首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
α-FeOOH类Fenton可见光光催化降解有毒有机污染物   总被引:1,自引:0,他引:1  
用氨水滴定法制备了针铁矿α-FH,以α-FeOOH作为光催化剂,橙Ⅱ(Orange-Ⅱ)和2,4-二氯苯酚(2,4-dichlorophenol,DCP)为目标化合物,研究了可见光照射下(λ>420 nm) α-FeOOH对其光催化降解的催化特性.结果表明:在可见光照射下,pH为7.02,H2O2浓度为1.5×10-2...  相似文献   

2.
以掺杂了Ni的纳米铁及其转化产物耦合去除对氯硝基苯及其脱氯产物,探讨了耦合去除的效能、历程和机制.结果表明,m(Ni)/m(Fe)分别为8%和12%的纳米铁/镍(n-Fe/Ni)不仅能在20 min内将对氯硝基苯的硝基还原产物—对氯苯胺近乎100%脱氯还原为苯胺,而且在反应36 h后,其转化产物可将苯胺的浓度降至接近于0 mg·L-1. X-射线衍射和透射电镜的表征结果表明,反应8 h后,Fe(0)主要被氧化为板条状纤铁矿(γ-FeOOH)和针状的针铁矿(α-FeOOH).耦合去除历程与机制为:Fe(0)提供电子使对氯硝基苯被还原为对氯苯胺,其腐蚀产物H2在Ni催化下解离为活性氢原子(H*).H*进攻对氯苯胺的C—Cl键使其脱氯还原为苯胺,苯胺随后被Fe(0)的转化产物α/γ-FeOOH吸附固定,从而使对氯硝基苯及苯胺从水中彻底去除.  相似文献   

3.
张晓  胡春  张丽丽  石宝友 《环境科学学报》2020,40(11):3895-3904
采用醇助水热法制备了新型生物质炭修饰的α-FeOOH类芬顿催化剂(BC-FeOOH),并通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)对催化剂进行了表征,证明生物质炭(BC)成功引入到α-FeOOH中.以罗丹明B(RhB)为目标污染物,考察了BC修饰量、催化剂及H2O2投加量对其催化效率的影响.结果表明,BC的引入可以极大地提高FeOOH的类芬顿催化性能.在pH中性、催化剂投加量0.6 g·L-1、H2O2初始浓度10 mmol·L-1的条件下,BC-FeOOH(22.2% BC)对RhB的降解率可达到90%,重复利用5次活性仍可保持在80%左右,且铁离子溶出浓度仅为0.08 mg·L-1.进一步通过ESR在不同体系中的测试结果表明,BC的引入不仅可促进H2O2有效还原分解产生更多的羟基自由基(·OH),而且增强了催化剂与污染物RhB的相互作用,促使污染物失电子氧化降解,从而提高了FeOOH的催化活性及催化稳定性.  相似文献   

4.
不同腐蚀体系中低合金钢锈层的拉曼光谱研究   总被引:1,自引:1,他引:0  
利用激光拉曼光谱法研究了舰船用镍铬系低合金钢在天然海水以及分别添加双氧水、高氯酸钾和过硫酸钠的NaCl(3.5%)溶液等4种体系中浸泡后腐蚀锈层的物相组成。结果表明:在含双氧水体系和天然海水体系中,钢样的内外锈层物相主要是α-Fe2O3、γ-FeOOH和Fe3O4。高氯酸钾和过硫酸钠腐蚀体系,其腐蚀锈层的外锈层除了含有α-Fe2O3和γ-FeOOH外还出现了γ-Fe2O3,内锈层只含有α-Fe2O3和γ-FeOOH,未发现Fe3O4。说明镍铬系低合金钢在含双氧水体系和天然海水体系中的腐蚀锈层物相组成差异最小。  相似文献   

5.
可见光下α-(Fe,Cu)OOH催化过氧化氢去除环丙沙星研究   总被引:1,自引:0,他引:1  
采用一步回流法合成了花状铜掺杂α-FeOOH纳米材料(α-(Fe,Cu) OOH),采用XRD、SEM、UV-Vis DRS和XPS等手段对其进行了分析表征,并研究了其在可见光下催化过氧化氢去除环丙沙星(CIP)的性能.结果表明:Cu掺杂引起了α-FeOOH表面能的变化,光吸收边在可见光区域向长波长方向移动;Cu掺杂提高了α-FeOOH活性和稳定性,当α-(Fe,Cu) OOH投加量为0.60 g·L~(-1),H_2O_2浓度为0.15 mol·L~(-1),反应进行180 min时,CIP(30 mg·L~(-1))被全部去除;异相类Fenton反应过程中羟基自由基(·OH)是重要的氧化活性物种,Cu~+/Cu~(2+)的存在不但影响·OH的生成速率,而且影响·OH的生成量.  相似文献   

6.
为了解决外源杂原子掺杂到碳基相催化剂过程中掺杂量低和分布不均的问题,本研究通过直接碳化聚吡咯(PPy)和聚噻吩(PTh)混合物制备得到硫氮共掺杂碳基催化材料(CPPy-PTh),并研究其活化过一硫酸盐(PMS)降解水中的2,4-二氯苯酚(2,4-DCP)的性能.结果表明,CPPy-PTh催化PMS可在30 min内降解99%的2,4-DCP.CPPy-PTh的高效催化能力主要是因为其表面被石墨化和氮、硫官能化,这使得PMS更容易在CPPy-PTh表面传递电子.淬灭实验和电子顺磁共振(EPR)结果表明,2,4-DCP的降解过程遵循以单线态氧(1O2)为主导的非自由基氧化途径.CPPy-PTh在宽广的pH范围和干扰离子存在下也同样具备催化能力.这些发现可为水中持久性有机物的降解提供理论指导和技术支持.  相似文献   

7.
以硝酸铁和硝酸银为原料,采用水热法和沉淀法制备了α-FeOOH/Ag_2O纳米光催化剂。通过X射线衍射(XRD),扫描电子显微镜(SEM),场发射透射电子显微镜(TEM)等手段对材料予以表征,结果表明成功构建了一种α-FeOOH/Ag_2O异质结构的纳米颗粒催化剂。以罗丹明B(RhB)水溶液作为模拟污水,采用LED白光灯作为光源,通过光降解实验评估其光催化性能。实验结果表明,当α-FeOOH和Ag_2O的质量比为1∶10,反应时间为60 min时,α-FeOOH/Ag_2O复合催化剂的光催化效果最优,RhB降解率达到了89.9%,而单一的α-FeOOH或是Ag_2O的降解率分别只有26.1%和58.9%。  相似文献   

8.
针铁矿/H_2O_2体系对染料橙黄Ⅱ光化学脱色的实验研究   总被引:1,自引:0,他引:1  
以针铁矿(α-FeOOH)为光催化剂,在金属卤灯(λ≥365 nm)照射下,对α-FeOOH与H2O2组成的非均相Fenton体系内橙黄Ⅱ的脱色进行了研究。考察了初始pH值、α-FeOOH用量、H2O2浓度和反应时间对橙黄Ⅱ脱色过程的影响。结果表明,在α-FeOOH用量为0.3 g/L,H2O2浓度为6 mmol/L,pH 3.0时,橙黄Ⅱ的脱色效果最好,光照90 min后脱色率达到99.4%。橙黄Ⅱ的光降解反应动力学符合Langmuir-Hinshelwood(L-H)动力学方程。对不同时间溶液中的总有机碳(TOC)监测,结果表明体系中橙黄Ⅱ的矿化率较低,通过对溶液中铁(Fe2+和总铁)溶出的测定,说明可能的反应涉及针铁矿表面的铁循环。  相似文献   

9.
采用均匀沉淀法合成α-FeOOH,并利用XRD、FT-IR、SEM、BET、EDS等仪器进行分析表征.以金橙Ⅱ为目标污染物,研究254 nm紫外光照射下,草酸根对α-FeOOH多相UV-Fenton催化能力的增效实验.结果表明,合成的催化剂为针棒状,无其他杂元素.草酸根对α-FeOOH多相UV-Fenton降解金橙Ⅱ具有显著的增效能力,并在0.4 mmol·L-1时取得最佳增效效果.在紫外光照射下,初始pH值为3、催化剂用量1 g·L-1、H2O2浓度10 mmol·L-1、草酸根浓度0.4 mmol·L-1时,反应15min即可对初始浓度为0.2 mmol·L-1的金橙Ⅱ达到99%以上的脱色效果.对比α-FeOOH多相UV-Fenton体系,其增效率高达116.9%.相同条件下,丙二酸根、乙酸根、EDTA、柠檬酸根对原体系分别有5.2%、8.1%、23.2%、25.7%的抑制率.相同条件下,草酸根增效体系对有机物的矿化速率常数比基础体系提高69.9%,能大大缩短矿化处理所需时间.草酸根增效机制主要是为亚铁离子的生成提供新的光致还原途径,并在反应初期提高铁离子的浓度、增加体系均相反应比重,进而提高体系HO·的浓度.草酸根增效α-FeOOH多相UV-Fenton体系是一种稳定可靠的方法.增效体系在3次循环之后对金橙Ⅱ的降解仍有101.5%的增效率;反应结束后,草酸根增溶的铁离子能被催化剂重新吸附回表面,避免了催化剂活性组分的流失与铁离子的二次污染.  相似文献   

10.
利用钛白副产物绿矾制备纳米α-FeOOH的研究   总被引:4,自引:0,他引:4  
以硫酸法钛白副产物绿矾为原料,制备纳米α-FeOOH.研究净化过程中水解温度、水解时间、还原剂等对绿矾净化效果的影响;采用酸法制备纳米α-FeOOH,所得粒子用DTA、TEM和XRD等手段进行表征,结果表明粒子为α-FeOOH,颗粒长约80 nm、宽约20nm.  相似文献   

11.
零价铁还原降解2,4-二硝基甲苯研究   总被引:7,自引:0,他引:7  
研究了零价铁对2,4-二硝基甲苯(2,4-DNT)的还原降解情况。实验结果表明,2,4-DNT的还原降解率与溶液初始pH值、初始浓度、溶解氧含量和铁粉投加量等因素有关。2,4-DNT在还原过程中先生成2-氨基-4-硝基甲苯(2A4NT)和4-氨基-2-硝基甲苯(4A2NT),最后被还原成2,4-二氨基甲苯(2,4-DAT)。  相似文献   

12.
为了探究氧化与还原预处理对氧化-还原联合技术修复硝基苯污染地下水的影响,选取2,4-DNT(2,4-二硝基甲苯)为研究对象,构建过硫酸盐/铁炭修复技术体系,分别设置2个试验槽,一个试验槽以过硫酸盐作为氧化预处理联合以铁炭作为还原后处理,另一个试验槽以铁炭作为还原预处理联合以过硫酸盐作为氧化后处理,对比研究构建的氧化-还原联合系统中不同氧化与还原预处理方式对2,4-DNT去除机制的影响.结果表明:①过硫酸盐氧化材料填充位置显著影响试验槽pH和ORP(氧化还原电位)的变化,在运行周期5 PV(PV为孔隙体积,1 PV时间约为4 h)内,pH可显著增至11左右,ORP值达到最高.②在运行周期5 PV内,氧化填充层S2O82-浓度和还原填充层Fe2+浓度均显著降低.③在运行周期5 PV内,随运行周期的增加,以过硫酸盐作为氧化预处理联合以铁炭作为还原后处理的协同技术体系对2,4-DNT的去除效果显著降低,以铁炭作为还原预处理联合以过硫酸盐作为氧化后处理的协同技术体系对2,4-DNT的去除率维持在100%.④通过液相-质谱联用技术,识别构建的氧化-还原联合技术体系内2,4-DNT降解的主要中间产物,同时结合铁炭微电解还原机制和过硫酸盐氧化机制提出了2,4-DNT协同处理机制及其可能的降解路径.研究显示,还原预处理更有利于氧化-还原联合技术对地下水中2,4-DNT的去除,可为有效处理硝基苯化合物污染地下水提供理论支撑.   相似文献   

13.
Fe0还原地下水中2,4-DNT影响因素及产物   总被引:1,自引:1,他引:0  
为了解零价铁(Fe0)修复污染地下水中微量2,4-二硝基甲苯 (2,4-DNT)还原规律,采用序批试验,考察地下水中常见阴离子(Cl-,NO3-和PO43-)及重金属Cr(Ⅵ)对Fe0还原2,4-DNT能力的影响,并分析了Fe0还原2,4-DNT的中间产物和最终产物.结果表明:Cl-与NO3-均能显著提高2,4-DNT的还原降解率,当反应进行120 min时,溶液中c(Cl-)由0 mmol/L增加到1 mmol/L,Fe0对2,4-DNT的还原降解率由31.4%增加到97.2%;溶液中c(NO3-)由0 mmol/L增加到1 mmol/L,还原降解率由31.4%增加到78.9%;PO43-则表现为明显的抑制作用,当反应进行120 min时,溶液中c(PO43-)由0 mmol/L增加到1 mmol/L,还原降解率由31.4%降至2.1%.Cr(Ⅵ)能与2,4-DNT竞争Fe0提供的活性电子,当ρ〔Cr(Ⅵ)〕为20 mg/L时,Cr(Ⅵ)对Fe0还原2,4-DNT能力的抑制作用显著.Fe0还原2,4-DNT的中间产物为4-氨基-2硝基甲苯(4A2NT)和2-氨基-4硝基甲苯(2A4NT),最终产物为2,4-二氨基甲苯(2,4-DAT).因此,在地下水硝基苯类污染物零价铁修复实践中,应考虑地下水中离子组分对反应过程的影响;2,4-DNT的还原最终产物为2,4-DAT,无法进一步降解,需后续处理.   相似文献   

14.
为探究并优化浸渍热解法制备铁改性生物炭(MBC)活化过硫酸盐(PS)对有机污染物去除的试验条件及影响因素,以2,4-二硝基甲苯(2,4-DNT)为目标污染物,考察了热解参数(热解温度、升温速率和停留时间)、FeCl3浸渍浓度及初始pH值对2,4-DNT去除的影响,并采用电子自旋共振波谱技术及自由基猝灭试验鉴定了PS/MBC体系中生成的自由基。结果表明:1)热解温度对MBC活化PS去除2,4-DNT的影响最显著,其次为升温速率和停留时间;当热解温度、停留时间和升温速率分别为300℃、3 h和10℃/min时,热解制备的MBC对活化PS去除2,4-DNT的效果最佳;2)FeCl3浸渍浓度是影响MBC活化性能的重要因素,随着FeCl3浸渍浓度的升高,2,4-DNT的去除率先增后减,当FeCl3的浸渍浓度为100 mmol/L时,5 h内2,4-DNT的去除率可达到100%,2,4-DNT去除的准一级动力学常数(kobs)为1.373 min-1;3)当初始pH值为5.0~9.0时,2,4-DNT均具有较好的去除效果,其去除率为94.5%~83.6%,kobs为0.606~0.345 min-1;4)PS/MBC体系中生成的·OH是2,4-DNT去除的主要原因,其强度随MBC的热解温度和FeCl3浸渍浓度的不同差异较大。研究结果表明,浸渍热解法制备的MBC可有效活化PS实现污染物的高效去除,为PS化学氧化处理有机污染水体提供了新思路。  相似文献   

15.
Fenton氧化处理爆炸物污染土壤的实验研究   总被引:1,自引:0,他引:1  
采用摇瓶和玻璃柱试验考察了Fenton氧化处理爆炸物污染土壤中2,4-DNT、2,6-DNT以及COD等的去除效果及其最佳参数.当3%H2O2投加量达到26.46mmol、FeSO4和H2O2的物质的量之比约为1∶73.56时,2,4-DNT和2,6-DNT均可被完全氧化,COD去除率可达到87%.对于2,4-DNT和2,6-DNT,反应时间只需要2h,但要同时去除其它芳香族硝基化合物,则反应时间需要超过8h.土壤直接Fenton氧化的效果并不理想,而对洗出液进行Fenton氧化可以取得很好的效果.通过反应动力学分析和丙酮抑制试验得出,2,4-DNT比2,6-DNT容易氧化.GC-MS分析结果表明,不仅土壤中的2,4-DNT、2,6-DNT可被氧化,其它的硝基芳香族有机化合物也可被氧化去除.  相似文献   

16.
采用O3催化氧化法深度处理兰炭废水,提出了兰炭废水达标排放的新处理方法。以铜为活性组分,氧化铝为载体采用浸渍法制备CuO/γ-Al2O3催化剂,并采用XRD对其进行表征,利用催化剂结合O3催化氧化法去除兰炭废水中经生化处理后残留的污染物。设计了催化氧化试验装置,考察了催化剂投加量、反应时间、O3用量以及pH等因素对处理效果的影响。实验结果表明,pH在酸性条件下有利于COD去除率的提高,O3用量提高有助于COD去除率的提高,将催化剂用量和反应时间控制在一定范围内有利于污染物的去除;最佳条件下催化剂投加量300 g,反应时间1 h,O3用量0.08 m3/h,pH为7左右时COD去除率可达到95%左右。另外,催化剂在20次反应过程中表现出较高的催化活性及较强的稳定性。  相似文献   

17.
零价铁PRB修复2,4-DNT污染地下水模拟研究   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了零价铁(Fe0)作为PRB墙体介质材料去除地下水环境中2,4-二硝基甲苯(2,4-DNT)可行性.通过室内试验研究地下水环境中Fe0去除水相2,4-DNT效果以及降解动力学参数,并结合一假设地下水受2,4-DNT污染的场地,采用Visual Modflow模拟Fe0墙体材料PRB(Fe0-PRB)修复地下水中2,4-DNT降解效果并评价其可行性.结果表明:在模拟过程中,PRB能有效控制并减少污染羽面积,降低污染浓度;污染4a后,污染地下水的2,4-DNT总质量约1.46×104kg,可推知PRB修复达标耗用Fe0材料为8.76×104kg;渗透系数增大导致地下水速率增大,2,4-DNT与墙体Fe0材料接触时间不充分,污染物污染下游地下水,同时也加速PRB上游污染羽面积减少.因此,结合数值模拟是有效的评价PRB介质材料修复地下水污染效果及确定PRB参数的重要手段之一.  相似文献   

18.
王华  李光明  张芳  黄菊文 《环境科学》2009,30(7):1925-1930
在自行研制开发的一套固定床和复合三维电场一体化连续式催化湿式氧化反应器中,采用浸渍法制备的Mn-Sn-Sb-3/γ-Al2O3催化剂,实验研究了苯酚催化湿式氧化、电催化氧化以及电场效应下的催化湿式氧化过程的行为.结果表明,一体化反应器在较低反应温度(t=130℃)和氧分压(PO2=1.0 MPa)下即可获得相当满意的处理效果,空时仅为27 min时苯酚和TOC的去除率就分别可达到94.0%和88.4%.电场效应下的催化湿式氧化协同降解苯酚的反应速率常数大于单独电催化或催化湿式氧化降解苯酚的反应速率常数,而且还大大超过两者之和,电催化氧化对催化湿式氧化工艺存在明显的协同增效作用.  相似文献   

19.
The performances and kinetic parameters of Fenton oxidation of 2,4- and 2,6-dinitrotoluene (DNT) in water-acetone mixtures and explosive contaminated soil washing-out solutions were investigated at a laboratory scale. The experimental results show that acetone can be a significant hydroxyl radical scavenger and result in serious inhibition of Fenton oxidation of 2,4- and 2,6-DNT. Although no serious inhibition was found in contaminated soil washing-out solutions, longer reaction time was needed to remove 2,4- and 2,6-DNT completely, mainly due to the competition of hydroxyl radicals. Fenton oxidation of 2,4- and 2,6-DNT fit well with the first-order kinetics and the presence of acetone also reduced DNT’s degradation kinetics. Based on the comparison and matching of retention time and ultraviolet (UV) spectra between high performance liquid chromatography (HPLC) and standards, the following reaction pathway for 2,4-DNT primary degradation was proposed: 2,4-DNT → 2,4-dinitro-benzaldehyde → 2,4-dinitrobenzoic acid → 1,3-dinitrobenzene → 3-nitrophenol.  相似文献   

20.
酸活化赤泥催化臭氧氧化降解水中硝基苯的效能研究   总被引:5,自引:1,他引:4  
康雅凝  李华楠  徐冰冰  齐飞  赵伦 《环境科学》2013,34(5):1790-1796
以铝工业废物赤泥为原料,采用酸化的方法活化赤泥,提高其在多相催化臭氧氧化除污染体系中的催化活性,并对其催化臭氧除污染效能及机制进行探讨.研究发现,和赤泥原矿相比,酸化赤泥表现出十分显著的催化能力;酸化赤泥(RM6.0)催化臭氧氧化硝基苯的去除率随臭氧浓度的增加而增加;当臭氧浓度由0.4 mg.L-1增加至1.7 mg.L-1时,硝基苯的去除率由45%提高到92%.溶液pH对RM6.0催化体系利用臭氧能力的影响与其催化臭氧氧化降解NB的影响表现出一致的结果.初始pH变化所带来的RM6.0催化活性的变化,主要是由于体系中氢氧根浓度的变化,导致臭氧分解形成羟基自由基所致;过高pH值导致的羟基自由基的猝灭显促使RM6.0催化臭氧氧化NB活性的降低.通过RM6.0对臭氧的利用能力及羟基自由基抑制实验结果发现,RM6.0催化臭氧降解NB的主要作用机制是催化剂表面吸附臭氧,实现臭氧在催化剂表面的富集,进而实现对NB有机污染物的氧化降解.在这个过程中羟基自由基是存在的,主要是在臭氧与硝基苯在界面氧化过程中分解而成,并进一步氧化NB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号