首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 363 毫秒
1.
Experiments were carried out to investigate the ability of water hyacinth (Eichhornia crassipes) to remove five heavy metals (cadmium, chromium, copper, nickel, and lead) commonly found in leachate. All experiments were conducted in batch reactors in a greenhouse. It was found that living biomass of water hyacinth was a good accumulator for copper, chromium, and cadmium. The plants accumulated copper, chromium, and cadmium up to 0.96, 0.83, and 0.50%, respectively, of their dry root mass. However, lead and nickel were poorly accumulated in water hyacinth. Also, nonliving biomass of water hyacinth dry roots showed ability to accumulate all metals, except Cr(VI), which was added in anionic form. The highest total metal sorption by nonliving dry water hyacinth roots was found to take place at pH 6.4. The current research demonstrates the potential of using water hyacinth for the treatment of landfill leachate containing heavy metals.  相似文献   

2.
To develop an efficient bio-immobilization approach for the remediation of heavy metal pollution in soil, a mutant species of Bacillus subtilis (B38) was obtained by ultraviolet irradiation and selection under high concentration of cadmium (Cd) in a previous study. In the present study, to check the applicability of this mutated species to the sorption and immobilization of other metals, the sorption of four heavy metals, Cd, chromium (Cr), mercury (Hg), and lead (Pb), on living and nonliving B38 in single- and multiple-component systems under different conditions was investigated using batch experiments. Rapid metal binding occurred on both living and nonliving B38 during the beginning of the biosorption. The sorption kinetics followed the exponential equation for living biomass and the pseudo-first-order Lagergren model for nonliving biomass, with r 2 values in the range of 0.9004-0.9933. The maximum adsorptive quantity of the heavy metals on B38 changed with the solution pH, temperature, biomass dose, and ionic strength. The nonliving biomass generally showed greater or similar adsorptive capacities as compared with the living biomass and was not likely to be affected by the solution parameters. The bacterium had a stronger affinity to the cationic heavy metals than to the anionic one, and the equilibrium sorption amounts were 210.6, 332.3, and 420.9 mg/g for Cd(II), Hg(II), and Pb(II), respectively. The results of binary and ternary sorption experiments indicated that the metals with the higher sorption capacity in the single-component systems showed greater inhibitory effects on the biosorption of other metal ions in the multiple-component systems, but the sorption sites of Hg and Cd or Pb are likely to be different. The results of this study illustrated that the mutant species is a promising biosorbent for the remediation of multiple heavy metals.  相似文献   

3.
The present study aims to evaluate the competitive biosorption of lead, cadmium, copper, and arsenic ions by using native algae. A series of experiments were carried out in a batch reactor to obtain equilibrium data for adsorption of single, binary, ternary, and quaternary metal solutions. The biosorption of these metals is based on ion exchange mechanism accompanied by the release of light metals such as calcium, magnesium, and sodium. Experimental parameters such as pH, initial metal concentrations, and temperature were studied. The optimum pH found for removal were 5 for Cd2+ and As3+ and 3 and 4 for Pb2+ and Cu2+, respectively. Fourier transformation infrared spectroscopy analysis was used to find the effects of functional groups of algae in biosorption process. The results showed that Pb2+ made a greater change in the functional groups of algal biomass due to high affinity to this metal. An ion exchange model was found suitable for describing the biosorption process. The affinity constants sequence calculated for single system was K Pb > K Cu > K Cd > K As; these values reduced in binary, ternary, and quaternary systems. In addition, the experimental data showed that the biosorption of the four metals fitted well the pseudo-second-order kinetics model.  相似文献   

4.
Kaewsarn P 《Chemosphere》2002,47(10):1081-1085
Biosorption of heavy metals can be an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high uptake capacities for a number of heavy metal ions. In this paper, the adsorption properties of a pre-treated biomass of marine algae Padina sp. for copper(II) were investigated. Equilibrium isotherms and kinetics were obtained from batch adsorption experiments. The biosorption capacities were solution pH dependent and the maximum capacity obtained was 0.80 mmol/g at a solution pH of about 5. The biosorption kinetics was found to be fast, with 90% of adsorption within 15 min and equilibrium reached at 30 min. The effects of light metal ions on copper(II) uptake were studied and the presence of light metal ions did not affect copper(II) uptake significantly. Fixed-bed breakthrough curves for copper(II) removal were also obtained. This study demonstrated that the pre-treated biomass of Padina sp. could be used as an effective biosorbent for the treatment of copper(II) containing wastewater streams.  相似文献   

5.
This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.  相似文献   

6.
The ability of Pycnoporus sanguineus to adsorb heavy metals from aqueous solution was investigated in fixed-bed column studies. The experiments were conducted to study the effect of important design parameters such as column bed height, flow rate and initial concentration of solution. The breakthrough profiles were obtained in these studies. A mathematical model based on external mass transfer and pore diffusion was used for the prediction of mass transfer coefficient and effective diffusivity of metals in macro-fungi bed. Experimental breakthrough profiles were compared with the simulated breakthrough profiles obtained from the mathematical model. Bed Depth Service Time (BDST) model was used to analyse the experimental data and evaluated the performance of biosorption column. The BDST model parameters needed for the design of biosorption columns were evaluated for lead, copper and cadmium removal in the column. The columns were regenerated by eluting the metal ions using 0.1 M hydrochloric acid solution after the adsorption studies. The columns were subjected to repeated cycles of adsorption of same metal ions and desorption to evaluate the removal efficiency after adsorption-desorption.  相似文献   

7.
Gu HH  Qiu H  Tian T  Zhan SS  Deng TH  Chaney RL  Wang SZ  Tang YT  Morel JL  Qiu RL 《Chemosphere》2011,83(9):1234-1240
The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40 g kg−1) and steel slag (3 and 6 g kg−1) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils.  相似文献   

8.
Kumar RN  Nagendran R 《Chemosphere》2007,66(9):1775-1781
Bioleaching of heavy metals from contaminated soil was carried out employing indigenous sulfur oxidizing bacterium Acidithiobacillus thiooxidans. Experiments were carried out to assess the influence of initial pH of the system on bioleaching of chromium, zinc, copper, lead and cadmium from metal contaminated soil. pH at the end of four weeks of bioleaching at different initial pH of 3-7 was between 0.9 and 1.3, ORP between 567 and 617mV and sulfate production was in the range of 6090-8418mgl(-1). Chromium, zinc, copper, lead and cadmium solubilization ranged from "59% to 98%" at different initial pH. A. thiooxidans was not affected by the increasing pH of the bioleaching system towards neutral and it was able to utilize elemental sulfur. The results of the present study are encouraging to develop the bioleaching process for decontamination of heavy metal contaminated soil.  相似文献   

9.
Alfalfa plants were grown in soil-pots contaminated with a mixture of Cd(II), Cu(II), Ni(II), and Zn(II), (at 50 mg/kg each) at pHs of 4.5, 5.8, and 7.1. The plants were fertilized using a nutrient solution, which was adjusted appropriately to the same pH. Plants in the control treatment were grown in the absence of the heavy metals mixture. The growth of the control plants was the same at the three pHs studied and the heavy metal stressed plants also showed similar behavior at each pHs. There were statistically significant differences (P<0.05) between the shoot length of the control treatment plants and the length of plants grown in the presence of the heavy metal mixture. Under the effects of the heavy metal mixture, nickel was the most accumulated element in the shoot tissue, with 437, 333, and 308 ppm at pH 7.1, 5.8, and 4.5, respectively. Cadmium was found to be second in accumulated concentrations with 202 ppm, 124 ppm, and 132 ppm at pH 7.1, 5.8, and 4.5, respectively, while zinc was third, followed by copper. The maximum relative uptakes (element in plant/element in soil-water-solution) were found to be 26 times for nickel, 23 times for cadmium, 12 times for zinc. and 6 times for copper. We considered these relations as indicative of the ability of alfalfa plants to take up elements from a soil matrix contaminated with a mixture of cadmium, copper, nickel, and zinc.  相似文献   

10.
Huang KM  Lin S 《Chemosphere》2003,53(9):1113-1121
A great deal of effort was enforced to reduce the pollution of the Keelung River in the past 20 years. A set of sediments covering most of the Keelung River drainage basin was analyzed for bulk sediment heavy metal concentrations, grain size content and Pb-210 dating in order to understand the spatial variations of sediment heavy metal contents as well as to evaluate the effectiveness of pollution control. The results showed that anthropogenic pollution and grain size are two of the most important factors in controlling spatial variations of metals in the Keelung River sediments. In addition, little reduction of sediment heavy metal concentrations was observed in the Keelung River drainage basin. Large spatial variations of metals and grain size were observed. High concentrations of zinc, copper, lead and cadmium were found in sediments near the main outlets of the adjacent Da-Wu-Lun Industrial Park and municipal waste drainage systems. Anthropogenic sources of heavy metal have altered the natural sediment heavy metal distributions. Positive linear relationships between aluminum, iron and fine-grained sediments showed that spatial grain size variations controlled the natural aluminum and iron concentrations in sediments. Zinc, copper, lead and cadmium contents were much higher than those measured 15 years ago. The unusually high concentrations of heavy metals, high enrichment factors and their rapid increases with time in Pb-210 dated core showed that the efforts in heavy metal reduction were futile. A proper regulation to prevent further heavy metals from entering into the river is urgently needed.  相似文献   

11.
Tsui MT  Wang WX  Wong MH 《Chemosphere》2006,65(10):1831-1835
In this study, the effect of dissolved organic carbon (DOC) derived from macroalga (Sargassum) on the acute toxicity of copper (Cu) and cadmium (Cd) to a freshwater cladoceran (Daphnia magna) was investigated. Potassium-loaded macroalga was incubated with ultrapure water to extract macroalgal DOC, which was then spiked with the constituents of the Elendt M7 hard water media. The 48 h median lethal concentration of Cu increased linearly with DOC levels but that of Cd was relatively independent of DOC levels (0-44 mg l(-1)). The independence of Cd toxicity on DOC level might be due to the competitive effect of high calcium concentrations in the media with Cd for the binding sites of DOC. The decreased Cu toxicity was a result of reduced Cu uptake as evidenced in a separate accumulation test. Also, the capability of the macroalgal DOC on reducing Cu toxicity was found to be comparable to DOC tested in other studies. Therefore, the present study suggested that the biosorption treatment process using macroalgae should consider the effect of DOC release from the biomass as a step of modifying the metal toxicity as well as influencing metal biosorption capacity.  相似文献   

12.
Juwarkar AA  Nair A  Dubey KV  Singh SK  Devotta S 《Chemosphere》2007,68(10):1996-2002
This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.  相似文献   

13.
The concentrations of three heavy metals chromium (Cr), cadmium (Cd) and lead (Pb) were examined in water, sediment and green algae (Ulva lactuca); collected from six different stations at Pulicat Lake, which receives effluents from industries located in North Chennai Coastal region. Concentrations of Cd (64.21 microg g(-1)) and Cr (28.51 microg g(-1)) were found to be high in sediment, whereas in green algae concentration of Pb (8.32 microg g(-1)) was higher than water and sediment samples. The relative abundance of these heavy metals in U. lactuca and sediment were found to be in the order Cd>Cr>Pb, whereas in water the ratio was found to be Cr>Pb>Cd. The seasonal variations in Cd and Pb followed a similar pattern in both seaweeds and sediments, but not in water samples. Spearman correlation coefficient study showed no significant correlation in the concentration of metals in U. lactuca, water and sediment samples.  相似文献   

14.
利用芦竹修复重金属污染湿地的研究   总被引:1,自引:0,他引:1  
研究了芦竹(Arundodonaxlinn)对Cu2+、Ni2+、Cr6+重金属污染湿地的响应和对该污染湿地的影响。实验结果表明,芦竹对这3种重金属离子有一定的耐受性,并有不同程度的吸收,Cu2+、Ni2+和Cr6+去除率分别为63.8%,42.3%和34.4%。芦竹在100mg/kg浓度的Cu2+、Ni2+污染湿地中生长正常,在低浓度(55mg/kg)Cr6+污染中能存活,但生长速度较慢。在100mg/kg浓度Cr6+污染湿地中,出现急性中毒现象,半月后致死。在重金属污染环境中,芦竹普遍出现失绿现象,但除高浓度Cr6+(100mg/kg)以外,都能正常存活,表现出较强的适应性。  相似文献   

15.
The responses of oribatid communities to heavy metal contamination were studied. Concentration of cadmium, copper and zinc in nine oribatid species along a gradient of heavy metal pollution was measured. Oribatid mites were sampled seasonally during two years in five forests located at different distances from the zinc smelter in the Olkusz District, southern Poland. The most numerous and diverse oribatid communities were found in the forest with moderate concentrations of heavy metals. Analysis by atomic absorption spectrophotometry revealed large differences in metal body burdens among species. All studied oribatid species appeared to be accumulators of copper with Oppiella nova, Nothrus silvestris and Adoristes ovatus characterized by the highest bioaccumulation factors. Most species poorly accumulate cadmium and zinc. The accumulation of heavy metals in the body of oribatids was not strictly determined by their body size or the trophic level at which they operate.  相似文献   

16.
Bioconcentration and biokinetics of heavy metals in the earthworm   总被引:3,自引:0,他引:3  
This study examines the steady state and non-steady state kinetics of five metals, cadmium, copper, lead, nickel, and zinc in earthworms. The steady state kinetics are based on field studies in which worms from contaminated and uncontaminated sites were collected and measurements were made of concentrations in the earthworms and soils. For each of the metals, evidence suggests that bioconcentration depends on the metal concentrations in the soil; bioconcentration is greater at lower soil concentrations. The studies of non-steady state kinetics involve uptake and elimination experiments in which worms are transferred from an uncontaminated soil to a contaminated soil (uptake studies) or from a contaminated soil to an uncontaminated soil (elimination studies). The voiding time is shown to be an important experimental variable in determining the measured levels of metal in earthworms because experimental measurements are usually made on a worm-soil complex (i.e. the soft tissue of the worm and the soil in the gut of the worm). Thus, for metals that are bioconcentrated in worm tissue, increasing the voiding period increases the concentration of the metal in the worm-soil complex. Conversely, for metals that are not bioconcentrated, increasing the voiding time leads to a decrease in concentrations in the worm-soil complex.  相似文献   

17.
4A沸石对复合污染水体中Pb2+、Cu2+和Cd2+的去除   总被引:2,自引:2,他引:0  
采用静态吸附法以4A沸石为吸附剂研究其对复合污染水体中Pb2+、Cu2+和Cd2+的竞争吸附特性,并探讨了影响吸附的环境因素。实验表明,在室温条件下,溶液pH5~6,4A沸石15 mg对10 mL复合污染溶液(Pb2+、Cu2+和Cd2+浓度分别为100 mg/L)吸附20 min时,对溶液中3种重金属的吸附去除率均可达99.8%以上。反应过程中4A沸石对3种重金属的吸附速率大小为Pb2+>Cu2+>Cd2+。复合污染水体中4A沸石对Pb2+、Cu2+和Cd2+的吸附符合Langmuir和Fre-undlich等温吸附方程,相关系数分别为0.9981、0.9901、0.9916和0.9638、0.9194、0.9689。经计算,4A沸石对Pb2+、Cu2+和Cd2+的饱和吸附量分别为129.9 mg/g、107.5 mg/g和99.0 mg/g。4A沸石吸附重金属离子达到吸附平衡的时间较短,对溶液pH值的适应性较好。吸附后的4A沸石可以再生利用,对铅离子洗脱重复利用性较铜离子和镉离子强。  相似文献   

18.
The objective of this study was to assess the effects of heavy metals on microbial decomposition of cellulose in heavy metal-contaminated soils using a cotton strip assay. The assay is a measure of the potential of soil microorganisms to decompose the plant polymer, cellulose. Cellulolytic activity in soil was assessed by determining the reduction in tensile strength of the buried cotton strips over a 25- and 45-day period. Soils were obtained from a rifle range that contain high levels of lead, copper and zinc. The site has been used for approximately 50 years, resulting in metal levels of up to 30,000 mg/kg of lead, 4000 mg/kg of copper and 600 mg/kg of zinc in the most contaminated soils. All the metal-contaminated soils had lower degradation rates than the uncontaminated soils tested. Among the contaminated soils, however, the heavy metal concentration was not the major factor in determining the loss in tensile strength of the cotton strips, where cellulose decomposition was governed by other soil physicochemical properties. Soil with a higher cation exchange capacity, readily oxidisable material and volatile solids content had the greatest loss in tensile strength of cotton strips. Microbial adaptation to the presence of high concentrations of soil heavy metals and reduced bioavailability of metals is the likely explanation for this phenomenon.  相似文献   

19.
In recent decades, mosses have been used successfully as biomonitors of atmospheric deposition of heavy metals. Since 1990, the European moss survey has been repeated at five-yearly intervals. Although spatial patterns were metal-specific, in 2005 the lowest concentrations of metals in mosses were generally found in Scandinavia, the Baltic States and northern parts of the UK; the highest concentrations were generally found in Belgium and south-eastern Europe. The recent decline in emission and subsequent deposition of heavy metals across Europe has resulted in a decrease in the heavy metal concentration in mosses for the majority of metals. Since 1990, the concentration in mosses has declined the most for arsenic, cadmium, iron, lead and vanadium (52-72%), followed by copper, nickel and zinc (20-30%), with no significant reduction being observed for mercury (12% since 1995) and chromium (2%). However, temporal trends were country-specific with sometimes increases being found.  相似文献   

20.
This study examines the possibility of using Spirulina (Arthrospira) platensis TISTR 8217 to remove low concentrations of cadmium (less than 100 mg/l) from wastewater. The cyanobacteria were exposed to six different cadmium concentrations for 96 h, and the growth rate was determined using an optical density at 560 nm. The inhibiting concentration (IC50) was estimated using probit analysis. The IC50 at 24, 48, 72, and 96 h were 13.15, 16.68, 17.28, and 18.35 mg/l Cd, respectively. Cellular damage was studied under a light microscope and a transmission electron microscope. Swollen cells and fragmented filaments were observed. Cell injury increased with increasing concentrations of cadmium. Ultrastructural changes were observed in the algae exposed to cadmium concentrations both close to IC50 (14.68 mg/l) and at IC50 (18.35 mg/l). The alterations induced by cadmium were disintegration and disorganization of thylakoid membranes, presence of large intrathylakoidal space, increase of polyphosphate bodies, and cell lysis. In addition, the cadmium adsorption by algal cells was studied. Environmental factors were found to have an effect on biosorption. The uptake of cadmium was not affected by the temperature of the solution, but the sorption was pH dependent. The optimum pH for biosorption of algal cells was 7. The cadmium uptake process was rapid, with 78% of metal sorption completed within 5 min. The sorption data fit well to the Langmuir isotherm. The maximum adsorption capacity for S. platensis was 98.04 mg Cd per g biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号