首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
Stellite alloys, which have been widely used in the aerospace, automotive and chemical industries, are hard-to-cut cobalt-based materials. This study investigates the machinability of stellite 12 alloys with uncoated carbide cutting tool grades YG610 (K01-K10) and YT726 (K05-K10/M20) and SANDVIK coated carbide tool SNMG150612-SM1105 under dry cutting conditions. Both wear mechanisms and failure modes of the uncoated and coated tools were investigated with turning experiments. The results show that the coated tool SM1105 remarkably outperforms the uncoated tools; and the cutting tool YG610 generally outperforms YT726 under all cutting conditions. Built-up edge was found with YG610 in some cutting conditions and with SM1105 at cutting speed of 16 m/min. Tool surface burning marks were observed on YT726 at relatively higher cutting speeds. Wear develops slowly with coated tools SM1105 until VB reaches 0.2 mm at most conditions (except at v = 43 m/min, f = 0.25 mm/r). Excessive tool flank typically resulted in tool breakage at the cutting edge for uncoated tools. Abrasive and adhesive wear of cutting tools were observed at low cutting speeds while diffusion and chemical wear occurred at higher cutting speeds.  相似文献   

2.
目的 解决硬质合金刀具高速干切削难加工材料面临效率低、寿命短的难题,提升刀具涂层的耐热能力,在AlCrSiN涂层中周期性植入AlCrON热屏障层,并在其两侧沉积AlCrN层进行包夹,改善含氧层的韧性,既能保持涂层刀具较高的强度,又能改善其耐热能力.方法 采用全自动电弧离子镀膜机,研制具有不同调制周期的AlCrSiN/A...  相似文献   

3.
For machining operations such as drilling and tapping, the challenge of achieving dry machining is difficult due to the significant role that cutting fluid plays in lubrication and chip removal. A new approach for dry deep hole drilling of aluminum is presented. This new method utilizes a magnetostrictively actuated tool holder to modulate the axial position of a drill tip and thus vary the chip size. Under appropriate modulation conditions, small chips are produced that are relatively easy to evacuate through the drill flutes. The development of the magnetostrictive tool holder system is described and its performance is evaluated. The results of drilling tests performed with the magnetostrictive tool holder system are reported, and the new tool holder is demonstrated to offer promise as an alternative to drilling with a cutting fluid.  相似文献   

4.
This paper describes an analytical solution for turning and milling stability that includes process damping effects. Comparisons between the new analytical solution, time-domain simulation, and experiment are provided. The velocity-dependent process damping model applied in the analysis relies on a single coefficient similar to the specific cutting force approach to modeling cutting force. The process damping coefficient is identified experimentally using a flexure-based machining setup for a selected tool-workpiece pair (carbide insert-AISI 1018 steel). The effects of tool wear and cutting edge relief angle are also evaluated. It is shown that a smaller relief angle or higher wear results in increased process damping and improved stability at low spindle speeds.  相似文献   

5.
Hydroxyapatite (HAP) is a widely used bio-ceramic in the fields of orthopedics and dentistry. This study investigates the machinability of nano-crystalline HAP (nHAP) bio-ceramic in end milling operations, using uncoated carbide tool under dry cutting conditions. Efforts are focused on the effects of various machining conditions on surface integrity. A first order surface roughness model for the end milling of nHAP was developed using response surface methodology (RSM), relating surface roughness to the cutting parameters: cutting speed, feed, and depth of cut. Model analysis showed that all three cutting parameters have significant effect on surface roughness. However, the current model has limited statistical predictive power and a higher order model is desired. Furthermore, tool wear and chip morphology was studied. Machined surface analysis showed that the surface integrity was good, and material removal was caused by brittle fracture without plastic flow.  相似文献   

6.
High speed machining (HSM) of tool steels in their hardened state is emerging as an attractive approach for the mold and die industry due to its potential for significant cost savings and productivity improvement. An experimental study was conducted to investigate the tool wear mechanism and surface integrity in high speed ball nose end milling of hardened AISI A2 tool steel using coated tungsten carbide and polycrystalline cubic boron nitride (PCBN) tools. It is found that coated carbide tools can only be used at low speed (120 m/min) while high content PCBN tools are suitable for HSM range (470 m/min). PCBN tools produce a damage free workpiece with better surface finish and less work hardening. Despite the higher tool cost, HSM with PCBN tools lead to reduction in both total cost and production time per part.  相似文献   

7.
The application of controlled, low-frequency modulation (~100 Hz) superimposed onto the cutting process in the feed-direction – modulation-assisted machining (MAM) – is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining compacted graphite iron (CGI) at high machining speeds (>500 m/min). The tool life is at least 20 times greater than in conventional machining. This significant reduction in wear is a consequence of the multiple effects realized by MAM, including periodic disruption of the tool–workpiece contact, formation of discrete chips, enhanced fluid action and lower cutting temperatures. The propensity for thermochemical wear of CBN, the principal wear mode at high speeds in CGI machining, is thus reduced. The tool wear in MAM is also found to be smaller at the higher cutting speeds (730 m/min) tested. The feed-direction MAM appears feasible for implementation in industrial machining applications involving high speeds.  相似文献   

8.
A new approach for the machining of tantalum is presented. The new approach is a combination of traditional turning and cryogenically enhanced machining (CEM). In the tests, CEM was used to reduce the temperature at the cutting tool/workpiece interface, and thus reduce the temperature-dependent tool wear to prolong cutting tool life. The new method resulted in a reduction of surface roughness of the tantalum workpiece by 200% and a decrease of cutting forces by approximately 60% in experiments. Moreover, cutting tool life was extended up to 300% over that in the conventional machining.  相似文献   

9.
This paper describes the characteristics and the cutting parameters performance of spindle speeds (n, rpm) and feed-rates (f, mm/s) during three interval ranges of machining times (t, minutes) with respect to the surface roughness and burr formation, by using a miniaturized micro-milling machine. Flat end-mill tools that have two-flutes, made of solid carbide with Mega-T coated, with 0.2 mm in diameter were used to cut Aluminum Alloy AA1100. The causal relationship among spindle speeds, feed-rates, and machining times toward the surface roughness was analyzed using a statistical method ANOVA. It is found that the feed-rate (f) and machining time (t) contribute significantly to the surface roughness. Lower feed-rate would produce better surface roughness. However, when machining time is transformed into total cut length, it is known that a higher feed-rate, that consequently giving more productive machining since produce more cut length, would not degrade surface quality and tool life significantly. Burr occurrence on machined work pieces was analyzed using SEM. The average sizes of top burr for each cutting parameter selection were analyzed to find the relation between the cutting parameters and burr formation. In this research, bottom burr was found. It is formed in a longer machining time compare the formation of top burr, entrance burr and exit burr. Burr formation is significantly affected by the tool condition, which is degrading during the machining process. This knowledge of appropriate cutting parameter selection and actual tool condition would be an important consideration when planning a micro-milling process to produce a product with minimum burr.  相似文献   

10.
This paper presents a summary of recent developments in developing performance-based machining optimization methodologies for turning operations. Four major machining performance measures (cutting force, tool wear/tool life, chip form/chip breakability, and surface roughness) are considered in the present work, which involves the development and integration of hybrid models for single and multi-pass turning operations with and without the effects of progressive tool wear. Nonlinear programming techniques were used for single-pass operations, while a genetic algorithms approach was adopted for multi-pass operations. This methodology offers the selection of optimum cutting conditions and cutting tools for turning with complex grooved tools.  相似文献   

11.
The study focuses on the efforts for minimization of burr formation and improvement of hole surface roughness in micro through-hole machining. It deals with the development of micro compound tool which is consisting of a micro flat drill as the drilling part and a micro diamond-electroplated-grinding part for hole finishing. The finishing diameters of each drilling and grinding parts of the fabricated micro compound tool are 90 μm and 100 μm, respectively. The study focuses mainly on the effect of drill point angle and ultrasonic vibration applied during micro hole machining to the hole entrance and exit burrs formation. The used workpiece is made of stainless steel (SUS304) with a thickness of 100 μm. From the experiment, it was found that the tool having drill point angle of 118° resulted in a smaller burr formation although hole machining was conducted for 600 holes. Furthermore, the application of ultrasonic vibration during hole machining could improve the performance of the developed micro compound tool and decreased the burr size, especially the exit burr.  相似文献   

12.
This paper presents an investigation of the burr formation for a new material, machinable austempered ductile iron (MADI™), while drilling intersecting holes in the presence of tool wear. A factorial design is used to evaluate the effects of drill point angle and helix angle as well as feed rate and cutting speed on the burr width and height at both curved and flat hole exit conditions. The result indicates the presence of a complex interrelationship among these four variables, particularly the interaction between helix and point angle and its influence on drill corner wear and, hence, burr geometry. Burrs are considerably larger at the flat exit condition. Further experiments were conducted in a central composite design scheme to develop second-order polynomial models of the burr width and height. The result suggests that burr width and height can be reduced by using larger helix and smaller point angles. The result further demonstrates that the somewhat unique work-hardening characteristic of MADI™ during machining can lead to smaller burrs when smaller chiploads are used, regardless of the drill helix and point angles.  相似文献   

13.
Coated tools have improved the performance of both traditional and nontraditional machining processes and have resulted in improved machining characteristics. However, a study on the performance of coated tools in micromachining, particularly in ECM, has not yet been adequately conducted. One possible reason is the difficulties associated with the preparation of coated microtools. This paper describes a method of preparation of nickel coated tungsten microtools by electrodeposition and reports on the performance of these tools in microECM experiments. The tungsten microtool was electroplated with nickel with direct and pulse current. The effect of the various input parameters on the coating characteristics was studied and performance of the coated microtool was evaluated in pulse ECM. The coated tool removed more material than the uncoated tool under similar conditions and was more electrochemically stable. It was concluded that nickel coated tungsten microtool can improve the pulse ECM performance.  相似文献   

14.
Sensors capable of providing fast and reliable feedback signals for monitoring and control of existing and emerging machining processes are an important research topic, that has quickly gained academic and industrial interest in recent years. Generally, high-precision machining processes are very sensitive to variation in local machining conditions at the tool–workpiece interface and lack a thorough understanding of fundamental thermomechanical phenomena. Existing sensors to monitor the machining conditions are not suitable for robust in-process control as they are either destructively embedded and/or do not possess the necessary spatial and temporal resolution to monitor local tool internal temperatures during machining at the cutting tip/edge effectively. This paper presents a novel approach for assessing transient tool internal temperature fields in the close vicinity of less than 300 μm of the tool cutting edge. A revised array layout of 10 micro thin film micro thermocouples, fabricated using adapted semiconductor microfabrication methods, has been embedded into polycrystalline cubic boron nitride (PCBN) cutting inserts by means of a modified diffusion bonding technique. Scanning electron microscopy was used to examine material interactions at the bonding interface and to determine optimal bonding parameters. Sensor performance was statically and dynamically characterized. They show good linearity, sensitivity and very fast response time. Initial machining tests on aluminum alloys are described herein. The tests have been performed to demonstrate the functionality and reliability of tool embedded thin film sensors, and are part of a feasibility study with the ultimate goal of applying the instrumented insert in hard machining operations. The microsensor array was used for the acquisition of tool internal temperature profiles very close to the cutting tip. The influence of varying cutting parameters on transient tool internal temperature profiles was measured and discussed. With further study, the described instrumented cutting inserts could provide more valuable insight into the process physics and could improve various aspects of machining processes, e.g. reliability, tool life, and workpiece quality.  相似文献   

15.
The surface characteristics of a machined product strongly influence its functional performance. During machining, the grain size of the surface is frequently modified, thus the properties of the machined surface are different to that of the original bulk material. These changes must be taken into account when modeling the surface integrity effects resulting from machining. In the present work, grain size changes induced during turning of AA7075-T651 (160 HV) alloy are modeled using the Finite Element (FE) method and a user subroutine is implemented in the FE code to describe the microstructural change and to simulate the dynamic recrystallization, with the consequent formation of new grains. In particular, a procedure utilizing the Zener–Hollomon and Hall–Petch equations is implemented in the user subroutine to predict the evolution of the material grain size and the surface hardness when varying the cutting speeds (180–720 m/min) and tool nose radii (0.4–1.2 mm). All simulations were performed for dry cutting conditions using uncoated carbide tools. The effectiveness of the proposed FE model was demonstrated through its capability to predict grain size evolution and hardness modification from the bulk material to machined surface. The model is validated by comparing the predicted results with those experimentally observed.  相似文献   

16.
Single-point diamond turning (SPDT) experiments conducted on single-crystal 6-H silicon carbide (SiC) have shown chip formation similar to that seen in the machining of metals. The ductile nature of SiC is believed to be the result of a high-pressure phase transformation (HPPT), which generates a plastic zone of material that behaves in a metallic manner. This metallic behavior is the basis for using AdvantEdge, a metal machining simulation software, for comparison to experimental results.Simulations (2D) were carried out by matching the SPDT experimental conditions, which were conducted at nanometer (nm) depths of cut and varying tool rake angles. The experiments were performed by machining the circumference of the single-crystal wafer, thereby conforming to a 2D orthogonal cut (plunge cuts, or an infeed, achieved the depth of cut, and no cross feed was incorporated).The cutting and thrust forces generated from the experiments under ductile cutting conditions compared favorably with the simulation. As the depth of cut is decreased (250 nm, 100 nm, and 50 nm), the experimental conditions transition from a brittle to ductile behavior, with the 50 nm cuts being dominated by the ductile regime. Thus, the forces from the experiment and the simulations are in much better agreement for the smaller depths of cut, that is, below the critical depth of cut that establishes the ductile-to-brittle transition, as ductile conditions exist in both the simulation and experiments. The differences in the results that do arise are assumed to be primarily due to a springback of the material leading to increased rubbing on the flank face.  相似文献   

17.
Metalworking fluids (MWFs) are used widely in machining process to dissipate heat, lubricate moving surfaces, and clear chips. They have also been linked to a number of environmental and worker health problems. To reduce these impacts, minimum quantity lubrication (MQL) sprays of MWF delivered in air or CO2 have been proposed. MQL sprays can achieve performance comparable with conventional water-based or straight oil MWFs while only delivering a small fraction of the fluid. This performance advantage could be explained by the enhanced penetration into the cutting zone that results from delivering MWF in high pressure and precise sprays. To explore this hypothesis, an analytical model of MWF penetration into the flank face of the cutting zone is developed and validated using experimental data. The model is based on a derivation of the Navier–Stokes equation and the Reynolds equation for lubrication and applied to an orthogonal cutting geometry under steady-state conditions. A solution to the model is obtained using a numerical strategy of discretizing the analytical scheme with two-dimensional centered finite difference method. Penetration into the cutting zone is estimated for MQL sprays delivered in air, CO2 and N2 as well as two conventional MWFs, straight oil and semi-synthetic emulsion. The model suggests that conventional MWFs, do not penetrate the cutting zone fully and fail to provide direct cooling to the flank zone where wear is most likely to occur. MQL sprays do penetrate the cutting zone completely. Using convective heat transfer coefficients from a previous study, a finite element heat balance is carried out on the tool to understand how each fluid impacts temperature near the flank tip of the tool. The results of the modeling effort are consistent with experimental measurements of tool temperature during turning of titanium (6AL4V) using a K313 carbide tool. The prediction of temperature near the flank indicates that MQL sprays do suppress temperatures near the flank effectively. These results help explain the low levels of tool wear observed for some MQL sprays, particularly those based on high pressure CO2. This modeling framework provides valuable insight into how lubricant delivery characteristics such as speed, viscosity, and cutting zone geometry can impact lubricant penetration.  相似文献   

18.
The aim of this work is to investigate the effect of metal-working fluid (MWF) concentration on the machining responses including tool life and wear, cutting force, friction coefficient, chip morphology, and surface roughness during the machining of titanium with the use of the ACF spray system. Five different concentrations from 5 to 15% of a water-soluble metalworking fluid (MWF) were applied during turning of a titanium alloy, Ti–6Al–4V. The thermo-physical properties such as viscosity, surface tension and thermal conductivity of these concentrations were also measured. The test results demonstrate that the tool life first extends with the increase in MWF concentration and then drops with further increase. At low concentration (e.g., 5%), a lack of the lubrication effect causes to increase in a higher friction at the tool–chip interface resulting in severe chipping and tool nose/flank wear within a short machining time. On the other hand, at high concentration, the cooling effect is less. This increases cutting temperature and a faster thermal softening/chipping/notching of the tool material and higher friction at the tool–chip–workpiece interaction zones resulting in early tool failure. A good balance between the cooling and the lubrication effects seems to be found at the 10% MWF concentration as it offers the best machining performance. However, machining with flood coolant is observed to perform the best in the range of 5–7%.  相似文献   

19.
The conventional additives in metalworking fluids (MWFs) have effects in improving the machining conditions. However, many additives can lead to environmental contamination and health problems. In this paper, lignin obtained from wood is considered as a new “green” additive in MWFs. Lignin has been used as additives in other areas like pasted lead electrodes and polypropylene/coir composites but has never been applied in cutting fluids. In this paper, lignin is dissolved in 5% conventional MWF aqueous solutions in 8 different concentrations through injection and atomization methods. Then, experiments are conducted to evaluate the effectiveness of lignin containing MWFs in micro-milling operations. The performance is compared with that of 5% conventional cutting fluid in terms of machining forces, tool wears, and burr formations. The results show that the concentration of 0.015% lignin leads to the least cutting forces, tool wear and burrs. The results also show that an appropriate concentration of lignin in MWFs can help to improve the cooling and lubrication performances during machining. The results of this paper thus indicate that lignin has a potential to be used as an additive in metalworking fluids.  相似文献   

20.
Cost-effective machining of hardened steel components such as a large wind turbine bearing has traditionally posed a significant challenge. This paper presents an approach to machine hardened steel parts efficiently at higher material removal rates and lower tooling cost. The approach involves a two-step process consisting of laser tempering of the hardened workpiece surface followed by conventional machining at higher material removal rates with lower cost ceramic tools to efficiently remove the tempered material. The laser scanning parameters that yield the highest depth of tempered layer are obtained from a kinetic phase change model. Machining experiments are performed to demonstrate the possibility of higher material removal rates and improved tool wear behavior compared to the conventional hard turning process. Tool wear performance, cutting forces, and surface finish of Cubic Boron Nitride (CBN) tools as well as low cost ceramic tools are compared in machining of hardened AISI 52100 steel (~63 HRC). In addition, cutting forces and surface finish are compared for the laser tempering based turning and conventional hard turning processes. Experimental results show the potential benefits of the laser tempering based turning process over the conventional hard turning process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号