首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In this study, we have developed urethane modified polyesteramide (UPEA) resin by the condensation polymerization reaction of N,N-bis (2-hydroxy ethyl) jatropha oil fatty amide (HEJA) and itaconic acid to form polyesteramide (PEA). The latter was further reacted with different percentages (16–22%) of toluylene 2,4-diisocyanate (TDI) to prepare UPEA. The structural elucidation of HEJA, PEA, UPEA was carried out by FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. The coating was made on mild steel strips. The physico-chemical and physico-mechanical analyses were carried out by standard laboratory methods. The thermal stability of polymer was studied by thermogravimetric analysis. Thermal analyses shows that these coatings can be used safely up to 230 °C. The corrosion protective behavior of UPEA coatings was investigated in acid, alkali, water and xylene. All the coatings exhibited good chemical resistance performance in acid, alkali, saline and organic solvents, while the resin UPEA 20 showed the best performance.  相似文献   

2.
The resourceful employment of vegetable oil based polymers in coating applications that yield novel properties, faces challenges usually in their processing. We have developed polyesteramide coatings from linseed (Linnum ussitatissium seeds) oil with improved coating properties. Linseed oil was first converted into N, N-bis 2-hydroxy ethyl linseed oil fatty amide diol (HELA). The resin was synthesized by the reaction of HELA with ethylenediaminetetraacetic acid (EDTA) to develop ethylenediamine polyesteramide (Ed-PEA). The latter was further treated with poly (styrene co-maleic anhydride) (SMA) in different (35–50) phr (part per hundred part of resin) to obtain ambient cured polyesteramide (AC-PEA). The structural elucidation of polymeric resin (AC-PEA) was carried out by FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques. Thermal behavior of AC-PEA was studied by thermogravimetric analyses (TGA) and differential scanning calorimetry (DSC). The coatings of AC-PEA were prepared on mild steel strips to investigate their physico-mechanical and anticorrosive behavior (in acid, alkali, water and xylene). It was found that among all the samples, the one having 45 phr of SMA showed the best physico-mechanical and corrosion resistance performance. The thermal stability performance suggests that AC-PEA45 system could be safely used up to 150 °C.  相似文献   

3.
Soybean oil (SBO) was dimerized and the crude dimer acid product reacted with 1,2-phenylene diamine at 210 ± 5 °C under inert atmosphere to obtain fatty polyamide (FPA). The FPA was used to modify a commercial alkyd resin by reacting a mixture of the alkyd resin with 5 wt% of FPA at 120 °C for 80 min under inert atmosphere. The FTIR spectrum of the FPA modified resin showed evidence of higher degree of H-bonding than was found for the unmodified alkyd. White gloss coatings of 15, 20, 25, and 30% solids were formulated from the modified and unmodified resins and examined for performance with respect to: leveling, sag resistance, drying time, pigment settling, skinning tendency and film hardness. Results showed that the unmodified alkyd coatings exhibited good leveling but poor sag resistance at all solid contents. In contrast, FPA modified alkyd coatings combined good leveling with high sag resistance indicating their thixotropic nature. A strong tendency to pigment settling was observed for unmodified alkyd coatings but was not observed in the FPA modified alkyd coatings. The modified alkyd coatings showed skinning while the unmodified alkyd coatings did not skin. A 30% solids coating formulation of the FPA modified resin showed shorter surface dry time but longer hard dry time than the unmodified alkyd resin coating.  相似文献   

4.
Chitosan films were prepared from dried prawn shell via chitin and then tensile properties like tensile strength (TS) and elongation at break (Eb) of the films were evaluated. Six formulations were developed using methyl methacylate (MMA) monomer and aliphatic urethane diacrylate oligomer (M-1200) in methanol along with photoinitator (Darocur-1664). Then the films were soaked in the formulations and irradiated under UV radiation at different doses for the improvement of physico-mechanical properties of chitosan films. The cured films were characterized by measuring TS, Eb, polymer loading (PL), water absorption and gel content properties. The formulation containing 43% MMA and 15% oligomer in methanol solution showed the best performance at 20th UV pass for 4 min soaking time.  相似文献   

5.
Carbonyl iron/epoxy coatings are widely used in military as a radar absorbing coating (RAC). The behaviors of RACs under working environments are very important, especially in the new environments such as ozone appeared with widening of the application fields. The effects of ozone degradation on pure epoxy cured with anhydride and the influence of carbonyl Fe on the degradation of epoxy are studied. The results indicate that if the peak at 1,510 cm−1 was used as the inner standard, the intensity of absorption peaks at 1,738, 1,247 and 1,182 cm−1 increases with exposure time for pure epoxy resin, while for the carbonyl iron/epoxy coatings, the three peaks changes insignificantly with the exposure time. The results indicates the oxidation process begins at the hydroxyl and methyl groups, and finally ozonide and carbonyl are formed on the surface for pure epoxy, and epoxy is eroded gradually in depth by ozone. Carbonyl iron could hinder the meeting of ozone with epoxy with dilution or hindrance effect and could protect epoxy resin from ozone and thus delay the deterioration of the coating performance.  相似文献   

6.
The kinetics of polyesterification of glycerol, phthalic anhydride and jatropha oil leading to the formation of alkyd resins were studied. A series of alkyd resins having different amount of jatropha oil viz., 40–80% have been prepared by employing two stage alcoholysis-polyesterification process. The extent of reaction and average degree of polymerisation were calculated from the end group analysis of the reaction mixture withdrawn at regular intervals of time. The initial reaction rates followed the second order kinetics and thereafter deviations were observed. An appreciable degree of conversion was noticed from the extent of the reaction which lies in the range of 49.5–62.5%. The average degree of polymerisation calculated in the region of deviation from second order suggested the occurrence of chain branching at relatively shorter intervals along the polymer chain. The second order rate constants were found to be of the order of 10−5 g (mg KOH)−1 min−1.  相似文献   

7.
The kinetic behavior of polyesterification of the alkyd resins synthesized using glycerol and phthalic anhydride modified with oleic acid from the palm oil at temperatures between 120 and 240 °C was studied. Three alkyds having oleic acid contents of 28, 40, and 65% were prepared by employing fatty acid method. The extent of the polyesterification reaction and average degree of polymerization were monitored by determining the acid number of the aliquot of the reaction mixture at various intervals of time and by measuring the volume of water evolved. Kinetic studies revealed that initial reaction rates followed a second-order kinetics up to certain limit and thereafter deviations were observed. The extent of reaction varied from 77.4 to 86.3% before deviation for all the three samples and exhibited a considerable degree of conversion. The second-order rate constants calculated from the linear part were found to be of the order of 10−5 g (mg KOH)−1 min−1. Molecular weight of the alkyd samples was determined by GPC; number average molecular weight of the alkyds ranged from 980 to 2,070.  相似文献   

8.
Mesua ferrea L. seed oil (MFLSO) modified polyurethanes blends with epoxy and melamine formaldehyde (MF) resins have been studied for biodegradation with two techniques, namely microbial degradation (broth culture technique) and natural soil burial degradation. In the former technique, rate of increase in bacterial growth in polymer matrix was monitored for 12 days via a visible spectrophotometer at the wavelength of 600 nm using McFarland turbidity as the standard. The soil burial method was performed using three different soils under ambient conditions over a period of 6 months to correlate with natural degradation. Microorganism attack after the soil burial biodegradation of 180 days was realized by the measurement of loss of weight and mechanical properties. Biodegradation of the films was also evidenced by SEM, TGA and FTIR spectroscopic studies. The loss in intensity of the bands at ca. 1735 cm−1 and ca. 1050 cm−1 for ester linkages indicates biodegradation of the blends through degradation of ester group. Both microbial and soil burial studies showed polyurethane/epoxy blends to be more biodegradable than polyurethane/MF blends. Further almost one step degradation in TG analysis suggests degradation for both the blends to occur by breakage of ester links. The biodegradation of the blends were further confirmed by SEM analyses. The study reveals that the modified MFLSO based polyurethane blends deserve the potential to be applicable as “green binders” for polymer composite and surface coating applications.  相似文献   

9.
Ion‐exchange (IX) resin is perhaps the most promising technology to remove the contaminant perchlorate (ClO4?) from waters. However, ion exchange is only a separation technology that transfers the perchlorate from waters to the waste solutions used to regenerate the resins. The waste solutions contain high perchlorate concentrations, and treatment technologies for these regenerant solutions are needed. In this article, we review the latest knowledge on perchlorate removal by ion‐exchange resins; propose three systems that combine ion‐exchange resins (for perchlorate removal) and biological reduction for treating the waste solutions resulting from resin regeneration; and discuss the challenges and research needed to fully develop the proposed technology. © 2002 Wiley Periodicals, Inc.  相似文献   

10.
CF/EP (carbon fibre/epoxy resin) composites were degraded by supercritical n-butanol with alkali additive KOH in a batch reactor. The catalytic degradation mechanism of the composites was investigated based on the analysis of liquid phase products by GC–MS and solid phase products by FTIR. The results indicate that alkali additive (KOH) can promote Guerbet reaction and increase hydrogen donor capability of supercritical n-butanol. The H· can combine promptly with the free radical formed by the scission of linear and crosslinked chains in epoxy resin to generate the liquid products, including phenol, 4-isopropylphenol, 4-(2-methylallyl)phenol and other derivatives of benzene and phenol. The combination of supercritical n-butanol with alkali additive is an effective way to degrade and recycle CF/EP composites.  相似文献   

11.
Separation of waste printed circuit boards (WPCBs) has been a bottleneck in WPCBs resource processing. In this study, the separation of WPCBs was performed using dimethyl sulfoxide (DMSO) as a solvent. Various parameters, which included solid to liquid ratio, temperature, WPCB sizes, and time, were studied to understand the separation of WPCBs by dissolving bromine epoxy resin using DMSO. Experimental results showed that the concentration of dissolving the bromine epoxy resin increased with increasing various parameters. The optimum condition of complete separation of WPCBs was solid to liquid ratio of 1:7 and WPCB sizes of 16 mm2 at 145 °C for 60 min. The used DMSO was vapored under the decompression, which obtained the regenerated DMSO and dissolved bromine epoxy resin. This clean and non-polluting technology offers a new way to separate valuable materials from WPCBs and prevent the environmental pollution of waste printed circuit boards effectively.  相似文献   

12.

In this study, modified polyacrylamide (PAAm) cryogels with high dye holding capacity were synthesized with an easily and cheaply process and adsorption of Remazol Black B (RBB) with the synthesized materials was investigated. Firstly, PAAm cryogels were synthesized with free radical cryo-copolymerization method and they were modified with Hofmann reaction to form amine groups in the structure of the cyrogels. Then, to increase the removal efficiency of cryogels, polyethylenimine (PEI) molecules were crosslinked onto the cryogels via NH2 groups present in the PAAm gels modified by the Hofmann reaction. The original and modified cryogels were characterized with fourier transformed infrared spectroscopy, 13C nuclear magnetic resonance spectroscopy, scanning electron microscopy and thermogravimetric analysis. The point of zero charge (pHpzc) of the modified cryogels was found to be 7.13 and RBB removing capabilities of PEI-modified PAAm cryogels were investigated at pH between 2 and 7. In addition, the adsorption treatments were performed at different process time, incubation temperature, initial dye concentration and adsorbent amount to find maximum removal capacity of the adsorbent. The modified cryogels adsorbed maximum amount of RBB at pH 2 and the sorption process reached equilibrium in 6 h. It was observed that the adsorption efficiency did not change much with the increase in temperature. The maximum RBB removal capacity of the modified cyrogels was determined to be 201 mg/g when the initial RBB concentration was 200 mg/L, treatment time was 6 h at pH 2. Moreover, the adsorption of RBB dye with the modified cryogels takes place with a second order kinetic and RBB dye adsorption data showed compliance with the Langmuir isotherm. The findings of the study expose that the obtained PEI-modified PAAm cryogels are a hopeful material for RBB removal in aqueous environment.

  相似文献   

13.
Soy protein plastics are a renewable, biodegradable alternative to fossil fuel-based plastic resins. Processing of soy protein plastics using conventional methods (injection molding, extrusion) has met with some success. Viscosities of processable formulations that contain soy protein along with the necessary additives, such as glycerol and cornstarch, have not been reported, but are necessary for extrusion modeling and the design of extrusion dies. Resins consisting of soy protein isolate-cornstarch ratios of 4:1, 3:2, and 2:3 were plasticized with glycerol and soy oil, compounded in a twin screw extruder and adjusted to 10% moisture. The effects on viscosity of added sodium sulfite, a titanate coupling agent and recycling were evaluated using a screw-driven capillary rheometer at shear rates of 100–800/s. The viscosities fit a power-law model and were found to be shear thinning with power-law indices, n, of 0.18–0.46 and consistency indices, m, of 1.1 × 104–1.0 × 105. Power-law indices decreased and consistency indices increased with increasing soy protein-to-cornstarch ratio and in the absence of sodium sulfite. Addition of the titanate coupling agent resulted in increased power-law index and decreased consistency index. Viscosities at a shear rate of 400/s decreased with recycling, except for the 4:1 soy protein isolate to cornstarch formulation, which displayed evidence of wall slip. Power-law indices were unaffected by recycling. Viscosities in the tested shear rate range were comparable to polystyrene and low-density polyethylene indicating soy protein plastics are potential drop-in replacements for commodity resins on conventional plastics processing equipment.  相似文献   

14.
Diglycidyl ether of bisphenol—A (DGEBA)—based epoxy resin was blended in the ratio of 3:1 (weight basis) with cycloaliphatic epoxy (CAE) resin. The prepared blend sample was further blended with different weight percentages of carboxyl-terminated butadiene acrylonitrile copolymer (CTBN) ranging between 0 and 25 wt% with an interval of 5 wt% and cured with stiochiometric amounts of 4, 4’- diamino diphenyl sulphone (DDS) cure agent. Structural changes during blending were studied by Fourier-transform infra-red (FTIR) spectroscopic analysis. The kinetic parameters, viz., order of decomposition reaction (n), activation energy (E), pre-exponential factor (Z) and rate decomposition constant (k), for the decomposition of the samples were calculated by applying Coats-Redfern equation over thermogravimetric (TG) data. The degradation of each sample followed second-order degradation kinetics, which was calculated by Coats-Redfern equation using best-fit analysis. This was further confirmed by linear regression analysis. The validity of data was checked by t-test statistical analysis. Further, the blend sample had higher initial degradation temperature and activation energy than its respective pure epoxy resin indicating that the CTBN acted as thermal stabilizer for epoxy resin which improved the thermal stability.  相似文献   

15.
A series of polyhydroxyalkanoates (PHA), all containing 1% nucleating agent but varying in structure, were melt-processed into films through single screw extrusion techniques. This series consisted of three polyhydroxybutyrate (PHB) and three polyhydroxybutyrate-valerate (PHBV) resins with varying valerate content. Processing parameters of temperature in the barrel (165–173 °C) and chill rolls (60 °C) were optimized to obtain cast films. The gel-permeation chromatography (GPC) results showed a loss of 8–19% of the polymer’s initial molecular weight due to extrusion processing. Modulated differential scanning calorimetry (MDSC) displayed glass transition temperatures of the films ranging from −4.6 to 6.7 °C depending on the amount of crystallinity in the film. DSC data were also used to calculate the percent crystallinity of each sample and slightly higher crystallinity was observed in the PHBV series of samples. X-ray diffraction patterns did not vary significantly for any of the samples and crystallinity was confirmed with X-ray data. Dynamic mechanical analysis (DMA) verified the glass transition trends for the films from DSC while loss modulus (E′) reported at 20 °C showed that the PHBV (3,950–3,600 MPa) had the higher E′ values than the PHB (3,500–2,698 MPa) samples. The Young’s modulus values of the PHB and PHBV samples ranged from 700 to 900 MPa and 900 to 1,500 MPa, respectively. Polarized light microscopy images revealed gel particles in the films processed through single-screw extrusion, which may have caused diminished Young’s modulus and tensile strength of these films. The PHBV film samples exhibited the greatest barrier properties to oxygen and water vapor when compared to the PHB film samples. The average oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) for the PHBV samples was 247 (cc-mil/m2-day) and 118 (g-mil/m2-day), respectively; while the average OTR and WVTR for the PHB samples was 350 (cc-mil/m2-day) and 178 (g-mil/m2-day), respectively. Biodegradation data of the films in the marine environment demonstrated that all PHA film samples achieved a minimum of 70% mineralization in 40 days when run in accordance with ASTM 6691. For static and dynamic incubation experiments in seawater, microbial action resulting in weight loss as a function of time showed all samples to be highly biodegradable and correlated with the ASTM 6691 biodegradation data.  相似文献   

16.
In this paper we explore the preparation of polyurethanes from spinifex resin biopolymer. Polyurethanes were prepared by both one-shot and pre-polymer (two step) processes. Attenuated total reflection??Fourier transform infrared analysis revealed urethane bond formation in both processes, and the peak intensity for N?CH stretching was more sharp when the network was prepared by the pre-polymer method. Gel permeation chromatography revealed that the molecular weight of synthesized polyurethane increased with respect to the resin starting material, and the molecular weight was further increased when polyurethane was synthesized by the pre-polymer method. The glass transition temperature was also increased for the polyurethanes as compared with the starting resin. Thermo-gravimetric analysis revealed that the thermal stability of the PU-spinifex resin was reduced at intermediate temperatures due to the urethane bond formation. However, thermal degradation properties were superior at higher temperatures due to the cyclization degradation reaction of spinifex-polyurethane.  相似文献   

17.
The effects of manufacturing parameters on mechanical properties of medium density fibreboard (MDF) bonded with modified soy protein-based glue were studied to find an appropriate manufacture technology. Physical properties of MDF made with different amount of wax emulsion were measured. Results indicated that water repellent had no obvious influence on physical properties of soy protein-based MDF boards. The fiberboards bonded with soy protein-based glue showed stronger water resistance properties than those bonded with urea–formaldehyde (UF) resins. Furthermore, the soy protein-based MDF boards had good quality [25.2% 24 h soak thickness swell (TS), 29.9 MPa modulus of rupture (MOR), 3130 MPa modulus of elasticity (MOE)], which met requirements of Chinese national standard. Practical processing parameters were obtained by orthogonal experiment, i.e., glue content 8.0%, hot-press temperature 200 °C, and hot-press time 150 s.  相似文献   

18.
The surface free energy, surface tension and contact angles were performed to investigate the properties of wetting agents. Adsorption of wetting agents changes wetting behavior of polymer resins. Flotability of polymer materials modulated by wetting agents was studied, and wetting agents change significantly flotability of polymer materials. The flotability decreases with increasing the concentration of wetting agents, and the wetting ability is lignin sulfonate (LS) > tannic acid (TA) > methylcellulose (MC) > triton X-100 (TX-100) (from strong to weak). There is significant difference in the flotability between polymer resins and plastics due to the presence of additives in the plastics. Flotation separation of two-component and multicomponent plastics was conducted based on the flotability modulated by wetting agents. The two-component mixtures can be efficiently separated using proper wetting agent through simple flotation flowsheet. The multicomponent plastic mixtures can be separated efficiently through multi-stage flotation using TA and LS as wetting agents, and the purity of separated component was above 94%, and the recovery was more than 93%.  相似文献   

19.
Investigations have continued for production high performance agro-based composites using environmentally acceptable approaches. This study examines the role of adding amide-containing biopolymers during synthesis of urea–formaldehyde (UF) on properties of adhesive produced, especially its adhesion potential. The environmental performance of UF-resin synthesized in the presence of modified amide-containing biopolymer was evaluated by evaluating the free-HCHO of both adhesive (during processing) and of the eventual engineered composite product. Also, the benefits of this synthesis-modified adhesive in enhancing the bondability of sugar-cane fibers used in engineered composite panels was evaluated and compared to using UF-resin. The results obtained show that, static bending of the produced composites varied from 27.7 to 33.13 N/mm2 of modulus of rupture (MOR) and from 2860 to 3374 N/mm2 of Modulus of Elasticity (MOE); while for internal bond (IB) it’s varied from 0.64 to 0.866 N/mm2. Based on the ANSI and EN Standards modified UF-based agro composites produced meet the performance requirements for high grade particleboards with respect to static bending strength. These agro-based composite also tested out as having free-HCHO values of ~13 mg/100 g board.  相似文献   

20.
A study of the second step or methanogenic stage of a two-stage anaerobic digestion process treating two-phase olive oil mill solid residue (OMSR) was conducted at mesophilic temperature (35 °C). The substrate fed to the methanogenic step was the effluent from a hydrolytic–acidogenic reactor operating at an organic loading rate (OLR) of 12.9 g chemical oxygen demand (COD) L?1 d?1 and at a hydraulic retention time (HRT) of 12.4 days; these OLR and HRT were found to be the best values to achieve the maximum total volatile fatty acid concentration (14.5 g L?1 expressed as acetic acid) with a high concentration in acetic acid (57.5% of the total concentration) as the principal precursor of methane. The methanogenic stage was carried out in an anaerobic stirred tank reactor containing saponite as support media for the immobilization of microorganisms. OLRs of between 0.8 and 22.0 g COD L?1 d?1 were studied. These OLRs corresponded to HRTs of between 142.9 and 4.6 days. The methanogenic reactor operated with high stability for OLRs lower than 20.0 g COD L?1 d?1. This behaviour was shown by the total volatile fatty acids/total alkalinity ratio, whose values were always kept ?0.12 for HRTs > 4.6 days. The total COD (T-COD) removed was in the range of 94.3–61.3% and the volatile solids (VS) removed between 92.8% and 56.1% for OLRs between 0.8 and 20.0 g COD L?1 d?1. In the same way, a reduction of 43.8% was achieved for phenolic content. The low concentration of total volatile fatty acids (TVFA) observed (below 1 g L?1 expressed as CH3COOH) in the methanogenic reactor effluents showed the high percentage of consumption and conversion of these acids to methane. A methane yield of 0.268 ± 0.003 L CH4 at standard temperature and pressure conditions (STP) g?1 COD eliminated was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号