首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
建立了土壤中15种酞酸酯的加压流体萃取-弗罗里硅土柱净化-气相色谱测定方法。就萃取条件探讨了溶剂、温度、时间和循环次数对萃取效率的影响,就净化条件探讨了净化柱和洗脱溶剂对萃取效率的影响。根据研究结果,确定萃取条件以二氯甲烷为萃取溶剂,在萃取温度120℃、压强1 500 psi时,预热5 min,静态提取5 min,循环萃取2次,用体积为60%萃取池体积的萃取溶剂冲洗萃取池,之后用氮气吹扫萃取池90 s;净化条件为萃取溶液过弗罗里硅土固相萃取柱净化后,以正己烷∶丙酮(体积比为5∶1)洗脱。15种酞酸酯类化合物加标回收率为67.1%~124%,方法检出限为0.017~0.048 mg/kg。  相似文献   

2.
发展了一种磁性分散固相萃取技术对环境水体中17种有机氯农药进行萃取测定,并对萃取剂用量、萃取时间、解吸溶剂、盐度等实验影响因素进行了优化。典型萃取过程如下:取100 mg磁性萃取剂分散在200 mL水样中,加入4 g氯化钠,超声2 min完成萃取,用磁铁分离磁性萃取剂,丙酮解吸有机氯组分后进行GC-ECD分析。在优化条件下,实际水样的平均加标回收率为85.6%~96.5%,相对标准偏差为4.1%~6.7%,方法检出限为0.01~0.05 μg/L。方法操作简单、迅速,有机溶剂消耗量很少,环保,满足环境水体中有机氯农药的测定。  相似文献   

3.
采用正交设计和Box-Penhnken响应面设计,对分散液-液微萃取技术萃取水样中痕量十溴联苯醚的条件进行了筛选和优化,得到最佳条件:四氯乙烯为萃取剂(10μl)、丙酮作分散剂(1ml)、pH范围5~9、离子强度,2%NaCl及萃取时间10min。此优化条件下分散液-液微萃取技术的萃取回收率可达92.37%~104.38%,富集倍数为508~611。优化条件下方法的线性范围为0.01~100ng/ml,检出限(S/N=2)为3.0pg/ml,加标回收率为96.25%~102.16%,精密度为5.44%~6.34%。  相似文献   

4.
建立了顶空固相微萃取(HS-SPME)-气相色谱法(GC-ECD)分析饮用水中百菌清的方法。对HS-SPME的各项参数进行了优化:萃取纤维应选择弱极性的聚二甲基硅氧烷(PDMS,100μm),水样分析前应加入一定量的H2SO4溶液和Na Cl固体,调节pH和离子强度,可显著提高萃取效率。萃取温度70℃,萃取时间30 min,搅拌速度250 r/min,解吸时间3 min。根据优化后的条件,从线性、检出限、回收率、精密度等方面对整个方法进行了验证,结果表明,该方法线性良好,相关系数大于0.999,回收率与精密度均符合要求。取样量为10.0 mL时,检出限为0.09μg/L,可完全满足饮用水分析的需要。  相似文献   

5.
建立了固相微萃取-气相色谱法测定水中痕量甲萘威的方法,并对固相微萃取条件进行了优化。结果显示,固相萃取的最佳条件为:水样pH值≤3,不添加无机盐,聚二甲基硅氧烷(PDMS,100μm)作为萃取纤维,萃取温度为80℃,萃取时间为30 min,解吸时间为90 s。优化后的方法,在甲萘威质量浓度0.01~1.0 mg/L范围内线性良好,相关系数为0.999 5,方法的精密度为1.9%,检出限为0.3μg/L,加标回收率为85.6%~92.4%,可满足地表水中甲萘威的测定要求。  相似文献   

6.
微波亚临界水萃取模拟土样中的2,3-二氯联苯和3,3′-二氯联苯,用气相色谱进行分析。与亚临界水萃取方法相比,该法缩短了萃取时间,分析物的萃取回收率有所提高。对微波亚临界水的萃取条件进行优化,确定了最佳萃取条件为时间20min、温度区段为210℃~225℃。方法对长江镇江段内江的底泥中的多氯联苯进行分析,测定结果与索氏提取-GC分析结果吻合,且不受底泥中腐殖质等有机物影响。  相似文献   

7.
采用PA萃取纤维吸附水中敌敌畏、乐果、内吸磷、甲基对硫磷、对硫磷、马拉硫磷等6种有机磷和阿特拉津农药,在气相色谱-质谱仪进样口热解吸后进行检测.筛选比较了几种萃取纤维,优化了萃取方式、萃取时间、离子强度、pH、解吸温度和解吸时间等萃取条件.方法适用于多类型水体中6种有机磷和阿特拉津农药的分析.  相似文献   

8.
建立固相微萃取(SPME)-气相色谱法(GC-ECD)分析环境水样中痕量硝基氯苯类化合物的方法。选用65μm PDMS-DVB萃取纤维,磁力搅拌速度为200 r/min,萃取温度为60℃时,对水中硝基氯苯类物质萃取富集50 min,直接注入GC进样口,在250℃温度下解吸2.0 min后分析测定。优化条件下,方法线性良好,检出限为0.2~0.4 ng/L,加标水平为0.000 5、0.005、0.05μg/L时,回收率为56.02%~136.38%,RSD(n=7)为9.34%~28.33%。用该方法对实际水样进行实验,结果良好,能够满足环境水样中痕量硝基氯苯类化合物的测定。  相似文献   

9.
水体中叶绿素a测定方法的研究   总被引:1,自引:0,他引:1  
对水体中叶绿素a的测定方法进行了研究,确定了乙醇免研法测定水体中叶绿素a的实验条件。用95%乙醇替代90%丙酮作为萃取剂,用高温免研磨萃取替代研磨萃取,其结果是乙醇免研法与丙酮法测定结果的相对偏差在可接受范围内; 同时对测定结果进行统计分析显示, 乙醇法的测定结果与丙酮法无显著性差异,且乙醇免研法萃取效率有所提高,其测定结果均略高于丙酮法,说明乙醇免研法可以替代丙酮法。  相似文献   

10.
丙酮法和热乙醇法测定浮游植物叶绿素a的方法比对   总被引:4,自引:0,他引:4  
将丙酮法和热乙醇法用于测定浮游植物叶绿素a,分析水样中是否加入碳酸镁、水样体积、萃取时间、萃取剂、破碎方法、离心时间、水样存放时间和滤膜样品存放时间等8个因素对测定的影响,并确定最佳试验条件。结果表明:2种方法的测定值之间有较好的线性关系,相比丙酮法,热乙醇法更具优势。  相似文献   

11.
A method for the residual pendimethalin in soil and vegetable samples was developed. The method is based on extraction of pendimethalin from samples using microwave-assisted solvent extraction (MASE) with acetone, ethanol, and water as extraction solvent. Extracted pendimethalin samples were analyzed by high-performance liquid chromatography with ultraviolet detector at 240 nm. The MASE parameters, temperature, heating time, and solvent types were optimized with the feasibility of MASE application in the determination of pendimethalin extraction efficiency of pendimethalin from soil and vegetable samples. The maximum temperature that can be used during the heating for MASE is 60°C, where the recovery percentages reached 97%. Linearity for pendimethalin was found in the range of 2?C20 ??g mL???1 with limits of detection and limits of quantification of 0.059 and 0.17 ??g mL???1, respectively.  相似文献   

12.
用组织研磨、浸泡提取、热浴超声3种提取方法和丙酮、甲醇、乙醇3种提取溶剂,从实验室纯培养微囊藻中提取叶绿素a,并以高效液相色谱法测定其质量浓度。结果表明,经组织研磨破碎藻细胞后用甲醇提取的效果好于丙酮和乙醇,经浸泡和超声破碎藻细胞后用乙醇的提取效果好于丙酮和甲醇;使用乙醇-热浴超声法在所有的试验组合中获得最佳提取效果,条件为:乙醇温度为50℃-55℃,超声6min-8min后再静置提取5h-6h。  相似文献   

13.
土壤中石油类检测前处理方法的改进   总被引:1,自引:0,他引:1  
以四氯化碳为萃取剂,选择振荡提取和浸泡提取两种前处理方法,采用红外光度法测定土壤中石油类.考察了两种提取方法对土壤样品测定结果的影响,推荐振荡提取时间为9h,振荡频率为150次/min;推荐浸泡提取时间为16 h.  相似文献   

14.
Solvent microextraction (SME) was applied to the extraction of polycyclic aromatic hydrocarbons (PAHs) from spiked and real environmental soil samples with different matrices. Soil sample was mixed with 7 mL of acetone and 14 mL of water to allow partitioning of the PAHs from the soil to the liquid phase. A 2 microL octane drop suspended from a microsyringe needle tip was then immersed into the stirred solution-soil mixture for extraction. After an 11 min extraction, the octane drop was withdrawn into the syringe and injected directly into the GC for identification and quantification. The whole analysis procedure took 27 min, with an extraction time of 11 min, and a GC separation time of 16 min. A second extraction could be undertaken whilst the GC is running, hence the GC run time currently limits the sample throughput. In this method, a small amount of organic solvent was used for the extraction process, which produced little waste. The limits of detection for lower molecular weight (< 230) PAHs range from 0.13 to 0.36 mg kg-1, and for higher molecular weight (> 250) PAHs are estimated to be between 0.5 and 1.0 mg kg-1, with RSD values generally under 20%. Due to the small volumes of organic solvent used, the consumable cost per extraction is only US$ 0.12. This is the first report of the application of SME to solid samples, and the first report of the use of SME for the analysis of PAHs.  相似文献   

15.
A microwave-assisted extraction (MAE) method was verified and applied for the extraction of polycyclic aromatic hydrocarbons (PAHs) in sediment samples. Soxhlet extraction was used as the reference method. The optimum MAE was carried out with 20 mL of hexane/acetone (1:1, v/v) mixture in a 1-g sample at 250 W for 20 min. Soxhlet extraction was carried out with 250 mL of dichloromethane:hexane (1:1, v/v) mixture in a 15-g sample for 24 h in a water bath maintained at 60 °C. The collected extracts were both cleaned up, reduced to 1 mL under nitrogen and then injected into an HPLC fluorescence. To increase the sample throughput, simultaneous MAE was performed. The obtained percentage recoveries ranged from 61 to 93 and 88–98 for MAE and SE, respectively. The optimised MAE method was validated using certified reference material. It was then applied to real sediment samples from in and around the greater Johannesburg area. The sediments from Jukskei River were found to be the most polluted while Hartbeespoort Dam sediments were found to be least polluted. The overall order of concentrations for the studied PAHs per site was as follows: Jukskei River?>?Kempton Park?>?Centurion Dams?>?Natalspruit River (PIT)?>?Hartbeespoort Dam.  相似文献   

16.
建立了废酸油渣中16种多环芳烃超声萃取、Florisil萃取柱净化、气相色谱-质谱测定的方法。笔者对提取方式、提取剂类型和体积、提取时间和次数、净化方式等进行研究,采用无水硫酸钠分散,二氯甲烷作为提取剂超声40 min,提取液经纯水清洗、离心后取适量有机相经过3 g Florisil萃取柱净化,采用气相色谱-质谱选择离子模式(SIM),加入内标进行定量分析。结果表明:二氯甲烷提取效率比正己烷好,丙酮可能引起酸性样品中多环芳烃的降解,丙酮超声萃取时加入无水硫酸钠能在一定程度上防止目标物降解,但萃取效率不可控制,宜采用二氯甲烷作为萃取剂。分散提取能有效减少提取时间,超声清洗仪超声40 min提取效率为86.2%~104%。3g Florisil萃取柱净化比1 g Florisil萃取柱净化和GPC净化效果略好。方法检出限为0.4~1.3 mg/kg,6次空白加标的相对标准偏差为2.3%~15.3%,6个实际样品测定结果的相对标准偏差为1.2%~27.3%,基体加标回收率为51.3%~126%,连续校准稳定。该方法适用于废酸油渣样品中16种多环芳烃的检测,比直接溶解有效,比加速溶剂萃取、索氏提取、微波萃取和超声探头萃取简单、快捷,能有效减少设备污染和腐蚀,净化方法有效,测定结果准确可靠,是实现大批量样品检测的可行方法。  相似文献   

17.
采用固相萃取-气相色谱/质谱法测定水中15种酞酸酯类化合物,确定方法的最优条件为:依次用10 m L正己烷和丙酮混合溶剂(V/V=5∶1)、甲醇和空白试剂水活化C18固相萃取柱后,水样以5 m L/min过柱萃取,再以8 m L正己烷:丙酮(V/V=5∶1)混合溶剂洗脱后,浓缩至1 m L,进气相色谱/质谱测定。该法的检出限为0.18~0.38μg/L,在0.50~20.0 mg/L范围内线性良好,相关系数均0.996。空白水样的加标回收率为71.8%~120%,相对标准偏差为1.73%~12.7%;实际废水水样的加标回收率为64.8%~135%,相对标准偏差为2.75%~18.0%。  相似文献   

18.
采用0.45μm玻璃纤维滤膜将污水分离为悬浮态和溶解态有机物质,以二氯甲烷为萃取剂,采用液液萃取-气质联用法对污水中溶解态有机物进行测定,同时还对萃取条件(萃取次数,萃取时间,无机盐加入量)进行优化.结果表明:萃取回收率最高的是每个pH范围各萃取2次、静置5 min,氯化钠加入15g.该方法分析时间短,准确度好(样品平均加标回收率为91.1% ~ 103%),精密度高(相对标准偏差小于5%),易于操作.  相似文献   

19.
A totally automated solid phase extraction gas chromatography procedure was developed for the sampling and analysis of carbonyl compounds in air. In this system, two PrepStation modules were used, one for the preparation and elution of 2,4-dinitrophenylhydrazine silica cartridges, and the other for air sampling. The sample collected by the sampling module was eluted to an autosampler vial in the PrepStation module and then transferred to the gas chromatograph for analysis via a robotic arm. The sampling module was modified to enable air sampling via an external pump. A typical run by this technique required 142 min, 100 min for air sampling and 42 min for the other operations, including a GC analysis time of 25 min. Recoveries of at least 85% were obtained for all compounds studied. The detection limits for formaldehyde, acetaldehyde and acetone were 2.2, 2.7 and 2.2 ppbv, respectively. All operations, including the conditioning of the cartridges, were performed without any intervention from the analyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号