastewater caused a drop in the amount of Fe‐Mn oxides‐bound and organic‐bound Mn in soil.  相似文献   

7.
Seven soils which had been polluted with heavy metals from a zinc smelter were sequentially extracted so that Cd, Zn, and Pb could be partitioned into five operationally defined geochemical fractions: exchangeable, carbonate, Fe-Mn oxide, organic, and residual fractions. Kidney beans were planted in the soils to examine the effect of concentration and chemical form of the metals in soil on the growth and metal uptake of the plants. The growth of kidney bean was restricted in heavy metal polluted soils compared with controls. Metal concentration and metal uptake by plants were correlated. The highest relationship was found between amount of metal uptake and the metal concentration in exchangeable + carbonate forms. The uptake of metals was according to their solubility sequence, i.e. Cd > Zn > Pb. The uptake rate of exchangeable + carbonate forms was the same for the three elements.  相似文献   

8.
Su DC  Wong JW  Jagadeesan H 《Chemosphere》2004,56(10):957-965
Rhizospheric distribution of nutrients and heavy metals in sludge amended soil was investigated using the rhizobag technique to give an indication of the release of metals from wastewater sludge. DTPA-extractable Zn, Cd, Ni and Mn, and available P, K and NH4+-N in the rhizosphere were markedly depleted when soil was amended with sludge. There was no conspicuous depletion or accumulation of DTPA-extractable Cu in the rhizosphere when the soil was amended with sewage sludge but DTPA-extractable Fe accumulated in the rhizosphere when the soil was amended with increasing amounts of sludge. The pH value in the rhizosphere increased with distance from the roots when soil was amended with larger amounts of sludge. The exchangeable fraction of Cu in the rhizosphere was depleted whether or not the soil was treated with sludge. Carbonate, oxide, organic and residual fractions of Cu and Zn were depleted in the rhizosphere at a distance of 0-2 mm from the roots when soil was amended with 50% sludge. Application of sewage sludge had a positive effect on alfalfa growth. With an increase in sludge amounts, the concentrations of Fe, Cu and Zn in alfalfa shoots did not change. Soil amendments with less than 25% sludge did not increase the availability or mobility of heavy metals. The depletion in rhizospheric DTPA-extractable Zn, Cd and Ni indicates that with the sole exception of Cu, release of metals from sludge amended soil was very limited.  相似文献   

9.
Two experiments were conducted to evaluate the effect of compost addition to soil on fractionation and bioavailability of Cu, Mn, and Zn to four crops. Soils growing Swiss chard (Beta vulgaris var. cicla L.) and basil (Ocimum basilicum L.) were amended (by volume) with 0, 20, 40, and 60% Source-Separated Municipal Solid Waste (SS-MSW) compost, and dill (Anethum graveolens L.) and peppermint (Mentha X piperita L.) were amended with 0, 20, 40, and 60% of high-Cu manure compost (by volume). The SS-MSW compost applications increased the concentration of Cu and Zn in all fractions, increased Mn in acid extractable (ACID), iron and manganese oxides (FeMnOX), and organic matter (OM) fractions, but decreased slightly exchangeable-Mn. Addition of 60% high-Cu manure compost to the soil increased Cu EXCH, ACID, FeMnOX, and OM fractions, but decreased EXCH-Mn, and did not change EXCH-Zn. Addition of both composts to soil reduced bioavailability and transfer factors for Cu and Zn. Our results suggest that mature SS-MSW and manure composts with excess Cu and Zn could be safely used as soil conditioners for agricultural crops.  相似文献   

10.
Goal, Scope and Background Andisols are widespread in Japan and have some special properties such as high anion exchange capacity, low bulk density, and high organic matter content, which might influence the accumulation or chemical fractionation of heavy metals. However, few such data exist in Japanese andisols. The primary objective of this study was to investigate the distribution and chemical fractions of Cu, Zn, Ni, and Cr in the soil profiles and subsequently to assess their potential environmental hazard. Materials and Methods Soil samples were taken from a field experiment conducted on Japanese andisols, which had received either swine compost or chemical fertilizers for 6 years. Concentrations of Cu, Zn, Ni, and Cr were determined for all of the obtained extract solutions by ICP-AES. Results and Discussion Considerably higher total concentrations of Cu and Zn were observed in the top 20 cm layer of the compost-amended soil, relative to the unfertilized soil, while chemical fertilizers had little effect. Application of the swine compost increased the concentrations of Cu and Zn, but not Ni and Cr, in all fractions in the top 20 cm layer. The greatest increase in the organically bound fraction (OM) Cu and dilute acid-exchangeable fraction (DAEXCH) Zn was observed. This suggests that Cu and Zn are potentially bioavailable and mobile in the andisol profiles after 6-year consecutive applications of the swine compost. On the other hand, distribution of Cu, Zn, Ni and Cr among various soil fractions was generally unaffected by chemical fertilizers. Conclusions We observed that 6-year consecutive applications of the swine compost led to an increase in total metals of Cu and Zn, as well as their all-chemical fractions, in the top 20 cm soil layers. Potential hazard of heavy metals, especially of Cu and Zn, as a result of the use of swine compost on andisols, must be taken into account. Recommendations and Outlook The long-term effect of the accumulation of heavy metals, particularly Cu and Zn, in various plant tissues and soils, as well as their potential risk to surface water via runoff and groundwater via leaching, needs to be carefully considered. Further investigations in the long-term experiments are therefore necessary. - Abbreviations. EXCH, exchangeable fraction of metals; DAEXCH, dilute acid-exchangeable fraction of metals; FeMnOX, iron and manganese-oxide-bound fraction; OM, organically-bound fraction; RESD, residual fraction. COMPOST, SRNF, RANF, and CONTROL stand for compost (from swine wastes), slow-release nitrogen fertilizer (coated urea), readily available nitrogen fertilizer (including NH4-N, P, and K fertilizers), and no fertilizer application, respectively.  相似文献   

11.
The potential risk of groundwater contamination by the excessive leaching of N, P and heavy metals from soils amended at heavy loading rates of biosolids, coal ash, N-viro soil (1:1 mixture of coal ash and biosolids), yard waste compost and co-compost (3:7 mixture of biosolids to yard wastes), and by soil incorporation of green manures of sunn hemp (Crotalaria juncea) and sorghum sudangrass (Sorghum bicolor x S. bicolor var. sudanense) was studied by collecting and analyzing leachates from pots of Krome very gravelly loam soil subjected to these treatments. The control consisted of Krome soil without any amendment. The loading rate was 205 g pot(-1) for each amendment (equivalent to 50 t ha(-1) of the dry weight), and the amounts of the cover crops incorporated into the soil in the pot were those that had been grown in it. A subtropical vegetable crop, okra (Abelmoschus esculentus L.), was grown after the soil amendments or cover crops had been incorporated into the soil. The results showed that the concentration of NO3-N in leachate from biosolids was significantly higher than in leachate from other treatments. The levels of heavy metals found in the leachates from all amended soils were so low, as to suggest these amendments may be used without risk of leaching dangerous amounts of these toxic elements. Nevertheless the level of heavy metals in leachate from coal ash amended soil was substantially greater than in leachates from the other treatments. The leguminous cover crop, sunn hemp, returned into the soil, increased the leachate NO3-N and inorganic P concentration significantly compared with the non-legume, sorghum sudangrass. The results suggest that at heavy loading rates of soil amendments, leaching of NO3- could be a significant concern by application of biosolids. Leaching of inorganic P can be increased significantly by both co-compost and biosolids, but decreased by coal ash and N-viro soil by virtue of improved adsorption. The leguminous cover crop, sunn hemp, when incorporated into the soil, can cause the concentration of NO3-N to increase by about 7 fold, and that of inorganic P by about 23% over the non-legume. Regarding the metals, biosolids, N-viro soil and coal ash significantly increased Ca and Mg concentrations in leachates. Copper concentration in leachate was increased by application of biosolids, while Fe concentration in leachates was increased by biosolids, coal ash and co-compost. The concentrations of Zn, Mo and Co in leachate were increased by application of coal ash. The concentrations of heavy metals in leachates were very low and unlikely to be harmful, although they were increased significantly by coal ash application.  相似文献   

12.
Heavy metals in agricultural soils of the Pearl River Delta,South China   总被引:49,自引:0,他引:49  
There is a growing public concern over the potential accumulation of heavy metals in agricultural soils in China owing to rapid urban and industrial development and increasing reliance on agrochemicals in the last several decades. Excessive accumulation of heavy metals in agricultural soils may not only result in environmental contamination, but elevated heavy metal uptake by crops may also affect food quality and safety. The present study is aimed at studying heavy metal concentrations of crop, paddy and natural soils in the Pearl River Delta, one of the most developed regions in China. In addition, some selected soil samples were analyzed for chemical partitioning of Co, Cu, Pb and Zn. The Pb isotopic composition of the extracted solutions was also determined. The analytical results indicated that the crop, paddy and natural soils in many sampling sites were enriched with Cd and Pb. Furthermore, heavy metal enrichment was most significant in the crop soils, which might be attributed to the use of agrochemicals. Flooding of the paddy soils and subsequent dissolution of Mn oxides may cause the loss of Cd and Co through leaching and percolation, resulting in low Cd and Co concentrations of the paddy soils. The chemical partitioning patterns of Pb, Zn and Cu indicated that Pb was largely associated with the Fe-Mn oxide and residual fractions, while Zn was predominantly found in the residual phase. A significant percent fraction of Cu was bound in the organic/sulphide and residual phases. Based on the 206Pb/207Pb ratios of the five fractions, it was evident that some of the soils were enriched with anthropogenic Pb, such as industrial and automobile Pb. The strong associations between anthropogenic Pb and the Fe-Mn oxide and organic/sulphide phases suggested that anthropogenic Pb was relatively stable after deposition in soils.  相似文献   

13.
Speciation of chromium in 12 agricultural soils from Turkey   总被引:1,自引:0,他引:1  
Köleli N 《Chemosphere》2004,57(10):1473-1478
The objective of the study was to speciate and to evaluate various soil Cr species in relation to soil properties. Surface soil samples were taken from outskirts of the Cr factory and applied a sequential extraction procedure. Extracts analyzed in atomic absorption spectrophotometry (AAS). Chromium was partitioned into exchangeable Cr, Cr bound to carbonate, Fe-Mn oxide, and organic matter, and residual Cr. The most common form of chromium was in the residual form, followed by the organic form. Very low concentrations of Cr were found in the exchangeable and carbonate forms. Mean values of the extractable forms of Cr, expressed in percentages of total soil contents were: 0.94% exchangeable, 0.80% carbonates, 2.13% oxides, 7.08% organics and 89.81% residual. Multiple regression analysis of analytical data revealed that soil pH, contents of organic matter and calcium carbonate were the most important factor controlling the distribution of Cr forms determined.  相似文献   

14.
Heavy metal levels and solid phase speciation in street dusts of Delhi,India   总被引:36,自引:0,他引:36  
Street dust samples were collected from three different localities (industrial, heavy traffic and rural) situated in the greater Delhi area of India. The samples analyzed for Cd, Zn, Pb, Ni, Cu, and Cr indicated remarkably high levels of Cr, Ni, and Cu in the industrial area, whilst Pb and Cd did not show any discernible variations between the three localities. A multivariate statistical approach (Principal Component Analysis) was used to define the possible origin of metals in dusts. The street dusts were sequentially extracted so that the solid pools of Cd, Zn, Pb, Ni, Cu, Cr could be partitioned into five operationally defined fractions viz. exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and residual. Metal recoveries in sequential extractions were +/- 10% of the independently measured total metal concentrations. Cd was the only metal present appreciably (27.16%) in the exchangeable fraction and Cu was the only metal predominantly associated (44.26%) with organic fraction. Zn (45.64%) and Pb (28.26%) were present mainly in the Fe-Mn oxide fraction and the residual fraction was the most dominant solid phase pool of Cr (88.12%) and Ni (70.94%). Assuming that the mobility and bioavailability are related to the solubility of geochemical forms of the metals and decrease in order of extraction, the apparent mobility and potential metal bioavailability for these highly contaminated street dust samples is: Cd>Zn approximately equal Pb>Ni>Cu>Cr.  相似文献   

15.
Natural surface coatings samples (NSCSs) from the surface of river shingles were employed to investigate the roles of non-residual and residual components of the NSCSs in controlling Cu and Zn adsorption via the selective extraction techniques and statistical analysis. The results indicate that the greatest contribution to metals adsorption on a molar basis was from Mn oxides in the non-residual fraction. Metals adsorption capacities of Mn oxides exceeded those of Fe oxides by one order of magnitude, fewer roles were found attributing to adsorption by organic materials (OM), and the estimated contribution of the residual fraction to metals adsorption was insignificant. These results implied that Mn oxides were the most important component in controlling heavy metals in aquatic environments. Experiments with Cu and Zn adsorption measured together showed that Cu severely interfered with Zn adsorption to the NSCSs and vice versa under the conditions of the two coexisted ions adsorption.  相似文献   

16.
分析测定了6种元素(Cr、Co、Mn、Cu、Pb、Zn)在北运河水系10个采样点水体和表层沉积物中的含量和形态分布,利用SPSS 19.0统计软件对重金属在不同形态中的含量进行相关性分析。结果显示,北运河下游重金属污染程度高于上游;Cr、Cu、Pb、Zn在底泥可提取态中所占比例相当高,多数采样点都超过10.0%。所研究的重金属多数在底泥Fe-Mn结合态与悬浮物、可交换态、硫化物和有机质结合态均存在相关性;Mn是北运河地化循环中最为活跃的元素。  相似文献   

17.
The application of poultry litter to metal-contaminated soils may influence metal leaching and distribution of metals among soil fractions. Soil columns (one uncontaminated control, one metal-amended, and two metal-contaminated soils) were leached with H2O, CaCl2, EDTA, and poultry litter extract (PLE) solutions. After leaching, the soil samples in the columns were sequentially extracted for water soluble (WS), exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO) and residual (RES) fractions. The OM fraction showed high retention for Zn from the PLE. The EDTA redistributed Zn, Cd and Pb from the EXC, OM and MNO fractions to the WS fraction. The PLE usually solubilized more Zn and Cd from the EXC fraction than CaCl2. Neither PLE nor CaCl2 mobilized Pb. The application of poultry litter on metal-contaminated soils might cause Zn and Cd redistribution from the EXC to the WS fraction and enhance metal mobility.  相似文献   

18.
Wang SQ  Zhou DM  Wang YJ  Chen HM 《Chemosphere》2003,51(2):77-83
A study was carried out of Cu adsorption and desorption processes in red soil as affected by o-phenylenediamine (o-PD) in the range 0-80 mg/l. The results indicated that the presence of o-PD enhanced Cu adsorption in red soil in weakly acid media, meanwhile, desorption percentage of Cu from soil, extracted by 1.0 M MgCl(2), also increased when Cu adsorption in soil occurred in the presence of o-PD. The response of paddy rice to Cu in red soil shows that Cu toxicity was mitigated in the presence of o-PD and that the Cu concentration in rice straw decreased with increasing concentration of o-PD from 0 to 4.0 mmol/kg in soil. The fractions of background Cu in soil did not change noticeably in the presence of o-PD, whereas the effect of o-PD on the fractions of added Cu was significant. It was found that the exchangeable and carbonate bound Cu fractions decreased and the fraction of Cu bound to Fe-Mn oxides and organic matter increased with increasing o-PD concentration in soil when Cu was added at the same rate. Copper concentration in rice straw was significantly correlated with exchangeable Cu (r=0.961) and carbonate bound Cu (r=0.959) in soil. This result implicates that the behavior of Cu in soil is likely to be affected by organic pollutants containing amino groups.  相似文献   

19.
Land disposal of olive oil wastewater using it as a soil amendment requires a knowledge of the effects that its application may produce on the status of the mineral nutrients in the plant-soil system. A pot experiment using calcareous soil was performed in a growth chamber to examine the effects of olive oil wastewater on the availability and postharvest soil extractability of K, Mg and Mn. The experiment included 6 treatments: two rates of olive oil wastewater, two mineral fertilizer treatments containing K (which supplied K in amounts equivalent to the K supplied by the olive oil wastewater treatments), a K-free mineral fertilizer treatment, and a control. The pots were sown with ryegrass as the test plant, harvesting 3 times at intervals of one month. Olive oil wastewater has demonstrated a considerable capacity for supplying K that can be assimilated by the plant, tending in fact to surpass the mineral potassium fertilizer tested. The application of olive oil wastewater tends to reduce the concentration of Mg in the plant, similarly to the effect of adding mineral potassium fertilizer. An enhancement of Mn availability takes place in the soil amended with olive oil wastewater, which on occasion has produced Mn concentrations in plant that could be considered phytotoxic or at least excessive. After harvesting, we observed an increase in the amount of exchangeable K in soil with added industrial wastewater. However, these increases are lower than those in soil treated with mineral potassium fertilizer. The levels of exchangeable, carbonate-bound, organic-bound and residual Mg in soil were higher in treatments incorporating olive oil wastewater than in those with added mineral K, with the opposite tendency occurring in the amount of Fe-Mn oxides-bound Mg in soil. Treatments based on olive oil wastewater, especially in high doses, increased the amount of exchangeable and carbonate-bound Mn in soil, in comparison with treatments adding mineral fertilizers with or without K. In contrast, the addition of industrial wastewater caused a drop in the amount of Fe-Mn oxides-bound and organic-bound Mn in soil.  相似文献   

20.
Amendment of agricultural soils with municipal sewage sludges provides a valuable source of plant nutrients and organic matter. Nevertheless, addition of heavy metals and risks of eutrophication continue to be of concern. Metal behaviour in soils and plant uptake are dependent on the nature of the metal, sludge/soil physico-chemical properties and plant species. A pot experiment was carried out to evaluate plant production and heavy metal uptake, soil heavy metal pools and bioavailability, and soil P pools and possible leaching losses, in agricultural soils amended with sewage sludge for at least 10 years (F20) compared to non-amended soils (control). Sewage sludge application increased soil pH, N, Olsen-extractable-P, DOC and exchangeable Ca, Mg and K concentrations. Total and EDTA-extractable soil concentrations of Cu and Zn were also significantly greater in F20, and soil metal (Cu, Mn and Zn) and P fractionation altered. Compared to the control, in F20 relative amounts of acid-extractable (Mn, Zn), reducible (Mn, Zn) and oxidisable (Cu, Zn) metal fractions were greater, and a dominance of inorganic P forms was observed. Analyses of F20 soil solutions highlighted risks of PO4 and Cu leaching. However, despite the observed increases in metal bioavailability sewage sludge applications did not lead to an increase in plant shoot concentrations (in wild plants or crop species). On the contrary, depending on the plant species, Mn and Zn tissue concentrations were within the deficiency level for most plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号