首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The role of snowmelt and subsurface hydrology in determiningthe chemistry of a small headwater stream in the TurkeyLakes Watershed (TLW) was evaluated for the spring meltperiods 1992 to 1996. Spring runoff is the dominanthydrological event at the TLW each year. Processesoccurring within the snowpack during snowmelt wereprincipally responsible for the above-ground changes inchemical fluxes relative to bulk deposition (the effect ofwinter throughfall was minimal). Large changes in chemicalfluxes occurred below ground. Organic matter decomposition,weathering, nitrification, and element cycling are some ofthe more important below-ground processes that operateduring the snow accumulation and ablation season and controlthe composition of the water ultimately appearing in thestream. Maximum stream discharge was accompanied byelevated concentrations of H+, NO3 -, K+,NH4 +, DOC, Al and Mn, but reduced levels ofCa2+, Mg2+, SO4 2- and SiO2. Theconcentration-discharge relationships were consistent withwater movement through and above the forest floor duringpeak discharge, a flowpath facilitated by rapid infiltrationof meltwater and the existence of a relatively impermeablelayer in the mineral soil creating a perched water table. Averaged over the five periods of snow accumulation andablation, it was estimated that pre-melt stream flow, andwater routed through the forest floor and through the uppermineral soil contributed 9, 28 and 63%, respectively, ofthe discharge measured at the outlet of the catchment. Theforest floor contribution would be greater at peak dischargeand at higher elevations. An end-member mixing modelestimated concentrations of SO4 2-, NO3 -,Cl-, Ca2+, Mg2+, Na+ and Al that werecomparable to average values measured in the stream. Othervariables (NH4 +, H+, K+ and DOC) wereover-estimated implying retention mechanisms operatingoutside the model assumptions.  相似文献   

2.
Concentrations and isotopic compositions of NO3 - from the Oldman River (OMR) and some of its tributaries (Alberta, Canada) have been determined on a monthly basis since December 2000 to assess temporal and spatial variations of riverine NO3 - sources within the OMR basin. For the OMR sites, NO3 --N concentrations reached up to 0.34 mg L-1, δ15N-NO3 - values varied between –0.3 and +13.8‰, and δ18O-NO3 - values ranged from –10.0 to +5.7‰. For the tributary sites, NO3 --N concentrations were as high as 8.81 mg L-1, δ15N-NO3 - values varied between –2.5 and +23.4‰, and δ18O-NO3 - values ranged from –15.2 to +3.4‰. Tributaries in the western, relatively pristine forested part of the watershed add predominantlyNO3 - to the OMR with δ15N-NO3 - values near +2‰ indicative of soil nitrification. In contrast, tributariesin the eastern agriculturally-urban-industrially-used part of the basin contribute NO3 - with δ15N-NO3 - valuesof about +16‰ indicative of manure and/or sewage derived NO3 -. This difference in δ15N-NO3 - values of tributaries was found to be independent of the season, but rather indicates a spatial change in the NO3 - source, which correlates with land use changes within the OMR basin. As a consequence of tributary influx, δ15N-NO3 - values in the Oldman River increased from <+3‰ to >+6‰ in the downstream direction (W to E), although [NO3 --N] increased only moderately (generally <0.5 mg L-1). This study demonstrates the usefulness of δ15N-NO3 - and δ18O-NO3 - values in identifying the addition of anthropogenic NO3 - to riverine systems.  相似文献   

3.
The lateral down-slope movement of water, NO3 -, NH4 +, SO4 2-, H+ and DOC through an ablation till was examined from 1987 to 1990 for a one hectaresoil catena on a steep hillslope with uniform forest cover at the Turkey Lakes Watershed (TLW), Ontario, Canada. Natural variation in the export of nutrients from the soil profile via soil water to Little Turkey Lake was assessed in relation to nutrient distribution in soil at different topographic positions.Subsurface throughflow exhibited dramatic differences in nutrientconcentrations and fluxes with slope position, largely reflectingthat of the soil horizons through which the water passed. GreaterNO3 -, SO4 2-, and DOC concentrations in subsurface water in the upper, well-drained hillslope were a reflection of enrichment by contact with more acidic, more developed podzols, and more favorable soil physical and biological conditions for NO3 - retention in solution.Nutrient inputs to the lake were strongly influenced by increaseddown-slope transport of water, and increased SO4 2-, N, and C retention in wetter, less-developed podzolic soils that characterize lower slope positions. An understanding of water movement and soil development variation withtopographic position was required to accurately estimate nutrient budgets for steep slopes at TLW.  相似文献   

4.
Two models, N_EXRET and INCA, were applied to the Simojoki river basin (3160 km2) in northern Finland in order to assess nitrogen retention in wetlands and lakes. N_EXRET is a spatial, export coefficient-based N export and retention model developed for large river basins. It utilizes remote sensing-based land use and forest classification, evaluated export coefficients, and data on areal N deposition and point sources of N. A new version (v1.7) of the Integrated Nitrogen in CAtchments model (INCA) is a semi-distributed, dynamic nitrogen process model, which simulates and predicts nitrogen transport and processes within catchments. Average retention of the gross total N load of 700 t a-1 to the river system was estimated using N_EXRET model as 17 t N a-1 to the wetlands and 77 t N a-1 to the lakes. A good fit was found between modeled and measured values along the river. Inorganic N fluxes simulated by the INCA model were compared with measured fluxes along the river Simojoki, with a good fit between modeled and measured NH4 +-N fluxes, and an adequate fit for NO3 --N fluxes. Both fluxes were overestimated at the first reach, below Lake Simojärvi. High percentage of peatlands led to high NH4 +-N/NO3 --N ratios derived from data, indicating negligible nitrification in large river subbasins and particularly in small research catchments.  相似文献   

5.
More than 85% of the mountainous spruce forest of the Bavarian Forest National Park died after bark beetle attack during the last decade. The elemental budget of intact stands and of different stages after the dieback was investigated. N-fluxes in throughfall of intact stands were lower (12–16 kg ha-1 a-1) than in an earlier study in an intact mountainous spruce stand in the Bavarian Forest National Park and were reduced in the first years after the dieback (3–5 kg N ha-1 a-1). Nitrate-N fluxes by seepage water of intact stands at 40 cm depth, which is below the main rooting zone, were moderate (5–9 kg ha-1 a-1). After the dieback of the stands, NH4 + concentrations were increased in humus efflux as were NO3 - concentrations in mineral soil. Due to the relatively high precipitation, dilution of the elemental concentrations in seepage was considerable.Therefore, NO3 - concentrations were usually below the level of drinking water (806 μmol NO3 - L-1), with lowest concentrations after the snowmelt and highest in autumn. Nitrate concentrations were elevated from the first year until the 7th year after the dieback. Total NO3 --N losses by seepage until the 7th year after the dieback equalled 543 kg N ha-1. Aluminium fluxesafter the dieback were enhanced in the mineral soil from 55 to 503 mmolc m-2 a-1 (average of 8 yr), K+ fluxes from 8 to 37 mmolc m-2 a-1, and Mg2+ fluxes from 13 to 35 mmolc m-2 a-1. The consequences for the nutritional status of the ecosystem, the hydrosphere, and forest management are discussed in the paper.  相似文献   

6.
Nitrate leaching was measured over seven years of nitrogen (N) addition in a paired-catchment experiment in Alptal, central Switzerland (altitude: 1200 m, bulk N deposition: 12 kg ha-1 a-1). Two forested catchments (1500 m2 each) dominated by Picea abies) were delimited by trenches in the Gleysols. NH4NO3 was added to one of the catchments using sprinklers. During the first year, the N addition was labelled with 15N. Additionally, soil N transformationswere studied in replicated plots. Pre-treatment NO3 --N leaching was 4 kg ha-1 a-1 from both catchments, and remained between 2.5 and 4.8 kg ha-1 a-1 in the control catchment. The first year of treatment induced an additional leaching of 3.1 kg ha-1, almost 90% of which was labelled with 15N, indicating that it did not cycle through the large N pools of the ecosystem (soil organic matter and plants). These losses partly correspond to NO3 - from precipitation bypassing the soil due to preferential flow. During rain or snowmelt events, NO3 - concentration peaks as the water table is rising, indicating flushing from the soil. Nitrification occurs temporarily along the water flow paths in the soil and can be the source of NO3 - flushing. Its isotopic signature however, shows that this release mainly affects recently applied N, stored only between runoff events or up to a few weeks. At first, the ecosystem retained 90% of the added N (2/3 in the soil), but NO3 - losses increased from 10 to 30% within 7 yr, indicating that the ecosystem became progressively N saturated.  相似文献   

7.
This study presents the chemical composition of bulk deposition during the period of February 1996–May 1997 and the chemical composition of sub-event wet deposition on 13 August 1997 in Gebze. Samples were analyzed for SO4 2-, NO3 -, Cl-,Ca2+, Mg2+, K+, Na+, and NH4 + in addition to pH. The source of some ionic components in the bulk deposition such as K+ and Ca2+ were found to be the terrestrial regions, as expected. The (non-sea Cl-)/Cl- ratio of 0.05 suggests that the very large portion of Cl- in the bulkdeposition was of marine origin. The ratio of (non-sea SO4 2-)/SO4 2- varied between 0.86 and 0.99,indicating that the main source of sulfate was not the sea. It is found that the sulfate and calcium concentrations were highest in summer and lowest in fall. The analysis of bulk deposition also indicated that nearly 24% of the events were acidic (pH < 5.6). During sub-event wet deposition collectedon the same site pH decreased continually, and during the passageof cold front concentrations of Cl-, SO4 2- and NO3 - increased.  相似文献   

8.
A new version (v1.7) of the Integrated Nitrogen in CAtchments model(INCA) was applied to the northern boreal Simojoki river basin (3160 km2) in Finland. The INCA model is a semi-distributed, dynamic nitrogen (N) process model which simulates N transport and processes in catchments. The INCA model was applied to model flow and seasonal inorganic N dynamics of the river Simojoki basin over the period 1994–1996, and validated for two more years. Both calibration and validation of the model were successful. The model was able to simulate annual dynamics of inorganic N concentrations in the river. The effects of forest management and atmospheric deposition on inorganic N fluxes to the sea in 2010 were studied. Three scenarios were applied for forestry practices and two for deposition. The effects of forest cutting scenarios and atmospheric deposition scenarios on inorganic N flux to the sea were small. The combination of the maximum technically possible reduction of N deposition and a decrease of 100% in forest cutting and peat mining areas decreased NO3 --N flux by 6.0% and NH4 +-N flux by 3.1%.  相似文献   

9.
The deposition of atmospheric N to soils provides sources of available N to the nitrifying and denitrifying microbial community and subsequently influences the rate of NO and N2O emissions from soil. We have investigated the influence of three different sources of enhanced N deposition on NO and N2O emissions 1) elevated NH3 deposition to woodlands downwind of poultry and pig farms, 2) increased wet cloud and occult N deposition to upland forest and moorland and 3) enhanced N deposition to trees as NO? 3 and NH+ 4 aerosol. Flux measurements of NO and N2O were made using static chambers in the field or intact and repacked soil cores in the laboratory and determination of N2O by gas chromatography and of NO by chemiluminescence analysis. Rates of N deposition to our study sites were derived from modelled estimates of N deposition, NH3 concentrations measured by passive diffusion and inference from measurements of the 210Pb inventory of soils under tree canopies compared with open grassland. NO and N2O emissions and KCl-extractable soil NH+ 4 and NO? 3 concentrations all increased with increasing N deposition rate. The extent of increase did not appear to be influenced by the chemical form of the N deposited. Systems dominated by dry-deposited NH3 downwind of intensive livestock farms or wet-deposited NH+ 4and NO? 3 in the upland regions of Britain resulted in approximately the same linear response. Emissions of NO and N2O from these soils increased with both N deposition and KCl extractable NH+ 4, but the relationship between NH+ 4 and N deposition (ln NH+ 4 = 0.62 ln Ndeposition+0.21, r 2 = 0.33, n = 43) was more robust than the relationship between N deposition and soil NO and N2O fluxes.  相似文献   

10.
Dissolved nitrous oxide (N2O), nitrate (NO3 -), and ammonium (NH4 +) concentrations in an agricultural field drain were intensively measured over the period of field nitrogen (N) fertilisation and for several weeks thereafter. Supersaturations of dissolved N2O were observed in field drain waters throughout the study. On entry to an open drainage ditch, concentrations of dissolved N2O rapidly decreased and a total N2O-N emission via this pathway of 13.2 g over the period of study (45 days) was calculated. This compared with a predicted emission of the order of 300 g, based on measured losses of NO3 - and NH4 + in the field drainage water, and the default IPCC emission factor of 0.01 kg N2O-N per kg Nentering rivers and estuaries. In contrast to widespread evidence of a clear relationship between the amount of N applied to agricultural land and subsequent direct N2O emission from the soil surface, the relationship between the amount of N2O in soil drainage waters and the amount of N applied was poor. We conclude that the complexity, both spatially and temporally, of the processes ultimately responsible for the amount of N2O in agricultural drainage waters make a straightforward relationship between N2O concentration and N application rate unlikely in all but the simplest of systems.  相似文献   

11.
The process-based INCA model was applied to Dalelva Brook (3.2 km2) and the Bjerkreim River (685 km2) including several subcatchments, in order to test the model's ability to simulate streamwater nitrate (NO3 -) dynamics and output fluxes under highly contrasting climatic conditions and nitrogen (N) loading. The simulated runoff volumes and mean NO3 - concentrations at Dalelva and Bjerkreimwere within +2 to +10% of the measured average during 1993–1995 (–19 to +31% within individual years). INCA to a great extent also reproduced the observed streamwater flow dynamics at both study sites (coefficient of determination, r 2 > 0.70). Temporal variation of streamwater NO3 - during 1993–1995 was captured quite well by the model, especially at small catchments with a distinct seasonal NO3 - pattern (r 2 = 0.46–0.68). At the Bjerkreim River outlet, the relationship were somewhat weaker (r 2 = 0.26, p < 0.01). Despite a few situations where the model failed to capturethe streamwater NO3 - dynamics, INCA proved to be a quite robust tool for simulating NO3 - dynamics and output fluxes in the two study catchments.  相似文献   

12.
Extremely high emissions of S and N compounds in Central Europe (both 280 mmol m-2 yr-1) declined by 70and 35%, respectively, during the last decade. Decreaseddeposition rates of SO4 -2, NO3 -, and NH4 + in the region paralleled emission declines. The reduction in atmospheric inputs of S and N to mountain ecosystemshas resulted in a pronounced reversal of acidification in the Tatra Mountains and Bohemian Forest lakes. Between the 1987–1990and 1997–1999 periods, concentrations of SO4 -2 and NO3 - decreased (average ± standard deviation) by 22±7 and 12±7 mol L-1, respectively, in theTatra Mountains, and by 19±7 and 15±10 mol L-1, respectively, in the Bohemian Forest. Their decrease was compensated in part (1) by a decrease in Ca2+ + Mg2+ (17±7 mol L-1) and H+ (4±6 mol L-1), and an increase in HCO3 -(10±10 mol L-1) in the Tatra Mountains lakes, and (2) by a decrease in Al (7±4 mol L-1), Ca2+ + Mg2+ (9±6 mol L-1), and H+ (6±5 mol L-1), in Bohemian Forest lakes. Despite the rapid decline in lake water concentrations of SO4 -2 and NO3 - in response to reduced S and N emissions, their present concentrations in some lakes are higher than predictionsbased on observed concentrations at comparable emission rates during development of acidification. This hysteresis in chemical reversal from acidification has delayed biological recovery of the lakes. The only unequivocal sign of biological recovery hasbeen observed in erné Lake (Bohemian Forest) where a cladoceran species Ceriodaphnia quadrangular has recentlyreached its pre-acidification abundance.  相似文献   

13.
Year-to-year variation in SO4 2-,NO3 -, Ca2+, K+, and Mg2+concentrations in forest floor and mineral soil percolatefrom a forested, podzolic soil at the Turkey Lakes Watershedon the Precambrian Shield was assessed for monotonic trendsbetween 1986 and 1995. Our objective was to examine howrapidly ion concentrations in soil percolate equilibratedafter stabilization of SO4 2- concentrations inprecipitation. Significant negative trends were detected inmonthly Ca2+, and Mg2+ concentrations in forestfloor and SO4 2-, Ca2+, and Mg2+ inmineral soil percolate during the 10-year-period. Thedecline in Ca2+ and Mg2+ was greater than annualdecreases in SO4 2- and NO3 - in forestfloor percolate and proportional to the reduction inSO4 2- in mineral soil percolate. Response ofmineral soil percolate to a 15 molc L-1SO4 2- decrease in wet-only precipitation between1985 and 1986 was a gradual decline in SO4 2-concentration through 1995. The five-year meanSO4 2- concentration in bulk precipitation, forestfloor percolate, and mineral soil percolate decreased 8, 9and 18 molc L-1 from 1986–90 to 1991–95.Microbial (mineralization of organic S) and sorption(release from and/or retention in the pool of insolubleSO4 2-) processes in the soil were logicalexplanations for the observed changes in SO4 2- inmineral soil percolate.  相似文献   

14.
The paired catchment study at the forested Bear Brook Watershed in Maine (BBWM) U.S.A. documents interactions among short- to long-term processes of acidification. In 1987–1989, runoff from the two catchments was nearly identical in quality and quantity. Ammonium sulfate has been added bi-monthly since 1989 to the West Bear catchment at 1800 eq ha-1 a-1; the East Bear reference catchment is responding to ambient conditions. Initially, the two catchments had nearly identical chemistry (e.g., Ca2+, Mg2+, SO4 2-, and alkalinity ≈82, 32, 100, and 5 μeq L-1, respectively). The manipulated catchment responded initially with increased export of base cations, lower pH and alkalinity, and increased dissolved Al,NO3 - and SO4 2-. Dissolved organic carbon and Si have remained relatively constant. After 7 yr of treatment, the chemical response of runoff switched to declining base cations, with the other analytes continuing their trends; the exports of dissolved and particulate Al, Fe, and P increased substantially as base cations declined. The reference catchment has slowly acidified under ambient conditions, caused by the base cation supply decreasing faster than the decrease of SO4 2, as pollution abates. Export of Al, Fe and, P is mimicking that of the manipulated watershed, but is lower in magnitude and lags in time. Probable increasing SO4 2- adsorption caused by acidification has moderated the longer-term trends of acidification of both watersheds. The trends of decreasing base cations were interrupted by the effects of several short-term events, including severe ice storm damage to the canopy, unusual snow pack conditions, snow melt and rain storms, and episodic input of marine aerosols. These episodic events alter alkalinity by5 to 15 μeq L-1 and make it more difficult to determine recovery from pollution abatement.  相似文献   

15.
This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH3-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s?1 within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD5) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L?1 at pH 5.0. The biodegradable ratio BOD5/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD5, 95.5% COD and 98.1% NH3-N removal were achieved by SBR operated under anoxic–aerobic–anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD5, suspended solid (SS), NH3-N and total organic carbon (TOC) were 72.4 mg L?1, 22.8 mg L?1, 24.2 mg L?1, 18.4 mg L?1 and 50.8 mg L?1 respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate.  相似文献   

16.
Beier  C.  Rasmussen  L.  Pilegaard  K.  Ambus  P.  Mikkelsen  T.  Jensen  N. O.  Kjøller  A.  Priemé  A.  Ladekarl  U. L. 《Water, Air, & Soil Pollution: Focus》2001,1(1-2):187-195
The fluxes of the major nitrogen compounds havebeen investigated in many ecosystem studies over the world.However, only in few studies has attention been drawn to theimportance of the fluxes of minor gaseous nitrogen compoundsto complete the nitrogen cycle. In Denmark a detailed study onthe nitrogen cycle in an old beech forest has been implementedin 1997 at Gyrstinge near Sorø, Zealand. The study includesthe fluxes of the gases NO, N2O and water mediatedtransport of NO3 - and NH4 +. Measurementsof the fluxes of the gaseous compounds are performed withmicro-meteorological methods (eddy-correlation and gradient)and with chambers. Water mediated fluxes encompass rain,throughfall, stem-flow and leaching from the root zone. Thehydrological model is verified by TDR measurements. The findings show that the total water mediated N input tothe forest floor with throughfall and stemflow was 25.6 kg Nha-1 yr -1, and open field wet deposition withprecipitation was 19.0 kg N ha-1 yr -1. The internalcycling of N in the ecosystem measured as turnover oflitterfall and plant uptake was 100 kg N ha-1 yr -1and 14 kg N ha-1 yr -1, respectively. The fluxes ofthe gaseous N compounds NO and N2O were of minorimportance for the total N turnover in the forest, NOxemission being <1 kg N ha-1 yr -1 and N2Oemission from the soil being 0.5 kg N ha-1 yr -1 withno significant difference between wet and dry soils.Concentrations of NO3 - and NH4 + in thesoil solution beneath the rooting zone are very small andconsequently the N leaching is almost negligible. It isconcluded that the nitrogen mass balance of this old beechforest ecosystem mainly is controlled by the input by dry andwet deposition and a large internal N cycle with a fast litterturnover. The nitrogen input tothe forest ecosystem which currently exceeds the critical loadby 5 kg N ha-1 yr -1is mainly accumulated in the soil and no significant nitrateleaching is occurring.  相似文献   

17.
Regular additions of NH4NO3 (35–140 kg N ha−1 yr−1) and (NH4)2SO4 (140 kg N ha−1 yr−1) to a calcareous grassland in northern England over a period of 12 years have resulted in a decline in the frequency of the indigenous bryophyte species and the establishment of non-indigenous calcifuge species, with implications for the structure and composition of this calcareous bryophyte community. The lowest NH4NO3 additions of 35 kg N ha−1 yr−1 produced significant declines in frequency of Hypnum cupressiforme, Campylium chrysophyllum, and Calliergon cuspidatum. Significant reductions in frequency at higher NH4NO3 application rates were recorded for Pseudoscleropodium purum, Ctenidum molluscum, and Dicranum scoparium. The highest NH4NO3 and (NH4)2SO4 additions provided conditions conducive for the establishment of two typical calcifuges – Polytrichum spp. and Campylopus introflexus, respectively. Substrate-surface pH measurements showed a dose-related reduction in pH with increasing NH4NO3 deposition rates of 1.6 pH units between the control and highest deposition rate, and a further significant fall in pH, of >1 pH unit, between the NH4NO3 and (NH4)2SO4 treatments. These results suggest that indigenous bryophyte composition may be at risk from nitrogen deposition rates of 35 kg N ha−1 yr−1 or less. These effects are of particular concern for rare or endangered species of low frequency.  相似文献   

18.
Spatial and temporal changes in mobility of N species have been studied for three UK upland river networks, the Etherow in the South Pennines, the Nether Beck in the Lake District and the Dee in NE Scotland. The catchments are subject to N deposition at 35.1, 22.0 and 10.8–15.6 kg N ha?1 yr?1, respectively. The NH+ 4 leaching appears to be predominantly regulated by flow path in more polluted upland catchments. It is greatest where water draining acidified peaty soils contributes more to total discharge. Soluble organic matter may provide the dominant counter anion. In the Etherow and Dee catchments, which are dominated by acid mineral and organic soils, at high discharge NO? 3 also appears to be associated with greater input of water from acidified soils. In contrast, for the Nether Beck, higher NO? 3 concentrations are associated with tributaries draining soils contributing water with higher alkalinity, suggesting nitrification is important. For the Etherow and Dee, dissolved organic N (DON) appears to originate predominantly from acidified, peaty soils. Spiking experiments with peat soil from the Etherow catchment confirmed the limited capacity of these soils to utilize inorganic N inputs, favouring equilibration with NH+ 4 inputs and leaching losses of inorganic N throughout the year.  相似文献   

19.
The purpose of the present work was to investigate the chemistry of rain in the Gulf of Iskenderun, North East Mediterranean, Turkey. The Gulf region has a large number of industries. Main industries existing in the region are iron and steel works, fertilizer plants, a cement plant, and several medium and mini size steel mills in addition to the international pipe line terminals. This study aims to apportion the local sources contributing to the overall pollution of the region. To this end a precipitation sampling program was started in January 2000, and over 48 precipitation samples were collected from each of 5 stations located at Iskenderun city center, Iskenderun industrial zone, Payas city center, the campus of Iskenderun Technical College and the campus of Mustafa Kemal University. Samples were analysed for pH, NO3 +, Cl-. Ca, Al, Ba, Na, Cd, Co, Cr, Cu, Pb, Li, Mg, Mn, Ni, Zn, Fe, K. Concentrations of metal ions were determined by ICP-AES. NO3 - ions and pH were determined by using NO3 - selective electrode and pH meter, respectively.pH values of the collected samples at the industrial zone and at Payas city center, ranged between 5.02 and 7.38, respectively. NO3 - and metal ions concentrations were highly variable. Concentrations of Ca and Fe ions were higher in the industrial zone and Payas city center. In the other three stations, concentrations of metal ions and NO3 - ion were lower than that of industrial zone and the values of pH ranged between 6 and 7.4. The average pH values at Iskenderun Gulf showed that the precipitation was not acidic, because of the high concentration of Ca. The highest concentrations of Na and Cl ions were recorded in the University campus because the campus is located by the Mediterranean Sea.  相似文献   

20.
Airborne particulate matter (PM) concentrations were measured in Iksan, a suburban area in South Korea during April, 2003. PM2.5 (particles with an aerodynamic diameter less than 2.5 μm) and PM10 (particles with an aerodynamic diameter less than 10 μm) samples were collected, and the chemical characteristics of particles were examined for diurnal patterns, yellow dust/rainfall influences, and scavenging effects. Average concentrations of PM2.5 and PM10 mass measured were 37.3 ± 16.2 μg m−3 and 60.8 ± 29.5 μg m−3, respectively. The sum of ionic chemical species concentrations for PM2.5 and PM10 was 16.9 ± 7.3 and 23.1 ± 10.1 μg/m3, respectively. A significant reduction in PM mass concentrations during rainfall days was observed for coarse mode (PM2.5 − 10) particles, but less reduction was found for fine (PM2.5) mass concentration. SO4 2−, NH4 +, and K+ predominated in fine particulate mode, NO3 and Cl predominated in fine particle mode and coarse particle mode, but Na+, Mg2+, and Ca2+ mostly existed in coarse mode. The high concentration of ammonium due to local emissions and long-range transport neutralized sulfate and nitrate to ammonium sulfate and ammonium nitrate, which were major forms of airborne PM in Iksan. Average mass concentrations of PM10 in daytime and at night were 57.6 and 70.0 μg m−3, and those of PM2.5 were 35.4 and 42.5 μg m−3, respectively. NO3 and Cl in both PM2.5 and PM10 were about double at night than in the daytime, while the rest of the chemical species were equal or a little higher at night than in the daytime. The results suggest the formation of ammonium nitrate and chloride when high ammonia concentration and low air temperature are allowed. Backward air trajectory analyses showed that air masses arriving at the site during yellow dust period were transported from arid Chinese regions, which resulted in high concentrations of airborne PM mass concentrations. In the meantime, air mass trajectories during a rainfall period were mostly from the Pacific Ocean or the East China Sea, along with a relatively low PM concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号