首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
气候变化对中国黄淮海农业区小麦生产影响模拟研究   总被引:21,自引:0,他引:21  
研究首先利用1980-2000年黄淮海农业区10个站点的农业数据对CER ES-W heat动态机理作物模型进行详细的验证,然后将CERESW-heat模型与两个全球气候模式(G ISS和H adley)结合,同时考虑到CO2对小麦的直接施肥作用,模拟了黄淮海农业区10个站点在IPCC SR ES A 2和B2两个气候情景下雨养和灌溉小麦产量和水分利用的变化趋势。得到如下结论:在不考虑CO2直接肥效的情况下,黄淮海农业区雨养小麦全面减产,空间分布特点是西部减产幅度大,东部减产幅度小;在充分灌溉的情况下,灌溉小麦产量维持了现有水平,但灌溉水量增加。因此,在未来该地区水资源短缺的情况下,如何合理利用有限的水资源将成为黄淮海农业区主要面临的问题。在考虑CO2直接肥效的情况下,雨养和灌溉小麦产量都全面增产,雨养小麦的增产幅度明显偏高,灌溉小麦约增产10%~30%,但CO 2的肥效能否充分实现还需要进一步研究证明。  相似文献   

2.
Climate change is affecting the productivity of crops and their regional distribution. Strategies to enhance local adaptation capacity are needed to mitigate climate change impacts and to maintain regional stability of food production. The objectives of this study were to simulate the climate change effects on phenological stages, Leaf Area Index (LAI), biomass and grain yield of maize (Zea mays L.) in the future and to explore the possibilities of employing irrigation water and planting dates as adaptation strategies to decrease the climate change impacts on maize production in Khorasan Razavi province, Iran. For this purpose, we employed two types of General Circulation Models ((United Kingdom Met. Office Hadley Center: HadCM3) and (Institute Pierre Simon Laplace: IPCM4)) and three scenarios (A1B, A2 and B1). Long Ashton Research Station-Weather Generator (LARS-WG) was used to produce daily climatic parameters as one stochastic growing season for each projection period. Also, crop growth under projected climate conditions was simulated based on the Cropping System Model (CSM)-CERES-Maize. The results of model evaluation showed that LARS-WG had appropriate prediction for climatic parameters. Time period from cultivation until anthesis and maturity were reduced in majority of scenarios as affected by climate change. The results indicated that the grain yield of maize may be reduced (11 % to 38 %) as affected by climate change based on common planting date in baseline and changed (?61 % to 48 %) in response to different irrigation regimes in the future climate change, under all scenarios and times. In general, earlier planting date (1 May) and decreasing irrigation intervals in the anthesis stage (11 applications) caused higher yield compared with other planting dates due to adaption to high temperature. Based on our findings, it seems that management of irrigation water and planting dates can be beneficial for adaptation of maize to climate change in this region.  相似文献   

3.
The potential impacts of climate change on the phenology and yield of two maize varieties in Greece were studied. Three sites representing the central and northern agricultural regions were selected: Karditsa, Naoussa and Xanthi. The CERES-Maize model, embedded in the Decision Support System for Agrotechnology Transfer (DSSAT 3.0), was used for the crop simulations, with current and possible future management practices. Equilibrium doubled CO2 climate change scenarios were derived from the GISS, GFDL, and UKMO general circulation models (GCMs); a transient scenario was developed from the GISS GCM transient run A. These scenarios predict consistent increases in air temperature, small increases in solar radiation and precipitation changes that vary considerably over the study regions in Greece. Physiological effects of CO2 on crop growth and yield were simulated. Under present management practices, the climate change scenarios generally resulted in decreases in maize yield due to reduced duration of the growing period at all sites. Adaptation analyses showed that mitigation of climate change effects may be achieved through earlier sowing dates and the use of new maize varieties. Varieties with higher kernel-filling rates, currently restricted to the central regions, could be extended to the northern regions of Greece. In the central regions, new maize varieties with longer grain-filling periods might be needed.  相似文献   

4.
Development and evaluation of mitigation strategies are fundamental to manage climate change risks. This study was built on (1) quantifying the response of maize (Zea mays L.) grain yield to potential impacts of climate change and (2) investigating the effectiveness of changing sowing date of maize as a mitigation option for Khorasan Province which is located in northeast of Iran. Two types of General Circulation Models (GCM: (United Kingdom Met Office Hadley Center :HadCM3) and (Institute Pierre Simon Laplace: IPCM4)) and three scenarios (A1B, A2 and B1) at four locations (Mashhad, Birjand, Bojnourd and Sabzevar) employed in this study. Long Ashton Research Station-Weather Generator (LARS-WG) was employed for generating the future climate. The Cropping System Model (CSM)-CERES-Maize was used for crop growth simulation under projected climate conditions. The results showed the simulated grain yields of maize gradually would decrease (from −1% to −39%) during future 100 years compared to baseline under different scenarios and two GCM at all study locations. The simulation results suggested that delayed sowing date from May to June at all study locations, except Sabzevar location is the most effective mitigation option for avoiding thermal stress at end of growth period. In addition, shifting in sowing date to March or April will be beneficial in terms of obtaining higher yields in Sabzevar. Grain yield did not show special trend from north to south of Khorasan Province in the future climate. In general, change of sowing date may be quite beneficial to mitigate climate change impacts on grain yield of maize in northeast of Iran.  相似文献   

5.
气候变化对鲁西北平原冬小麦产量的影响及对策   总被引:1,自引:0,他引:1  
气候变化会导致气候资源发生改变,从而引发粮食安全问题.耦合区域气候模式和作物生长模型,可定量分析气候变化导致的作物产量变动,探讨适宜的田间管理应对措施.研究以冬小麦作为研究对象,以我国粮食主产区之一的鲁西北平原作为研究区域,耦合MIROC-RegCM3区域气候模式和CERES-Wheat作物生长模型,开展A1B温室气体排放情景下,气候变化对冬小麦产量的影响及适应措施研究.结果表明,A1B气候情景下,该区域冬小麦潜在产量会有所下降;在现有管理措施的基础上,可通过培育对春化作用依赖较小的品种、 适当提早播期、 增加越冬水灌溉量等方式保证产量,减少年际间变异.该文研究结果可为应对未来气候变暖、 确保粮食安全提供参考.  相似文献   

6.
The North China Plain (NCP) is one of the most important regions for food production in China, with its agricultural system being significantly affected by the undergoing climate change and vulnerable with water stress. In this study, the Vegetation Interface Processes (VIP) model is used to evaluate crop yield, water consumption (ET), and water use efficiency (WUE) of a winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) double cropping system in the NCP from 1951 to 2006. Their responses to future climate scenarios of 21st century projected by the GCM (HadCM3) with Intergovernmental Panel on Climate Change Special Report on Emission Scenario (IPCC SRES) A2 and B1 emissions are investigated. The results show a rapid enhancement of crop yield in the past 56 years, accompanying with slight increment of ET and noticeable improvement of WUE. There exist spatial patterns of crop yield stemmed mainly from soil quality and irrigation facilities. For climate change impacts, it is found that winter wheat yield will significantly increase with the maximum increment in A2 occurring in 2070s with a value of 19%, whereas the maximum in B1 being 13% in 2060s. Its ET is slightly intensified, which is less than 6%, under both A2 and B1 scenarios, giving rise to the improvement of WUE by 10% and 7% under A2 and B1 scenarios, respectively. Comparatively, summer maize yield will gently decline by 15% for A2 and 12% for B1 scenario, respectively. Its ET is obviously increasing since 2050s with over 10% relative change, leading to a lower WUE with more than 25% relative change under both scenarios in 2090s. Therefore, possible adaptation countermeasures should be developed to mitigate the negative effects of climate change for the sustainable development of agro-ecosystems in the NCP.  相似文献   

7.
Adaptation is a key factor for reducing the future vulnerability of climate change impacts on crop production. The objectives of this study were to simulate the climate change effects on growth and grain yield of maize (Zea mays L.) and to evaluate the possibilities of employing various cultivar of maize in three classes (long, medium and short maturity) as an adaptation option for mitigating the climate change impacts on maize production in Khorasan Razavi province of Iran. For this purpose, we employed two types of General Circulation Models (GCMs) and three scenarios (A1B, A2 and B1). Daily climatic parameters as one stochastic growing season for each projection period were generated by Long Ashton Research Station-Weather Generator (LARS?WG). Also, crop growth under projected climate conditions was simulated based on the Cropping System Model (CSM)-CERES-Maize. LARS-WG had appropriate prediction for climatic parameters. The predicted results showed that the day to anthesis (DTA) and anthesis period (AP) of various cultivars of maize were shortened in response to climate change impacts in all scenarios and GCMs models; ranging between 0.5 % to 17.5 % for DTA and 5 % to 33 % for AP. The simulated grain yields of different cultivars was gradually decreased across all the scenarios by 6.4 % to 42.15 % during the future 100 years compared to the present climate conditions. The short and medium season cultivars were faced with the lowest and highest reduction of the traits, respectively. It means that for the short maturing cultivars, the impacts of high temperature stress could be much less compared with medium and long maturity cultivars. Based on our findings, it can be concluded that cultivation of early maturing cultivars of maize can be considered as the effective approach to mitigate the adverse effects of climate.  相似文献   

8.
黄淮海平原冬小麦种植的气候变化适应评估   总被引:1,自引:0,他引:1  
水资源短缺影响黄淮海平原农业稳定和可持续发展。气候变化情景下,农业用水紧张的问题可能进一步加剧,种植制度和作物品种区域布局将面临调整。论文利用IPCC 5三种代表性温室气体浓度排放路径(RCP 2.6、RCP 4.5和RCP 8.5)的多模式集成数据,基于VIP(soil-Vegetation-atmosphere Interface Processes)生态水文模型,模拟了2011—2059年黄淮海平原二级子流域的水资源盈亏变化。在此基础上,针对水分亏缺最严重的子流域,设计无外来调水和维持2000—2010年调水总量水平的两种流域地下水采补均衡情景,对冬小麦种植区域的合理布局及其对产量的影响进行评估。结果表明,2050年代黄淮海平原农作物蒸散量增幅大于降雨量增幅,北部地区水分亏缺量将增加,南部地区水分盈余量则减少。在低到高的排放情景下,全区域水分盈余量下降0.1%~14.1%。两种地下水采补均衡情景下,2050年代黄淮海平原冬小麦种植面积应分别减少9.8%~11.3%和7.0%~8.8%,相应产量分别增加0~11.9%和3.0%~15.9%。适当减少冬小麦种植面积,可有效减缓黄淮海地区农业水资源的不足,保护生态环境,促进农业可持续发展。  相似文献   

9.
Climate change, population growth and socio-structural changes will make meeting future food demands extremely challenging. As wheat is a globally traded food commodity central to the food security of many nations, this paper uses it as an example to explore the impact of climate change on global food supply and quantify the resulting greenhouse gas emissions. Published data on projected wheat production is used to analyse how global production can be increased to match projected demand. The results show that the largest projected wheat demand increases are in areas most likely to suffer severe climate change impacts, but that global demand could be met if northern hemisphere producers exploit climate change benefits to increase production and narrow their yield gaps. Life cycle assessment of different climate change scenarios shows that in the case of one of the most important wheat producers (the UK) it may be possible to improve yields with an increase of only 0.6% in the emission intensity per unit of wheat produced in a 2 °C scenario. However, UK production would need to rise substantially, increasing total UK wheat production emissions by 26%. This demonstrates how national emission inventories and associated targets do not incentivise minimisation of global greenhouse gas emissions while meeting increased food demands, highlighting a triad of challenges: meeting the rising demand for food, adapting to climate change and reducing emissions.  相似文献   

10.
Climate change and variability has the potential to impact crop growth by altering components of a region’s water balance. Evapotranspiration driven by higher temperatures can directly increase the demand of irrigation water, while indirectly decreasing the length of the annual crop growth period. The accompanying change in precipitation also affects the need to supply irrigation water. This study focuses on the spatial and temporal variation of historical and future irrigation water requirements of winter wheat (Triticum aestivum L.) in the Haihe River Basin, China. Irrigation water requirement is estimated using a simple water balance model. Climate change is incorporated by using predicted changes in daily precipitation and temperature. Changes in evapotranspiration and crop phenophase are then calculated for historical and future climate. Over the past 50 years, a decrease in total net irrigation water requirement (NIR) was observed mainly due to a reduction in the crop growth period length. The NIR is shown to decrease 2.8~6.9 mm with a 1-day reduction in growth period length. In the future, sowing period will come later and the heading period earlier in the year. The NIR in November, March and April is predicted to increase, especially in April. Increased NIR can result in increased water deficit, causing negative impacts on crop yield due to water stress. In the future, more attention should be paid to water resource management during the annual crop growth period of winter wheat in the Haihe River Basin.  相似文献   

11.
A simulation study has been carried out using the InfoCrop mustard model to assess the impact of climate change and adaptation gains and to delineate the vulnerable regions for mustard (Brassica juncea (L.) Czernj. Cosson) production in India. On an all India basis, climate change is projected to reduce mustard grain yield by ~2 % in 2020 (2010–2039), ~7.9 % in 2050 (2040–2069) and ~15 % in 2080 (2070–2099) climate scenarios of MIROC3.2.HI (a global climate model) and Providing Regional Climates for Impact Studies (PRECIS, a regional climate model) models, if no adaptation is followed. However, spatiotemporal variations exist for the magnitude of impacts. Yield is projected to reduce in regions with current mean seasonal temperature regimes above 25/10 °C during crop growth. Adapting to climate change through a combination of improved input efficiency, additional fertilizers and adjusting the sowing time of current varieties can increase yield by ~17 %. With improved varieties, yield can be enhanced by ~25 % in 2020 climate scenario. But, projected benefits may reduce thereafter. Development of short-duration varieties and improved crop husbandry becomes essential for sustaining mustard yield in future climates. As climatically suitable period for mustard cultivation may reduce in future, short-duration (<130 days) cultivars with 63 % pod filling period will become more adaptable. There is a need to look beyond the suggested adaptation strategy to minimize the yield reduction in net vulnerable regions.  相似文献   

12.
Globally, yam (Dioscorea spp.) is the fifth most important root crop after sweet potatoes (Ipomoea batatas L.) and the second most important crop in Africa in terms of production after cassava (Manihot esculenta L.) and has long been vital to food security in sub-Saharan Africa (SSA). Climate change is expected to have its most severe impact on crops in food insecure regions, yet very little is known about impact of climate change on yam productivity. Therefore, we try estimating the effect of climate change on the yam (variety: Florido) yield and evaluating different adaptation strategies to mitigate its effect. Three regional climate models REgional MOdel (REMO), Swedish Meteorological and Hydrological Institute Regional Climate Model (SMHIRCA), and Hadley Regional Model (HADRM3P) were coupled to a crop growth simulation model namely Environmental Policy Integrated Climate (EPIC) version 3060 to simulate current and future yam yields in the Upper Ouémé basin (Benin Republic). For the future, substantial yield decreases were estimated varying according to the climate scenario. We explored the advantages of specific adaptation strategies suggesting that changing sowing date may be ineffective in counteracting adverse climatic effects. Late maturing cultivars could be effective in offsetting the adverse impacts. Whereas, by coupling irrigation and fertilizer application with late maturing cultivars, highest increase in the yam productivity could be realized which accounted up to 49 % depending upon the projection of the scenarios analyzed.  相似文献   

13.
Climate change is projected to impact forest ecosystems, including biodiversity and Net Primary Productivity (NPP). National level carbon forest sector mitigation potential estimates are available for India; however impacts of projected climate change are not included in the mitigation potential estimates. Change in NPP (in gC/m2/yr) is taken to represent the impacts of climate change. Long term impacts of climate change (2085) on the NPP of Indian forests are available; however no such regional estimates are available for short and medium terms. The present study based on GCM climatology scenarios projects the short, medium and long term impacts of climate change on forest ecosystems especially on NPP using BIOME4 vegetation model. We estimate that under A2 scenario by the year 2030 the NPP changes by (−5) to 40% across different agro-ecological zones (AEZ). By 2050 it increases by 15% to 59% and by 2070 it increases by 34 to 84%. However, under B2 scenario it increases only by 3 to 25%, 3.5 to 34% and (−2.5) to 38% respectively, in the same time periods. The cumulative mitigation potential is estimated to increase by up to 21% (by nearly 1 GtC) under A2 scenario between the years 2008 and 2108, whereas, under B2 the mitigation potential increases only by 14% (646 MtC). However, cumulative mitigation potential estimates obtained from IBIS—a dynamic global vegetation model suggest much smaller gains, where mitigation potential increases by only 6% and 5% during the period 2008 to 2108.  相似文献   

14.
Climate change associated global warming, rise in carbon dioxide concentration and uncertainties in precipitation has profound implications on Indian agriculture. Maize (Zea mays L.), the third most important cereal crop in India, has a major role to play in country’s food security. Thus, it is important to analyze the consequence of climate change on maize productivity in major maize producing regions in India and elucidate potential adaptive strategy to minimize the adverse effects. Calibrated and validated InfoCrop-MAIZE model was used for analyzing the impacts of increase in temperature, carbon dioxide (CO2) and change in rainfall apart from HadCM3 A2a scenario for 2020, 2050 and 2080. The main insights from the analysis are threefold. First, maize yields in monsoon are projected to be adversely affected due to rise in atmospheric temperature; but increased rainfall can partly offset those loses. During winter, maize grain yield is projected to reduced with increase in temperature in two of the regions (Mid Indo-Gangetic Plains or MIGP, and Southern Plateau or SP), but in the Upper Indo-Gangetic Plain (UIGP), where relatively low temperatures prevail during winter, yield increased up to a 2.7°C rise in temperature. Variation in rainfall may not have a major impact on winter yields, as the crop is already well irrigated. Secondly, the spatio-temporal variations in projected changes in temperature and rainfall are likely to lead to differential impacts in the different regions. In particular, monsoon yield is reduced most in SP (up to 35%), winter yield is reduced most in MIGP (up to 55%), while UIGP yields are relatively unaffected. Third, developing new cultivars with growth pattern in changed climate scenarios similar to that of current varieties in present conditions could be an advantageous adaptation strategy for minimizing the vulnerability of maize production in India.  相似文献   

15.
16.
Regional climate change projections for the Northeast USA   总被引:1,自引:0,他引:1  
Climate projections at relevant temporal and spatial scales are essential to assess potential future climate change impacts on climatologically diverse regions such as the northeast United States. Here, we show how both statistical and dynamical downscaling methods applied to relatively coarse-scale atmosphere-ocean general circulation model output are able to improve simulation of spatial and temporal variability in temperature and precipitation across the region. We then develop high-resolution projections of future climate change across the northeast USA, using IPCC SRES emission scenarios combined with these downscaling methods. The projections show increases in temperature that are larger at higher latitudes and inland, as well as the potential for changing precipitation patterns, particularly along the coast. While the absolute magnitude of change expected over the coming century depends on the sensitivity of the climate system to human forcing, significantly higher increases in temperature and in winter precipitation are expected under a higher as compared to lower scenario of future emissions from human activities.  相似文献   

17.
气候变化情景下湿地净初级生产力风险评价   总被引:1,自引:0,他引:1  
刘夏  王毅勇  范雅秋 《中国环境科学》2015,35(12):3762-3770
采用BIOME-BGC模型,模拟了气候变化情景下(A1B, A2, B2)三江平原富锦地区小叶章(Calamagrostis angustifolia)湿地的净初级生产力(NPP)变化,并通过NPP变化情况评价小叶章湿地风险等级.结果表明:未来30年(2013~2042年)各气候情景下富锦小叶章湿地NPP均值均高于基准期均值(1961~1990), A1B和B2情景下未来30年间NPP波动范围变大,A2情景下NPP有降低趋势.风险评价结果表明,气候变化情景下小叶章湿地存在一定风险,尤其是在A1B情景下,未来30年中可能有6年以上的年份存在高风险,A2情景下湿地风险最低.湿地NPP变化与降水量呈显著正相关(R2=0.58,P<0.05),说明降水量是影响区域湿地的重要因素.尽管气候变化情景下假设了存在升温?CO2浓度升高等有利于植物生长的因素,但降水量的的剧烈变化以及极端气候事件的增加,可能会导致湿地在未来气候变化情景下面临较高风险,未来湿地保护与管理过程中应重点关注水的补给和调配.  相似文献   

18.
气候变化对海河流域水资源的影响及其对策   总被引:8,自引:1,他引:7  
将全球气候模式与分布式水文模型WEP-L耦合,在国家气候中心整理提供的多模式平均数据集基础上,利用WEP-L模拟了海河流域历史30年(1961—1990年)和未来30年(2021—2050年)降水、蒸发、径流等主要水循环要素的变化规律,分析了气候变化对海河流域水资源的影响,结果表明,未来30年:①从年际变化规律看,气温普遍升高,降雨量略有增加,蒸发量普遍加大,径流量呈减少趋势,且有丰水年洪水规模更大、平水或枯水年干旱情况更严重的趋势;②从年内变化规律看,各月蒸发量普遍增加,汛期的降雨量有所减少,非汛期的降雨量有所增加,各月径流量则有不同程度的减少。因此,未来气候变化条件下海河流域水资源管理将面临更加严峻的挑战,本研究给出了一些基本的对策。  相似文献   

19.
中国气候变化影响研究概况   总被引:2,自引:0,他引:2  
介绍了目前我国在未来气候变化影响研究方面的概况,气候影响研究采用的方法多为政府间气候变化专业委员会(IPCC) 第二工作组提出的气候变化影响评价方法。未来气候变化影响研究是在大气中CO2 浓度加倍,或气温、降水变化的情景下,进行未来农业、林业、水资源、生态环境以及海平面上升等方面的潜在影响研究,其中有模型研究、实验室研究、宏观研究和适应对策研究等。这些研究采用的未来气候情景多为GCM 模型预测的气候情景  相似文献   

20.
中国气候变化影响研究概况   总被引:10,自引:4,他引:6  
介绍了目前我国在未来气候变化影响研究方面的概况,气候影响研究采用的方法多为政府间气候变化专业委员会(IPCC)第二工作组提出的气候变化影响评价方法。未来气候变化影响研究是在大气中C02浓度加倍,或气温、降水变化的情景下,进行未来农业、林业、水资源、生态环境以及海平面上升等方面的潜在影响研究,其中有模型研究、实验室研究、宏观研究和适应对策研究等。这些研究采用的未来气候情景多为GCM模型预测的气候情景。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号