首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
There is increasing concern about feeds prepared from food residues (FFR) from an environmental viewpoint; however, various forms of energy are consumed in the production of FFR. Environmental impacts of three scenarios were therefore investigated and compared using life cycle assessment (LCA): production of liquid FFR by sterilization with heat (LQ), production of dehydrated FFR by dehydration (DH), and disposal of food residues by incineration (IC). The functional unit was defined as 1 kg dry matter of produced feed standardized to a fixed energy content. The system boundaries included collection of food residues and production of feed from food residues. In IC, food residues are incinerated as waste, and thus the impacts of production and transportation of commercial concentrate feeds equivalent to the FFR in the other scenarios are included in the analysis. Our results suggested that the average amounts of greenhouse gas (GHG) emissions from LQ, DH, and IC were 268, 1073, and 1066 g of CO(2) equivalent, respectively. The amount of GHG emissions from LQ was remarkably small, indicating that LQ was effective for reducing the environmental impact of animal production. Although the average amount of GHG emissions from DH was nearly equal to that from IC, a large variation of GHG emissions was observed among the DH units. The energy consumption of the three scenarios followed a pattern similar to that of GHG emissions. The water consumption of the FFR-producing units was remarkably smaller than that of IC due to the large volumes of water consumed in forage crop production.  相似文献   

2.
3.
Though many studies concern the agro-food sector in the EU and Italy, and its environmental impacts, literature is quite lacking in works regarding LCA application on citrus products. This paper represents one of the first studies on the environmental impacts of citrus products in order to suggest feasible strategies and actions to improve their environmental performance. In particular, it is part of a research aimed to estimate environmental burdens associated with the production of the following citrus-based products: essential oil, natural juice and concentrated juice from oranges and lemons. The life cycle assessment of these products, published in a previous paper, had highlighted significant environmental issues in terms of energy consumption, associated CO2 emissions, and water consumption. Starting from such results the authors carry out an improvement analysis of the assessed production system, whereby sustainable scenarios for saving water and energy are proposed to reduce environmental burdens of the examined production system. In addition, a sensitivity analysis to estimate the effects of the chosen methods will be performed, giving data on the outcome of the study. Uncertainty related to allocation methods, secondary data sources, and initial assumptions on cultivation, transport modes, and waste management is analysed. The results of the performed analyses allow stating that every assessed eco-profile is differently influenced by the uncertainty study. Different assumptions on initial data and methods showed very sensible variations in the energy and environmental performances of the final products. Besides, the results show energy and environmental benefits that clearly state the improvement of the products eco-profile, by reusing purified water use for irrigation, using the railway mode for the delivery of final products, when possible, and adopting efficient technologies, as the mechanical vapour recompression, in the pasteurisation and concentration of juice.  相似文献   

4.
The Vercelli rice district in northern Italy plays a key role in the agri-food industry in a country which accounts for more than 50% of the EU rice production and exports roughly 70%. However, although wealth and jobs are created, the sector is said to be responsible for environmental impacts that are increasingly being perceived as topical. As a complex and comprehensive environmental evaluation is necessary to understand and manage the environmental impact of the agri-food chain, the Life Cycle Assessment (LCA) methodology has been applied to the rice production system: from the paddy field to the supermarket. The LCA has pointed out the magnitude of impact per kg of delivered white milled rice: a CO2eq emission of 2.9 kg, a primary energy consumption of 17.8 MJ and the use of 4.9 m3 of water for irrigation purposes. Improvement scenarios have been analysed considering alternative rice farming and food processing methods, such as organic and upland farming, as well as parboiling. The research has shown that organic and upland farming have the potential to decrease the impact per unit of cultivated area. However, due to the lower grain yields, the environmental benefits per kg of the final products are greatly reduced in the case of upland rice production and almost cancelled for organic rice. LCA has proved to be an effective tool for understanding the eco-profile of Italian rice and should be used for transparent and credible communication between suppliers and their customers.  相似文献   

5.
With the onset of social life, humans have considered waste disposal as essential, and they have been able to repel it through brick and clay channels. Checking sewage pipes for energy consumption and a longer lifetime than other sewage system components is important. Climate change and exploitation of industrial resources have made environmental impacts, which are important factors in decision making. The purpose of this study was to introduce the most suitable type of sewage pipe considering environmental protection. Therefore, we applied the environmental life cycle assessment (LCA) method, using Sima Pro 8.2.3 software for the one-kilometer length of concrete pipes (300 mm in diameter), Polyvinyl chloride (PVC), and polyethylene (PE) (315 mm in diameter). Also, the BEES method and sensitivity analysis were used to validate the results. The comparison between three types of municipal wastewater pipes indicated that PE pipes are a more environmentally friendly option than PVC, and concrete pipes in pipe recycling, reducing extraction from untapped resources, and inefficient extraction of resources. Electricity, diesel fuel, and sulfate resistance cement consumption for concrete production are the most pollution elements in the LCA of concrete pipes. Usage of PVC granular, sanitary landfill of PVC pipes, and using hydraulic drill in LCA of PVC pipes are the most elements of generating pollution. The usage of PE granules, PE pipes landfilling, hydraulic excavator, and electricity consumption in the LCA of the PE pipes are the greatest polluting parameters.  相似文献   

6.
Contemporary reports on the energy and environmental benefits of bioethanol have suggested that the cellulosic ethanol is significantly more efficient. To understand the development potential of energy crops in Taiwan, the present study has assessed the resources and cost inputs for the planning, harvesting, transporting, and storing procedures of the first generation energy crops during 2007–2010 with the perspective of LCA. In addition, a field investigation focusing on rice straw, the largest agricultural waste in Taiwan, has been conducted since 2010 to obtain fundamental data.This study further analyzes the first and second-generation feedstocks from the perspective of LCA based on field investigated data. Taiwan has not yet established an ethanol plant; therefore, this study established production data by simulating the production efficiency of an economical scale using parameters obtained through production trials, and proposed an evaluation model for the energy input, GHG, and production costs of bioethanol in Taiwan. The results of this study were cross-compared with foreign literature to explore the development potential of bioethanol in Taiwan. The results indicate that based on the current cellulosic ethanol technology in Taiwan, regarding the energy balance, GHG, and production costs, is less efficient than that of the first generation bioethanol.  相似文献   

7.
Food waste can be valorized through different technologies, such as anaerobic digestion, incineration, and animal feed production. In this study we analyzed the environmental performance of two food waste valorization scenarios from a company of the retail sector in Belgium, through exergy analysis, exergetic life cycle assessment (ELCA), and a traditional life cycle assessment (LCA). In scenario 1 all food waste was considered to be valorized in an anaerobic digestion (producing electricity, heat, digestate and sorting the packaging material to be used as fuel for cement industry), while in scenario 2 a bread fraction was valorized to produce animal feed and a non-bread fraction was valorized in an anaerobic digestion (producing the same products on scenario 1, but in lower amounts). Scenario 2 was 10% more efficient than scenario 1 in the exergy analysis. For the ELCA and the single score LCA, scenario 2 presented lower environmental impacts than scenario 1 (32% and 26% lower, respectively). These results were mainly due to the avoided products from traditional supply chain (animal feed produced from agricultural products) and lower exergy loss at the feed production plant. Nevertheless, the high dry matter content of the bread waste played an important role on these results, therefore it should be pointed out that valorizing food waste to animal feed seems to be a better option only for the fractions of food waste with low water content (as bread waste).  相似文献   

8.
Life cycle assessment (LCA) can be successfully applied to municipal solid waste (MSW) management systems to identify the overall environmental burdens and to assess the potential environmental impacts. In this study, two methods used for current MSW management in Phuket, a province of Thailand, landfilling (without energy recovery) and incineration (with energy recovery), are compared from both energy consumption and greenhouse gas emission points of view. The comparisons are based on a direct activity consideration and also a life cycle perspective. In both cases as well as for both parameters considered, incineration was found to be superior to landfilling. However, the performance of incineration was much better when a life cycle perspective was used. Also, landfilling reversed to be superior to incineration when methane recovery and electricity production were introduced. This study reveals that a complete picture of the environmental performance of MSW management systems is provided by using a life cycle perspective.  相似文献   

9.
Life cycle assessment, LCA, has become a key methodology to evaluate the environmental performance of products, services and processes and it is considered a powerful tool for decision makers. Waste treatment options are frequently evaluated using LCA methodologies in order to determine the option with the lowest environmental impact. Due to the approximate nature of LCA, where results are highly influenced by the assumptions made in the definition of the system, this methodology has certain non-negligible limitations. Because of that, the use of LCA to assess waste co-incineration in cement kilns is reviewed in this paper, with a special attention to those key inventory results highly dependent on the initial assumptions made. Therefore, the main focus of this paper is the life cycle inventory, LCI, of carbon emissions, primary energy and air emissions. When the focus is made on cement production, a tonne of cement is usually the functional unit. In this case, waste co-incineration has a non-significant role on CO2 emissions from the cement kiln and an important energy efficiency loss can be deduced from the industry performance data, which is rarely taken into account by LCA practitioners. If cement kilns are considered as another waste treatment option, the functional unit is usually 1 t of waste to be treated. In this case, it has been observed that contradictory results may arise depending on the initial assumptions, generating high uncertainty in the results. Air emissions, as heavy metals, are quite relevant when assessing waste co-incineration, as the amount of pollutants in the input are increased. Constant transfer factors are mainly used for heavy metals, but it may not be the correct approach for mercury emissions.  相似文献   

10.
Due to its compatibility with the current energy infrastructures and the potential to reduce CO2 emissions significantly, CO2 capture and geological storage is recognised as one of the main options in the portfolio of greenhouse gas mitigation technologies being developed worldwide. The CO2 capture technologies offer a number of alternatives, which involve different energy consumption rates and subsequent environmental impacts. While the main objective of this technology is to minimise the atmospheric greenhouse gas emissions, it is also important to ensure that CO2 capture and storage does not aggravate other environmental concerns. This requires a holistic and system-wide environmental assessment rather than focusing on the greenhouse gases only. Life Cycle Assessment meets this criteria as it not only tracks energy and non-energy-related greenhouse gas releases but also tracks various other environmental releases, such as solid wastes, toxic substances and common air pollutants, as well as the consumption of other resources, such as water, minerals and land use. This paper presents the principles of the CO2 capture and storage LCA model developed at Imperial College and uses the pulverised coal post-combustion capture example to demonstrate the methodology in detail. At first, the LCA models developed for the coal combustion system and the chemical absorption CO2 capture system are presented together with examples of relevant model applications. Next, the two models are applied to a plant with post-combustion CO2 capture, in order to compare the life cycle environmental performance of systems with and without CO2 capture. The LCA results for the alternative post-combustion CO2 capture methods (including MEA, K+/PZ, and KS-1) have shown that, compared to plants without capture, the alternative CO2 capture methods can achieve approximately 80% reduction in global warming potential without a significant increase in other life cycle impact categories. The results have also shown that, of all the solvent options modelled, KS-1 performed the best in most impact categories.  相似文献   

11.
A water footprint (WF) measures the total water consumed by a nation, business or individual by calculating the total water used during the production of goods and services. This paper extends the existing methods for WF to more localised levels for crops grown partly in open systems and partly in plastic-covered houses with multi-seasonal harvesting, such as the horticulture industry in Spain. This improvement makes it possible to visualise the links of EU tomato consumption to precise production sites in Spain and opens a debate to the usefulness of such findings. This paper also compares existing ecological methodologies with WF and argues that both life cycle analysis (LCA) and ecological footprint (EF) models could benefit from WF methods. Our results show that the EU consumes 957,000 tons of Spanish fresh tomatoes annually, which evaporates 71 Mm(3)/yr of water and would require 7 Mm(3)/yr of water to dilute leached nitrates in Spain. In Spain, tomato production alone evaporates 297 Mm(3)/yr and pollutes 29 Mm(3)/yr of freshwater. Depending upon the local agro-climatic character, status of water resources, total tomato production volumes and production system, the impact of EU consumption of fresh tomatoes on Spanish freshwater is very location specific. The authors suggest that business now seek to report and address negative impacts on the environment. WF opens the door to complex water relationships and provides vital information for policy actors, business leaders, regulators and managers to their draw, dependence and responsibilities on this increasingly scarce resource.  相似文献   

12.
This paper summarizes the results and the lessons learnt from an LCA case study comparing acoustic automotive components. Three alternative acoustic components produced by the Brazilian automotive sector are considered: dual-layer polyurethane (DL-PU) panel, recycled textile absorption-barrier-absorption (ABA-cotton) panel and recycled textile DL (DL-cotton) panel. DL-PU is a “status-quo” alternative, composed mainly of synthetic plastics and the two other alternatives are mainly made of recycled cotton fibres. Using the Life Cycle Assessment (LCA) method, the three following phases of the panels’ life cycle are examined: production, use and end-of-life. For the latter, two end-of-life scenarios are analysed: landfill and incineration with energy recovery. For the LCA model, some Life Cycle Inventory (LCI) datasets have been adapted from the data available in the EcoInvent database in order to adjust to the Brazilian context. LCA results show that, within the entire life cycle, the DL-cotton option, which combines two layers of recycled fibres of different densities, is overall the best alternative from an environmental perspective. This result is therefore independent from the end-of-life scenario. This is mainly due to the lower weight of this component, which is extremely important for the transportation aspects, but also due to its lower consumption of fossil resources, to the energy saving during its production and to the avoidance of textile disposal that would happen otherwise. The obtained results confirm the available literature dealing with the use of renewable fibres in industrial products. The particular behaviour of recycled fibres compared to virgin ones (in terms of shared contribution of agricultural production and of avoidance of landfilling) is highlighted in this paper, thanks to the application of the “50/50” allocation rule. LCA results are discussed in terms of their potential use in an R&D context. Further research needs are also derived from the case study, including the potential benefits of developing multi-objective optimization methods that include environmental impact to be used in the design of such a component.  相似文献   

13.
In line with the global target of reducing climate change and its impact, this study explored the causal relationship between CO2 emissions, modernized agriculture, trade openness, aggregate and disaggregate energy consumption in 14 African countries from 1990–2013 using a panel quantile estimation procedure. The empirical results showed that value addition to agricultural commodities declines CO2 emissions in countries with high pollution levels. The study revealed a positive nexus between CO2 emissions and energy consumption homogeneously distributed across quantiles. Trade openness was found to lower CO2 emissions in countries with lower and higher levels of environmental pollution. While fossil fuel energy consumption was found to exacerbate CO2 emissions, renewable energy consumption confirmed its mitigating effect on environmental pollution. The institution of climate‐smart agricultural options will sustainably increase productivity and income while adapting to climate change by reducing greenhouse gas emissions. Diversification of energy technologies with clean and modern energy sources like renewables avoid the over‐dependence on fossil fuels for agricultural purposes. Trade policies can stimulate flows of technology and investment opportunities for specialization in production and economies of scale. Hence, the consideration of policies that boost agricultural sector productivity and create an efficient market for international trade in Africa will help in improving livelihoods.  相似文献   

14.
Environmental life cycle assessment (LCA) developed rapidly during the 1990s and has reached a certain level of harmonisation and standardisation. LCA has mainly been developed for analysing material products, but can also be applied to services, e.g. treatment of a particular amount of solid waste. This paper discusses some methodological issues which come into focus when LCAs are applied to solid waste management systems. The following five issues are discussed. (1) Upstream and downstream system boundaries: where is the ‘cradle’ and where is the ‘grave’ in the analysed system? (2) Open-loop recycling allocation: besides taking care of a certain amount of solid waste, many treatment processes also provide additional functions, e.g. energy or materials which are recycled into other products. Two important questions which arise are if an allocation between the different functions should be made (and if so how), or if system boundaries should be expanded to include several functions. (3) Multi-input allocation: in waste treatment processes, different materials and products are usually mixed. In many applications there is a need to allocate environmental interventions from the treatment processes to the different input materials. The question is how this should be done. (4) Time: emissions from landfills will continue for a long time. An important issue to resolve is the length of time emissions from the landfill should be considered. (5) Life cycle impact assessment: are there any aspects of solid waste systems (e.g. the time horizon) that may require specific attention for the impact assessment element of an LCA? Although the discussion centres around LCA it is expected that many of these issues are also relevant for other types of systems analyses.  相似文献   

15.
Recent targets for reduced amounts of waste to landfills in Sweden will result in a large increase in waste incineration with recovery of energy, used primarily for district heating. The aim of this study is to investigate what changes in the usage of other fuels and technologies for district heat production would be caused by this increase. A questionnaire was sent out to the largest district heating companies, and simulations in an energy systems model were carried out. The analysis shows that increased waste incineration reduces the demand for other fuels, especially biomass, for district heat production. The effects include reductions in operating hours as well as the avoidance or postponement of investments in new plants for district heat production. Increased waste incineration will also lead to a greater use of district heating in Sweden.  相似文献   

16.
With the pavement industry adopting sustainable practices to align itself with the global notion of habitable environments, there has been growing use of life-cycle assessment (LCA). A hybrid LCA was used to analyze the environmental footprint of using a reclaimed asphalt pavement (RAP) content in asphalt binder mixtures. The analysis took into consideration the material, construction, and maintenance and rehabilitation phases of the pavement life cycle. The results showed significant reductions in energy consumption and greenhouse gas (GHG) emissions with an increase in RAP content. The contribution of the construction phase to the GHGs and energy consumption throughout pavement life cycle is minimal. Feedstock energy, though not consequential when comparing asphalt mixtures only, has a significant impact on total energy. Based on LCA analysis performed for various performance scenarios, breakeven performance levels were identified for mixtures with RAP. The study highlighted the importance of achieving equivalent field performance for mixtures with RAP and virgin mixtures.  相似文献   

17.
Numerous studies have evaluated air quality and greenhouse gas mitigation benefits of biomass energy systems, but the potential environmental impacts associated with large-scale changes in land-use patterns needed to produce energy crops have not been quantified. This paper presents a framework to assess the potential soil, water, and biodiversity impacts that may result from the large-scale production of dedicated energy crops. The framework incorporates producer economic decision models with environmental models to assess changes in land use patterns and to quantify the consequent environmental impacts. Economic and policy issues that will affect decisions to produce energy crops are discussed. The framework is used to evaluate erosion and chemical runoff in two Tennessee regions. The analysis shows that production of dedicated energy crops in place of conventional crops will significantly reduce erosion and chemical runoff.  相似文献   

18.
In this paper, economic feasibility of two vegetable crops (i.e., cucumber and tomato) cultivated in a naturally ventilated greenhouse, and the net present worth, cost-benefit ratio, payback period, and internal rate of return for these crops on year-round cultivation are presented. The cost-benefit ratio demonstrated that growing cucumbers and tomatoes can be economically viable in this climatic region. The present experimental study was conducted in the composite climatic condition of Udaipur (24°35′N, 73°42′E), India. The study area is defined as arid and semi-arid region of Indian climatic conditions. Droughts are a recurring phenomenon in arid and semi-arid regions creating a situation that affects not only agricultural productivity but also people’s health. In particular, the western part of the state is a desert, and its socioeconomic status influences nutrient purchasing power. A poor diet can lead to a vitamin and mineral deficiency. The state of Rajasthan has good agricultural potential; interventions using protected cultivation practices can increase the production and productivity of vegetable crops. However, the current adoption rate of such practices in the state remains very slow, even after a promotional scheme offered by the state government. The government and policymakers should consider offering demonstrations of practices at a larger level. Farmers of the state are marginal and economically poor, requiring more financial assistance. Low cost technologies would be suitable for these farmers.  相似文献   

19.
Expanded polystyrene (EPS) and corrugated paperboard (CPB) are used in many industrial applications, such as containers, shock absorbers or simply as inserts. Both materials pose two different types of environmental problems. The first is the pollution and resource consumption that occur during the production of these materials; the second is the growing landfills that arise out of the excessive disposal of these packaging materials. Life cycle assessment or LCA will be introduced in this paper as a useful tool to compare the environmental performance of both EPS and CPB throughout their life cycle stages. This paper is divided into two main parts. The first part investigates the environmental impacts of the production of EPS and CPB from 'cradle-to-gate', comparing two inserts--both the original and proposed new designs. In the second part, LCA is applied to investigate various end-of-life cases for the same materials. The study will evaluate the environmental impacts of the present waste management practices in Singapore. Several 'what-if' cases are also discussed, including various percentages of landfilling and incineration. The SimaPro LCA Version 5.0 software's Eco-indicator 99 method is used to investigate the following five environmental impact categories: climate change, acidification/eutrophication, ecotoxicity, fossil fuels and respiratory inorganics.  相似文献   

20.
Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号