首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.

The changes in some potentially toxic elements (PTEs) including lead (Pb), cadmium (Cd), arsenic (As), iron (Fe), zinc (Zn), and copper (Cu) during pekmez (grape molasses-like syrup) processing and the utilization of various types of clarifiers (white soil, bentonite, and gelatin) in two levels (1.5 and 3% w/w) were analyzed. The average concentrations of Pb, Cd, As, Fe, Zn, and Cu in grape samples were measured as 0.055?±?0.005, 0.030?±?0.002, 0.044?±?0.002, 2.882?±?0.013, 2.372?±?0.088, and 1.194?±?0.01 μg g?1. During pekmez production, the range of changes in Pb, Cd, As, Fe, Zn, and Cu was ?43.38% to 40.25%, ?55.49% to 0.23%, ?76.15% to 1.80%, ?74.15% to 58.47%, ?40.55% to ?18.12%, and ?83.16% to ?21.39%, respectively. The effect of the clarification process on the PTEs depended on the type and concentration of both PTE and clarifier agent used while the incorporation of gelatin resulted in a significant reduction in all of PT.

Graphical abstract

  相似文献   

2.

Marine algae have made a strong contribution to global food security in the future. This study is the first report describing the concentration, pathways, and interactions of halogens in 15 species of marine algae collected from the Eastern Harbor in Alexandria, Egypt, relative to 22 key variables. The relationship between halogen content and chemical and biochemical parameters was studied through multivariate analysis. Among all the tested algae, the iodine content was the lowest (2.53–3.00 μg/g). The range of fluoride and chloride in macroalgae (1.12–1.70 and 0.10–0.46 mg/g) was smaller than that of microalgae (0.10–0.46 and 1.48–3.17 mg/g). The bromide content in macroalgae (0.36–5.45 mg/g) was higher than that in microalgae (0.40–0.76 mg/g). The halogen content in macroalgae was arranged in the order of Br > F > Cl > I. In addition, the biochemical parameters such as carbohydrates, proteins, lipids, and certain heavy metals (Fe, Zn, Cu, Mn, Pb, Ni, Co, Cd, and Cr) were determined. Calories, energy, total antioxidant activity (TAC), K/Na, and ion quotient amounts were estimated. The results showed that the green seaweed species had the highest TAC content. In most of the studied algal species, the calculated ion quotient referred to their likelihood of overcoming high blood pressure. The estimated daily intake (EDI) of algae showed no adverse effects on human health. Most of the research variables are below the acceptable WHO/FAO level. Generally, the calorie content of the selected algae is less than 2 kcal, which makes the algae considered an alternative source of healthy food to reduce obesity.

Graphical abstract

  相似文献   

3.

Electrocoagulation (EC) is an excellent and promising technology in wastewater treatment, as it combines the benefits of coagulation, flotation, and electrochemistry. During the last decade, extensive researches have focused on removal of emerging contaminants by using electrocoagualtion, due to its several advantages like compactness, cost-effectiveness, efficiency, low sludge production, and eco-friendness. Emerging contaminants (ECs) are micropollutants found in trace amounts that discharging into conventional wastewater treatment (WWT) plants entering surface waters and imposing a high threat to human and aquatic life. Various studies reveal that about 90% of emerging contaminants are disposed unscientifically into water bodies, creating problems to public health and environment. The studies on removal of emerging contaminants from wastewater are by global researchers are critically reviewed. The core findings proved that still more research required into optimization of parameters, system design, and economic feasibility to explore the potential of EC combined systems. This review has introduced an innovative collection of current knowledge on electro-coagulation for the removal of emerging contaminants.

Graphical abstract
  相似文献   

4.

In the context of urban agriculture, where soils are frequently contaminated with metal(loid)s (TM), we studied the influence of vermicompost amendments on symbiotic fungal communities associated with plants grown in two metal-rich soils. Leek (Allium porrum L.) plants were grown with or without vermicompost in two metal-rich soils characterized by either geogenic or anthropogenic TM sources, to assess the influence of pollutant origin on soil-plant transfer. Fungal communities associated with the leek roots were identified by high throughput Illumina MiSeq and TM contents were measured using mass spectrometry. Vermicompost addition led to a dramatic change in the fungal community with a loss of diversity in the two tested soils. This effect could partially explain the changes in metal transfer at the soil-AMF-plant interface. Our results suggest being careful while using composts when growing edibles in contaminated soils. More generally, this study highlights the need for further research in the field of fungal communities to refine practical recommendations to gardeners.

Graphical abstract

  相似文献   

5.

A review of the applicability of electron beam water radiolysis for sewage sludge treatment is presented. Electron beam treatment has been proven to be a successful approach to the disinfection of both wastewater and sewage sludge. Nevertheless, before 2000, there were concerns about the perceived high capital costs of the accelerator and with public acceptance of the usage of radiation for water treatment purposes. Nowadays, with increased knowledge and technological development, it may be not only possible but also desirable to use electron beam technology for risk-free sewage sludge treatment, disposal and bio-friendly fertiliser production. Despite the developing interest in this method, there has been no attempt to perform a review of the pertinent literature relating to this technology. It appears that understanding of the mechanism and primary parameters of disinfection is key to optimising the process. This paper aims to reliably characterise the sewage sludge electron beam treatment process to elucidate its major issues and make recommendations for further development and research.

Graphical abstract

  相似文献   

6.

The chitosan-stabilized ferrous sulfide nanoparticles were loaded on biochar to prepare a composite material FeS-CS-BC for effective removal of hexavalent chromium in water. BC and FeS-CS-BC were characterized by Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. Batch experiments were employed to evaluate the Cr(VI) removal performance. The experimental results showed that the removal rate of Cr(VI) by FeS-CS-BC(FeS:CS:BC?=?2:2:1) reached 98.34%, which was significantly higher than that of BC (44.58%) and FeS (79.91%). In the pH range of 2–10, the removal of Cr(VI) by FeS-CS-BC was almost independent of pH. The limitation of coexisting anions (Cl?、SO42?、NO3?) on Cr(VI) removal was not too obvious. The removal of Cr(VI) by FeS-CS-BC was fitted with the pseudo-second-order dynamics, which was a hybrid chemical-adsorption reaction. The X-ray photoelectron spectroscopy (XPS) analysis result showed that Cr(VI) was reduced, and the reduced Cr(VI) was fixed on the surface of the material in the form of Cr(VI)–Fe(III).

Removal of hexavalent chromium from wastewater by FeS-CS-BC composite synthesized by impregnation.

  相似文献   

7.

When sewage sludge is incorrectly applied, it may adversely impact agro-system productivity. Thus, this study addresses the reaction of Cucumis sativus L. (cucumber) to different amendment rates (0, 10, 20, 30, 40 and 50 g kg?1) of sewage sludge in a greenhouse pot experiment, in which the plant growth, heavy metal uptake and biomass were evaluated. A randomized complete block design with six treatments and six replications was used as the experimental design. The soil electrical conductivity, organic matter and Cr, Fe, Zn and Ni concentrations increased, but the soil pH decreased in response to the sewage sludge applications. As approved by the Council of European Communities, all of the heavy metal concentrations in the sewage sludge were less than the permitted limit for applying sewage sludge to land. Generally, applications of sewage sludge of up to 40 g kg?1 resulted in a considerable increase in all of the morphometric parameters and biomass of cucumbers in contrast to plants grown on the control soil. Nevertheless, the cucumber shoot height; root length; number of leaves, internodes and fruits; leaf area; absolute growth rate and biomass decreased in response to 50 g kg?1 of sewage sludge. All of the heavy metal concentrations (except the Cu, Zn and Ni in the roots, Mn in the fruits and Pb in the stems) in different cucumber tissues increased with increasing sewage sludge application rates. However, all of the heavy metal concentrations (except the Cr and Fe in the roots, Fe in the leaves and Cu in the fruits) were within the normal range and did not reach phytotoxic levels. A characteristic of these cucumbers was that all of the heavy metals had a bioaccumulation factor <1.0. All of the heavy metals (except Cd, Cu and Zn) had translocation factors that were <1.0. As a result, the sewage sludge used in this study could be considered for use as a fertilizer in cucumber production systems in Saudi Arabia and can also serve as a substitute method of sewage sludge disposal.

The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation, growth and biomass of cucumbers

  相似文献   

8.

This study assessed the concentration, bioconcentration, and bioaccumulation of As, Cd, Co, Cr, Cu, Mg, Mn, Ni, Pb, and Zn in juvenile fishes (Acestrorynchus pantaneiro, Brycon orbygnianus, Cyphocharax voga, Megaleporinus obtusidens, Odontesthes bonariensis, Pimelodus maculatus, Prochilodus lineatus, Salminus brasiliensis, and Schizodon borelli) in the Lower Paraná River (Argentina), the most extensive floodplain from the Plata Basin. The floodplain is crucial for the reproduction and growth of various species such as P. lineatus, M. obtusidens, and S. brasiliensis, which complete their life cycle in this environment. In total, 90 individuals were sampled for nitrogen stable isotope, and trace element analysis in muscle tissue, water, and sediment was analyzed. The results show that all the studied species bioaccumulate Cr, Mg, Ni, and Zn. In particular, B. orbygnianus and P. maculatus presented the highest bioaccumulation factor for Cr. A biodilution of Co through the food chain was observed. No positive correlation was found between element concentration and trophic level, but we observed significant differences between trophic guilds (herbivorous, omnivorous, and carnivorous). Our findings suggest that feeding habits determine trace element concentrations. To establish differential behavior between different species within the aquatic web further studies are necessary, particularly in the floodplain of the Paraná, which is a crucial nursery area for most commercially important fishes from the Plata Basin.

Graphical abstract

  相似文献   

9.

Clogging is the most significant challenge limiting the application of constructed wetlands. Application of a forced resting period is a practical way to relieve clogging, particularly bioclogging. To reveal the alleviation mechanisms behind such a resting operation, evapotranspiration and oxygen flux were studied during a resting period in a laboratory vertical-flow constructed wetland model through physical simulation and numerical model analysis. In addition, the optimum theoretical resting duration was determined based on the time required for oxygen to completely fill the pores, i.e., formation of a sufficiently thick and completely dry layer. The results indicated that (1) evapotranspiration was not the key factor, but was a driving force in the alleviation of bioclogging; (2) the rate of oxygen diffusion into the pores was sufficient to oxidize and disperse the flocculant biofilm, which was essential to alleviate bioclogging. This study provides important insights into understanding how clogging/bioclogging can be alleviated in vertical-flow constructed wetlands.

Evapotranspiration versus oxygen intrusion in alleviating bioclogging in vertical flow constructed wetlands

  相似文献   

10.
11.
Shan  Danping  Zhang  Tao  Li  Ludi  Sun  Yuqing  Wang  Di  Li  Yingzi  Yang  Zheng  Cui  Kanglong  Wu  Shaowei  Jin  Lei  Hong  Bo  Shang  Xuejun  Wang  Qi 《Environmental science and pollution research international》2022,29(49):74003-74011

Diet is an important exposure route for phthalates, such as di-iso-butyl phthalate (DiBP), dibutyl phthalate (DBP), bis(2-ethylhexyl) phthalate (DEHP), and benzyl butyl phthalate (BBP). In this study, we aimed to estimate phthalate exposure in the diet of pregnant women and assess the health risk. A total of 517 pregnant women in the first trimester were recruited, and food frequency questionnaires were collected. A simple distribution assessment method was used to estimate daily exposure, and the hazard index (HI) method was used to assess cumulative risk. The maximum daily dietary exposure to DEHP, DBP, DiBP, and BBP was 5.25, 3.17, 2.59, and 0.58 μg/kg bw/day, respectively, and did not exceed the safety limit values. Cereals and vegetables were the main sources of the estimated daily intake (EDI) of phthalates in the diet. The cumulative risk assessment, based on the European Food Safety Authority tolerable daily intake (TDI) and the US Environmental Protection Agency reference dose (RfD), did not exceed the threshold of 1. DiBP, DBP, and DEHP had higher hazard quotient (HQ) values for cumulative health risk than BBP. In conclusion, a low health risk was posed by the cumulative dietary exposure to phthalates for pregnant women in Beijing.

Graphical abstract
  相似文献   

12.

It has been known since the 1970s that differences exist in the profile of element content in wild-growing mushroom species, although knowledge of the role of mushroom species/families as determinants in the accumulation of diverse element remains limited. The aim of this study was to determine the content of 63 mineral elements, divided into six separate groups in the fruit bodies of 17 wild-growing mushroom species. The mushrooms, growing in widely ranging types of soil composition, were collected in Poland in 2018. Lepista nuda and Paralepista gilva contained not only the highest content of essential major (531 and 14,800 mg kg−1, respectively of Ca and P) and trace elements (425 and 66.3 mg kg−1, respectively of Fe and B) but also a high content of trace elements with a detrimental health effect (1.39 and 7.29 mg kg−1, respectively of Tl and Ba). A high content of several elements (Al, B, Ba, Bi, Ca, Er, Fe, Mg, Mo, P, Sc, Ti or V) in L. nuda, Lepista personata, P. gilva and/or Tricholoma equestre fruit bodies belonging to the Tricholomataceae family suggests that such species may be characterised by the most effective accumulation of selected major or trace elements. On the other hand, mushrooms belonging to the Agaricaceae family (Agaricus arvensis, Coprinus comatus and Macrolepiota procera) were characterised by significant differences in the content of all determined elements jointly, which suggests that a higher content of one or several elements is mushroom species-dependent.

Graphical abstract

  相似文献   

13.

The green innovations, environmental policies, and carbon taxes are the tools to achieve sustainable development goals (SDGs) in the mitigation process. This study is intended to examine the impact of innovation, carbon pricing (CTAX), environmental policies (EP), and energy consumption (ECON) on PM2.5 and greenhouse gas (GHG) emission for Central-Eastern European countries. The panel effect during 2000–2018 is tested using a dynamic panel data model while the Granger causality approach obtains country-related outcomes. The outcomes reveal that eco-friendly innovations have a more profound effect on carbon mitigation. Environmental policies reduce emissions by 2.7% in the short run and 17.4% in the long run. Similarly, CTAX mitigates GHG emissions by 8.6% in the short-run and PM2.5 by 0.9% and 5.7% in the short and long run. However, urbanization, energy consumption and trade openness are the leading polluters in the region. The main findings remain dominant in the country-specific results and find unidirectional and bidirectional causality evidence among variables. The research concludes that green innovations and strict environmental policy can lead towards achieving sustainable development goals using carbon taxes as a tool on the way.

Graphical abstract
  相似文献   

14.
Li  Li  Wang  Qiyuan  Zhang  Xu  She  Yuanyuan  Zhou  Jiamao  Chen  Yang  Wang  Ping  Liu  Suixin  Zhang  Ting  Dai  Wenting  Han  Yongming  Cao  Junji 《Environmental science and pollution research international》2019,26(12):11730-11742

To investigate the chemical composition, size distribution, and mixing state of aerosol particles on heavy pollution days, single-particle aerosol mass spectrometry was conducted during 9–26 October 2015 in Xi’an, China. The measured particles were classified into six major categories: biomass burning (BB) particles, K-secondary particles, elemental carbon (EC)–related particles, metal-containing particles, dust, and organic carbon (OC) particles. BB and EC-related particles were the dominant types during the study period and mainly originated from biomass burning, vehicle emissions, and coal combustion. According to the ambient air quality index, two typical episodes were defined: clean days (CDs) and polluted days (PDs). Accumulation of BB particles and EC-related particles was the main reason for the pollution in Xi’an. Most types of particle size were larger on PDs than CDs. Each particle type was mixed with secondary species to different degrees on CDs and PDs, indicating that atmospheric aging occurred. The mixing state results demonstrated that the primary tracers were oxidized or vanished and that the amount of secondary species was increased on PDs. This study provides valuable information and a dataset to help control air pollution in the urban areas of Xi’an.

Graphical abstract

  相似文献   

15.

This work reports the use of a cross-linked ureasil–PEO hybrid matrix (designated PEO800) as an efficient adsorbent to retain the emerging contaminant bisphenol A (BPA) from an aqueous medium. The in-deep experimental and theoretical results provide information about the interactions between PEO800 and BPA. The in situ UV-vis spectroscopy data and the pseudo-first order, pseudo-second order, Elovich, and Morris–Webber intraparticle diffusion models allowed us to propose a three-step mechanism for the adsorption of BPA onto PEO800. The results indicate that the pseudo-first-order kinetic model effectively describes the adsorption of BPA onto PEO800. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy confirmed the interaction of PEO800 with BPA, showing an alteration in the chemical environment of the polymer ether oxygen atoms present in the hybrid matrix. The molecular dynamic simulation provides further evidence that the BPA molecules interact preferentially with PEO. The amount of desorbed BPA depended on the pH and solvent used in the assays. This work provides new opportunities for using the hydrophilic ureasil–PEO matrix which has demonstrated its abilities in being a fast and easy alternative to successfully removing organic contaminants from aqueous mediums and therefore having potential applications in water remediation.

Graphical abstract

  相似文献   

16.

Atmospheric contamination by heavy metal(loid)–enriched particulate matter (metal-PM) is highly topical these days because of its high persistence, toxic nature, and health risks. Globally, foliar uptake of metal(loid)s occurs for vegetables/crops grown in the vicinity of industrial or urban areas with a metal-PM-contaminated atmosphere. The current study evaluated the foliar uptake of arsenic (As), accumulation of As in different plant organs, its toxicity (in terms of ROS generation, chlorophyll degradation, and lipid peroxidation), and its defensive mechanism (antioxidant enzymes) in spinach (Spinacia oleracea) after foliar application of As in the form of nanoparticles (As-NPs). The As-NPs were prepared using a chemical method. Results indicate that spinach can absorb As via foliar pathways (0.50 to 0.73 mg/kg in leaves) and can translocate it towards root tissues (0.35 to 0.68 mg/kg). However, health risk assessment parameters showed that the As level in the edible parts of spinach was below the critical limit (hazard quotient <?1). Despite low tissue level, As-NP exposure caused phytotoxicity in terms of a decrease in plant dry biomass (up to 84%) and pigment contents (up to 38%). Furthermore, several-fold higher activities of antioxidant enzymes were observed under metal stress than control. However, no significant variation was observed in the level of hydrogen peroxide (H2O2), which can be its possible transformation to other forms of reactive oxygen species (ROS). It is proposed that As can be absorbed by spinach via foliar pathway and then disturbs the plant metabolism. Therefore, air quality needs to be considered and monitored continuously for the human health risk assessment and quality of vegetables cultivated on polluted soils (roadside and industrial vicinity).

?

  相似文献   

17.

Dissolved humic substances (DHSs) are the major components of organic matter in the aquatic environment. DHSs are well known to considerably affect the speciation, solubility, and toxicity of a wide variety of pollutants in the aquatic environment. In this study, the effects of the toxicity of heavy metals and hydrophobic organic pollutants (HOPs) on Chlamydomonas reinhardtii in the presence of humic acid (HA) were examined by a microscale algal growth inhibition (μ-AGI) test based on spectrophotometric detection. To clarify the relationship between the chemical properties of HAs and the toxicity change of pollutants, eight HAs from different sources were prepared and used. HAs were responsible for mitigating the toxicity of Hg, Cu, pesticides (γ-HCH, 2,4-D, and DDT), and polycyclic aromatic hydrocarbons (PAHs) such as naphthalene (Nap), anthracene (Ant), and benzo[a]pyrene (BaP). In particular, an approximately 100-fold decrease in the toxicity of BaP was observed in the presence of 10 ppm HAs extracted from tropical peat. The results indicated that the carboxylic group content and the HA molecular weight are correlated to the changes in the heavy metal toxicity. For HOPs, the aromaticity and polarity of HAs are crucial for mitigating their toxicity. Furthermore, it was clearly shown that the lake water including a high concentration of DHSs collected from Central Kalimantan, Indonesia, reduced the toxicity of Hg and γ-HCH on Chlamydomonas reinhardtii.

Graphical abstract

  相似文献   

18.

This review summarizes research data on the pharmaceutical drugs used to treat the novel SARS-CoV-2 virus, their characteristics, environmental impacts, and the advanced oxidation processes (AOP) applied to remove them. A literature survey was conducted using the electronic databases Science Direct, Scopus, Taylor & Francis, Google Scholar, PubMed, and Springer. This complete research includes and discusses relevant studies that involve the introduction, pharmaceutical drugs used in the SARS-CoV-2 pandemic: chemical characteristics and environmental impact, advanced oxidation process (AOP), future trends and discussion, and conclusions. The results show a full approach in the versatility of AOPs as a promising solution to minimize the environmental impact associated with these compounds by the fact that they offer different ways for hydroxyl radical production. Moreover, this article focuses on introducing the fundamentals of each AOP, the main parameters involved, and the concomitance with other sources and modifications over the years. Photocatalysis, sonochemical technologies, electro-oxidation, photolysis, Fenton reaction, ozone, and sulfate radical AOP have been used to mineralize SARS-CoV-2 pharmaceutical compounds, and the efficiencies are greater than 65%. According to the results, photocatalysis is the main technology currently applied to remove these pharmaceuticals. This process has garnered attention because solar energy can be directly utilized; however, low photocatalytic efficiencies and high costs in large-scale practical applications limit its use. Furthermore, pharmaceuticals in the environment are diverse and complex. Finally, the review also provides ideas for further research needs and major concerns.

Graphical abstract
  相似文献   

19.

The levels of metals in sediments of urban river ecosystems are crucial for aquatic environmental health and pollution assessment. Yet little is known about the interaction of nutrients with metals for environmental risks under contamination accumulation. Here, we combined hierarchical cluster, correlation, and principal component analysis with structural equation model (SEM) to investigate the pollution level, source, toxicity risk, and interaction associated with metals and nutrients in the sediments of a river network in a city area of East China. The results showed that the pollution associated with metals in sediments was rated as moderate degree of contamination load and medium-high toxicity risk in the middle and downstream of urban rivers based on contamination factor, pollution load index, and environmental toxicity quotient. The concentration of mercury (Hg) and zinc (Zn) showed a significant correlation with toxic risks, which had more contribution to toxicity than other metals in the study area. Organic nitrogen and organic pollution index showed heavily polluted sediments in south of the study area. Though correlation analysis indicated that nutrients and metals had different input zones from anthropogenic sources in the urban river network, SEM suggested that nutrient accumulation indirectly intensified toxicity risk of metals by 13.6% in sediments. Therefore, we suggested the combined consideration of metal toxicity risk with nutrient accumulation, which may provide a comprehensive understanding to identify sediment pollution.

Toxicity rate of metals in sediments from urban river network indirectly intensified by nutrients accumulation

  相似文献   

20.

The main characteristic of eutrophication is cyanobacteria harmful algae blooms. Microcystin-leucine arginine (MC-LR) is considered to be the most toxic and most commonly secondary metabolite produced by cyanobacteria. It has been reported that MC-LR had potential vascular toxicity. However, the mechanism that MC-LR-induced vascular toxicity is very limited and remains to be clarified. The aim of this study was to evaluate the toxic hazard toward the vasculogenesis and angiogenesis of MC-LR. Its effects on vasculogenesis, sprouting angiogenesis, and endothelial cell tube formation were studied. The study showed that MC-LR exposure blocked vasculogenesis in zebrafish embryos, sprouting angiogenesis from rat aorta, and tube formation of human umbilical vein endothelial cells (HUVECs). In addition, MC-LR exposure also induced the disruption of cytoskeletal structures and markedly inhibited endothelial cell (EC) migration from caudal hematopoietic tissue in zebrafish and HUVEC migration. Western blot analysis showed that MC-LR exposure downregulated the expressions of integrin β1, FAK, Rho, and ROCK. Combined with these results, MC-LR could induce disruption of cytoskeleton via downregulating integrin-mediated FAK/ROCK signaling pathway, leading to the inhibition of EC migration, which finally blocked vasculogenesis and angiogenesis.

Graphical abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号