首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
This study evaluated whether larvae of the Indo-Pacific vermetid gastropod Dendropoma maximum are obligate planktotrophs, or whether they exhibit an intermediate feeding strategy. Experiments were conducted in Moorea, French Polynesia (149°50′W, 17°30′S), Sep–Oct 2009, to examine D. maximum larval growth and metamorphic responses to different diets and amounts of food. Dendropoma maximum larvae required particulate food to undergo metamorphosis, but were able to survive and grow in the absence of food for up to 20 days. Larvae in Low and Unfed food treatments exhibited phenotypic plasticity by growing a larger velum (the larval feeding structure) compared with those in high food. Unfed D. maximum larvae had a slower initial growth rate; however, by 11-day post-hatch fed and unfed larvae had converged on the same mean shell height (553 μm), which was only 10% larger than the initial size at hatching. Therefore, although the nutritional strategy of D. maximum larvae is best described as obligate planktotrophy, it appears to approach an intermediate feeding strategy.  相似文献   

2.
E. His  R. Robert  A. Dinet 《Marine Biology》1989,100(4):455-463
The combined effects of temperature, salinity and nutrition on survival and growth of larvae of the Mediterranean mussel Mytilus galloprovincialis and the Japanese oyster Crassostrea gigas were studied over a period of 7 d in the laboratory. Ripe adults, collected in spring and summer 1987 from natural populations in the Bay of Arcachon, France, were induced to spawn. Larvae of both species were cultured at four temperatures (15°, 20°, 25° and 30°C), four salinities (20, 25, 30 and 35S) per temperature, and two levels of nutrition (fed and unfed) per temperature/salinity combination. The fed larvae received a mixed algal diet of 50 cells each of Isochrysis galbana and Chaetoceros calcitrans forma pumilum per microlitre. In both bivalve species, larvae survived over a wide range of temperature and salinity, with the exception of mussel larvae, which died at 30°C. Statistical analysis indicated that nutrition had the greatest effect on larval development, explaining 64 to 75% of the variance in growth of M. galloprovincialis and 54 to 70% in growth of Crassostrea gigas. Unfed mussel larvae displayed little growth. Compared with temperature, the effect of salinity was very slight. M. galloprovincialis larvae exhibited best growth at 20°C and 35S and C. gigas at 30°C and 30S.  相似文献   

3.
The metabolic enzyme activities were determined in larvae of red drum, Sciaenops ocellatus, and lane snapper, Lutjanus synagris, to determine the effect of temperature and nutrition on metabolic enzyme activities and to evaluate if metabolic enzyme activities are useful in assessing the feeding condition of larval fish. During experiments conducted during the spring of 1990, lactate dehydrogenase (LDH) activities in both red drum and lane snapper were approximately an order of magnitude lower than values typical for adult fish; LDH and citrate synthase (CS) activities increased during early developmental stages, but nutritional effects were apparent. Clear differences (up to 4-fold) between well-fed and starving fish were evident in both LDH and CS activity in red drum. Differences between well-fed and poorly fed larvae were evident until 9 d after hatching. Lane snapper larvae reared at a 25°C had significantly lower LDH activities than larvae reared at 28°C.  相似文献   

4.
Contents of free amino acids (FAA), protein and ammonium ions together with rates of ammonia excretion and oxygen consumption were measured in order to study the role of FAA as an energy substrate in developing eggs and larvae of seabass (Lates calcarifer) maintained in seawater (30 ppt) at 28 °C without feeding. Initially eggs contained 25.3 nmol ind−1 of FAA of which 21.5 nmol was rapidly utilised by the developing eggs and larvae during the period up to 40 h post spawning (PS) when nearly all the yolk had been resorbed. During the same period, a net increase in protein content of 1.7 μg ind−1 was observed, indicating that the major part of the amino acids lost from the free pool had been polymerised into body proteins. Assuming that the balance of the FAA after protein synthesis was used entirely for energy metabolism, FAA appeared to be an important energy substrate during the embryonic stages (2 to 16 h PS); after hatching, the contribution of FAA to energy metabolism was less significant. From 50 h PS until the end of the study period at 100 h PS, amino acids derived from somatic protein were used for energy metabolism. For the overall period from just after spawning up to 100 h PS, the data indicate that ca. 14% of the total aerobic energy metabolism was derived from amino acid catabolism. Received: 26 September 1997 / Accepted: 1 April 1998  相似文献   

5.
The zoeal larvae of brachyuran crabs must feed soon after hatching on a diet that includes large micro- and mesozooplankton in order to satisfy nutritional requirements. However, newly hatched larvae have been shown to ingest a variety of dinoflagellates, perhaps using microbial carbon sources to sustain them until they encounter more favored prey. Ingestion of dinoflagellates by larval crabs has been documented previously under conditions in which the larvae were exposed to algae provided in monoculture or in defined mixtures of cells. We report here on experiments conducted on the hatching stage of five crab species to determine if ingestion of dinoflagellates occurred when they were provided in combination with Artemia sp. nauplii or after a period of feeding on mesozooplankton. Quantitative measurements of chl a in the larval guts provided evidence of ingestion of algal cells. Active ingestion of the dinoflagellate Prorocentrum micans at specified intervals during an extended feeding period was determined on larvae of two crab species using fluorescently labeled cells provided for brief periods at prescribed time intervals. Stage 1 larvae of four of the five crab species ingested dinoflagellates when they were provided in combination with nauplii and larvae of all five species ingested cells after feeding solely on nauplii for 24 h. Ingestion of algal cells was first evident in the larval guts after 6 h of feeding at both low (200 cell ml−1) and high (1,000 cells ml−1) prey densities. Higher prey densities resulted in higher gut chl a. Larvae continuously exposed to dinoflagellates actively ingested cells at every 3 h interval tested over a 36 h period. Results confirm previous studies that larvae will ingest dinoflagellates even when they are encountered in a mixed prey field or when having previously fed. Ingestion of cells may occur on a continual basis over time.  相似文献   

6.
Feeding by larvae of the sea bream Archosargus rhomboidalis (Linnaeus) was investigated from late September, 1972 to early May, 1973 using laboratory-reared larvae. Fertilized eggs were collected from plankton tows in Biscayne Bay, and the larvae were reared on zooplankton also collected in plankton nets. Techniques were developed to estimate feeding rate, food selection, gross growth efficiency, and daily ration. Daily estimates of these were obtained through 16 days after hatching at rearing temperatures of 23°, 26°, and 29°C. Feeding rate increased exponentially as the larvae grew, and increased as temperature was raised. At 23°C larvae began feeding on Day 3, at 26° and 29°C larvae began feeding on Day 2. Feeding rates at initiation of feeding and on Day 16 were, respectively: 23°C, 7.16 food organisms per larva per hour (flh) and 53.78 flh; 26°C, 7.90 flh and 168.80 flh; 29°C, 17.62 flh and 142.07 flh. Sea bream larvae selected food organisms by size. At initiation of feeding they selected organisms less than 100 m in width. As larvae grew they selected larger organisms and rejected smaller ones. The major food (more than85% of the organisms ingested) was copepod nauplii, copepodites, and copepod adults. Minor food items were barnacle nauplii, tintinnids, invertebrate eggs, and polychaete larvae. Mean values for gross growth efficiency of sea bream larvae ranged from 30.6% at 23°C to 23.9% at 29°C. Mean values for daily ration, expressed as a percentage of larval weight, ranged from 84% at 23°C to 151% at 29°C and tended to decline as the larvae grew.This paper is a contribution from the Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA  相似文献   

7.
In Portuguese waters, Nephrops norvegicus larvae hatch at 400–800 m depth and need to perform a vertical migration to food-rich shallower waters to find suitable prey. The effect of suboptimal feeding on digestive enzymes activity of N. norvegicus larvae during this early period of their larval life remains unknown. Protease and amylase activities were investigated ex situ using flurometry in laboratory-hatched larvae exposed to different feeding and/or starving scenarios in the 24 h following hatching, the period during which they typically accomplish their upward vertical migration. Amylase activity was very low in comparison with protease activity, indicating that carbohydrates are not a primary energy reserve. Larvae starved for 12 h and subsequently fed displayed no increase in amylase activity, which suggests that feeding may be required before 12 h post-hatch to trigger amylase activity. Protease activity was high under all feeding conditions, and the increase in protease activity under sustained starvation indicated the catabolism of protein reserves. The ability of first-stage N. norvegicus larvae to metabolize protein reserves may play a decisive role for their survival during their first vertical migration, as it enables them to overcome the deleterious effects of short-term starvation and/or suboptimal feeding.  相似文献   

8.
Eggs from laboratory spawnings of the coralreef fish Siganus randalli Woodland were incubated at two temperatures (27 and 30 °C). Eggs and larvae were sampled until larval starvation, while changes in oxygen consumption, growth, yolk utilization, and development were monitored. Oxygen consumption, which peaked at hatching, was higher for embryos incubated at 30 °C than at 27 °C. Rates of oxygen consumption (nl h-1 individual-1) at hatching were similar to those for other temperate and tropical species. Rates of oxygen consumption by yolk-sac larvae were highly variable, and these data suggest that larval oxygen consumption prior to yolk-sac absorption may not be significantly influenced by temperature. Rates of yolk depletion were higher for larvae at the higher temperature. After an initial rapid increase in length, length of larvae at 30 °C decreased with age. Egg size, egg weight, and maximum notochord length of larvae differed significantly between spawns. Age-specific oxygen consumption rates by the embryos varied between spawns, but regressions describing oxygen consumption as a function of age did not differ significantly. The initiation and completion of eye pigmentation were used as developmental markers to calculate the amount of yolk remaining for larvae at the different temperatures. Larvae maintained at 30 °C completed eye pigmentation approximately 3 h sooner than those maintained at 27 °C, but had less endogenous reserves. This finding indicates a trade-off between rapid development and efficient utilization of the endogenous reserves. The completion of eye pigmentation in larvae incubated at the higher temperature occurred at midnight and, depending on the amount of time that the larvae have to initiate feeding prior to the point-of-no-return, the timing of completion of eye pigmentation could influence larval survival.  相似文献   

9.
Eggs of Thrissocles species are found in surface plankton in the Ernakulam Channel (Cochin Harbour)during February to May 1967. The eggs hatch within 24 h. Empty egg shells have characteristic apertures, through which the embryos have emerged; yolk is resorbed 36 h after hatching.Larvae (36 to 72 h groups) assemble at the lighted region of the aquaria during day-time and scatter to different levels at night. Larvae older than 72 h show no inclination to assemble as before. All larvae died between 96 and 110 h after hatching. Many batches of eggs were reared in the same medium, and all of them behaved as described. The results indicate that the right type of food was available in the aquaria for larvae up to a period of 72 h. The volume of water also appears to have a bearing upon the survival rate and longevity of the larvae since, in small aquaria, more larvae died at an early stage.  相似文献   

10.
Laboratory experiments on ovigerous females of northern shrimp (Pandalus borealis) were used to assess the effects of temperature and food ration on female condition during incubation and examine how combined effects of temperature and female condition influenced egg survival, embryonic development, and larval characteristics. Ovigerous females were maintained at 2°C, 5°C, and 8°C and fed on a low (three times/week; 2–2.7% W/W) or high ration (five times/week at satiation). The increase in temperature accelerated the developmental time of the eggs but their survival at 8°C was reduced. Conversion efficiency of yolk reserves in developing embryos was significantly reduced at elevated temperatures and larvae hatching at 2°C and 5°C were significantly larger and heavier than those hatching at 8°C. The experimental design did not result in any effect of food ration on the energetic condition of females or on egg characteristics and their biochemical composition. However, lower energy reserves were observed for females held at 8°C.  相似文献   

11.
Feeding rates, conversion efficiencies and growth of larvae of the mummichog Fundulus heteroclitus, an extremely abundant estuarine fish, were measured at temperatures ranging from 18° to 30°C. The food used was Artemia salina nauplii. At the time of total yolk sac absorption (5 to 7 days after hatching), the feeding rate decreased for a short time, an indication of a shift in metabolism. Higher feeding rates and growth occurred at higher rearing temperatures. The highest conversion efficiency (gross growth efficiency) was 1.1%, at 22°C. Mummichog larvae may be energetically inefficient compared with other fish species, but efficiency might not be critical for this fish, which is an opportunistic omnivore in an energy-rich environment.Contribution No. 291 of the Belle W. Baruch Institute for Marine Biology and Coastal Research, supported by DOE contract No. EY-76-5-09-0869.  相似文献   

12.
A. Kellermann 《Marine Biology》1990,106(2):159-167
The feeding dynamics of larvae of the Antarctic fishNototheniops larseni were analyzed from data collected over three years in Bransfield Strait and adjacent waters (Antarctica). Seasonal feeding was examined from 1977/1978 (November–March). The diel feeding cycle was investigated during a 96 h station established in February 1976, while food selection was analyzed using larvae and zooplankton samples collected in February 1982. Hatching occurs in early spring, and larvae fed on eggs of calanoid copepods and on cyclopoid copepods. Copepod eggs were the principal food near the pack ice, and cyclopoids in open waters. Cyclopoids were the staple food in summer. Eggs of the Antarctic krillEuphausia superba were ingested selectively and formed major portions of the larval summer diet in neritic (Joinville Island) and oceanic (Elephant Island) spawning areas ofE. superba. In the fall, copepods predominated in the diets. Most abundant and most frequently ingested prey in summer and fall wereOncaea spp. Feeding commenced at dawn and continued at least until dusk. Krill eggs were taken chiefly during morning hours and egg incidence declined during the day, suggesting that eggs were ingested soon after spawning. Prey size at the onset of feeding was estimated as 0.130 to 0.330 mm. Size-selective feeding was evident in small larvae, while in larger larvae median prey length remained constant. High feeding incidence among yolk-sac larvae in spring, high overall feeding incidence in summer, and size-selective foraging of small larvae suggested favorable feeding conditions in the 1977/1978 season. Yolk-absorption times in Antarctic fish larvae vary on a scale of weeks and may be further retarded due to early feeding. Hence, year-to-year variability of yolk incidence inN. larseni indicated variable biotic environments of early feeding larvae rather than temporal shifts of hatching periods. As hatching periods are constant between years in contrast to the variable retreat of the pack ice and subsequent onset of the production cycle in space and time, maternal yolk reserves are probably utilized to compensate for such variations.  相似文献   

13.
The effect of food deprivation on larval performance of the spider crab Maja brachydactyla was studied in terms of survival, moulting capacity, size, weight and enzymatic activities. Five feeding treatments that differed in the initial age of first feeding larvae (fed from hatching, 2, 4 and 6 days post-hatching and unfed) were tested for 20 days. Newly hatched larvae kept without food supply lasted for 10 days and did not moult; with 50% survival observed at 6 days post-hatching. Larvae (zoea I stage) were only able to tolerate 2 days of food deprivation after the onset of exogenous feeding without their performance being compromised. Multivariate analyses suggest that digestive enzyme activities may be good indicators of the nutritional condition of larvae.  相似文献   

14.
Laboratory experiments with larvae of the cheilostome bryozoan Bugula stolonifera Ryland, 1960 assessed the time to settlement in the presence of a constantly available polystryrene substrate, the development of competence for metamorphosis, and the effects of the duration of swimming period on early colony development. Sexually mature colonies of B. stolonifera were collected on 11 and 18 September 1987; 2 and 18 August, 1988; and 6, 12, 19, and 26 September 1988, from Eel Pond (Woods Hole, Massachusetts, USA) and were maintained at 20°C. In the presence of a constantly available substrate, cumulative percent settlement curves were sigmoid, with 75% of larvae settled in 3.2±0.5 h. Typically, 50% of the larvae settled in less than 3 h and 95% settled in 6.1±1.2 h. The number of settled individuals that developed feeding ancestrulae by 3 d and the number that developed first-feeding autozooids by 6 d was assessed as a function of duration of larval swimming. Individuals which were kept swimming for 8 and 10 h after hatching developed significantly more slowly to the ancestrula and autozooid stages in 13 out of 14 experiments than did larvae that swam 2 or 6 h. This is the first report for any bryozoan that prolongation of the larval free-swimming period affects the rate of colony development.  相似文献   

15.
Levels of total RNA, total DNA, 18S ribosomal RNA (rRNA), poly(A) messenger RNA (mRNA), and two mRNAs coding for abundant myofibrillar proteins were estimated in laboratory-reared Atlantic cod larvae (Gadusmorhua Linnaeus) under conditions of feeding and starvation. DNA probes specific for cod 18S rRNA, β-actin mRNA and myosin heavy chain mRNA were developed. In two experiments on newly hatched larvae in fed and starved treatments, changes in 18S rRNA and mRNA were similar to changes in total RNA during the first weeks after hatching. RNA levels in fed and starved larvae in both experiments were stable, or increased, over the first 3 d after hatching, and then decreased to minima at 9 d. RNA levels increased after 9 d, with the degree and timing of the increase varying among the individual classes of RNA. Complete mortality of starved larvae in both experiments was observed shortly after 11 d, corresponding to exhaustion of endogenous yolk reserves. Total RNA content, RNA/DNA ratio, 18S rRNA levels, total mRNA pool, and actin and myosin heavy chain mRNA levels showed significant differences in fed and starved first-feeding larvae after yolk exhaustion. In another experiment with 3- to 4-week-old cod larvae, 18S rRNA levels were significantly lower in starved versus fed larvae after 3 d. Total RNA responded to feeding and starvation within a similar time as 18S rRNA and the mRNAs examined. Analysis of bulk nucleic acids using fluorometric dyes was simpler and faster than analysis of individual RNAs using hybridization probes, and provides valuable information on recent growth and condition of individual larvae. However, analysis of specific RNAs can provide information on expression of the corresponding genes and reveal the changes underlying trends seen in bulk RNA. Received: 9 February 1996 / Accepted: 7 June 1999  相似文献   

16.
Herring (Clupea harengus L.) larvae from spring and autumn spawning stocks were reared at different constant temperatures from 5° to 17 °C. At equivalent developmental stages, the spring larvae were longer than the autumn larvae and the larvae reared at low temperatures were longer than those reared at high temperatures. At hatching and at the end of the yolk-sac stage, the larvae were induced, by a probe, to make C-start escape responses, which were recorded and analysed using a high-speed video recording at 400 frames s-1. The response was rapid and of short duration. The tailbeat frequency and swimming speed were measured during the burst of swimming following the C-start at different test temperatures and in larvae with different temperature histories. The tail-beat frequency was strongly temperature-dependent, rising from 19 Hz at 5 °C to 37 Hz at 17 °C with no effect of temperature history, season or developmental stage. The burst-swimming speed ranged at hatching from 75 to 90 mm s-1 at 5 °C to 110 to 160 mm s-1 at 17 °C and at yolk resorption from 90–115 mm s-1 at 5 °C to 175–190 mm s-1 at 17 °C. The longer, spring-spawned larvae swam faster than the shorter autumn-spawned larvae. When the swimming speeds were expressed as body lengths (L) s-1, these differences disappeared. Larvae swam from 7–9 L s-1 at 5 °C to 15–20 L s-1 at 17 °C at hatching, and from 8–9 L s-1 at 5 °C to 15–17 L s-1 at 17 °C at yolk resorption. There was, however, a significantly faster specific swimming speed by the larvae reared at 12 °C in spring 1991.Honorary Research Fellow of the Scottish Association for Marine ScienceUnfortunately, Karen Fretwell was drowned in an accident on 9 January 1993  相似文献   

17.
The morphology and function of structures important to energy acquisition were studied from spawning to the stage of transformation of larva to pelagic juvenile in Atlantic cod, Gadus morhua L., from December 1991 to July 1992. Fertilized eggs produced by adult fish from two genetically discrete populations (Newfoundland and Scotian Shelf) were raised under similar conditions in the laboratory at temperatures of 5 and 10°C. Subsamples of larvae were removed from cultures daily for 10 d, and then less frequently, and fixed for light microscopy and scanning electron microscopy. Nine functional morphological landmarks important to feeding, respiration and locomotion were chosen from observation of 280 ind. These landmarks defined 12 major developmental stages, from hatching to the pelagic juvenile stage. One of the feeding landmarks, intestinal stage, varied as a function of age and size and the variance in development was higher at 10°C than at 5°C; Newfoundland larvae developed more complex intestines than did Scotian Shelf larvae. In addition, Newfoundland larvae had significantly higher growth rates than those of Scotian Shelf larvae. Despite the higher growth rates and greater structural complexity of the intestine in Newfoundland larvae, the rate of yolk utilization was not significantly different between Newfoundland and Scotian Shelf larvae. Staging of respiratory landmarks showed that the gill arches were probably used preferentially in feeding while respiration was cutaneous. The gills, operculum and gill rakers developed late in larval life and accompanied the transition from cutaneous to branchial respiration. In the yolk-sac period, development of feeding and respiratory structures may be largely genetically controlled. During exogenous feeding, extrinsic factors also become important, as shown by the size and age-independent variation in intestinal development of larval cod raised at different temperatures.  相似文献   

18.
Eggs from spring spawning stocks of herring (Clupea harengus L.) were fertilized and reared at either 5, 8 or 12°C in 1991 and 1992. The differentiation of myotomal muscle fibres was investigated in relation to the development of other organs and tissues using light and electron microscopy. The gut, notochord, eyes and haemocoel appeared at the same relative point in development between fertilization and hatching at all temperatures. In contrast, the formation of the spinal cord, pronephros, pectoral fin buds and muscle fibres was relatively retarded at 5°C compared with 8 and 12°C. Myogenesis in the presumptive inner muscle mass occurred after 12 to 16 d at 5°C, 7 to 10 d at 8°C and 3.5 to 6 d at 12°C. Myoblasts aligned in orderly rows running from myosept to myosept prior to fusion to form myotubes. Actin and myosin filaments were synthesised throughout the cytoplasm in associated with presumptive Z-lines at the periphery of myotubes and immature muscle fibres. Differentiation of the superficial and inner muscle fibres types of larvae occurred at around the same time. Following this initial period of myogenesis, the number of myotomal muscle fibres remained constant until after hatching, so that increases in muscle bulk in the late embryo were entirely due to fibre hypertrophy. At hatching, the number of superficial muscle fibres present in myotomes just posterior to the yolk-sac was significantly less at 5°C (108±12) than at either 8°C (132±10) or 12°C (140±10) (mean±SD, 12 fish/temperature). In contrast, there were around 280 inner muscle fibres/myotome, comprising 90% of the trunk cross-sectional area, at all three temperatures. Myofibrillargenesis occurred relatively slowly at low temperatures, so that the volume density of myofibrils in the inner muscle fibres of larvae at hatching was significantly less at 5°C (39.2±9.0) than at either 8°C (49.6±8.8) or 12°C (50.2±9.8) (mean ±SD, 20 fibres/temperature from total of 5 fish). Undifferentiated myoblasts remained at hatching to form a population of presumptive myosatellite cells. The number of presumptive myosatellite cells per mm2 cross-sectional area of muscle fibre was more than two times higher at 8°C (1493±335) than at either 5°C (478±102) or 12°C (924±233) (mean±SD, 5 fish/temperature). The results suggest that temperature can influence the commitment of myoblasts to differentiation at a critical stage in embryogenesis, thereby providing a potential mechanism for influencing future growth characteristics. Correspondence to: I.A. Johnston at Gatty Marine Laboratory  相似文献   

19.
Effects of the juvenile hormone (JH) mimic hydroprene (Altozar®: ZR-512), which exhibits high activity against Lepidoptera, were studied on the larval development of the mud-crab Rhithropanopeus harrisii (Gould) (Brachyura: Xanthidae). Larvae reared in 20 S at 3 cycles of temperature of 20° to 25°C, 25° to 30°C and 30° to 35°C, were exposed to 0.01, 0.1 and 0.5 ppm hydroprene from hatching to the first crab stage. Larvae were also exposed to 0.1 and 0.5 ppm hydroprene only from the megalopa stage to the first crab stage. When larvae were treated with hydroprene throughout larval life, survival was significantly reduced with increasing concentrations of the compound at all temperature cycles. Synergistic effect between hydroprene and temperature on survival of zoeal larvae was not observed. On the average there was 11% less survival in the zoeal stages at the 0.01 ppm concentration. of hydroprene than in the control, an additional reduction of 13% occurred at 0.1 ppm, and finally there was a further decrease of 46% at 0.5 ppm hydroprene. Significant decrease in survival in the megalopa stage occurred only in the 0.5 ppm concentration of hydroprene at the lowest temperature cycle when larvae were exposed to the compound from hatching. When larvae were treated with hydroprene only within the megalopa stage, a significant reduction in survival was not observed. First-stage zoeae were the most sensitive of the larval stages to hydroprene. Duration of zoeal development was significantly delayed at 0.5 ppm hydroprene at the two lower temperature cycles, whereas in the megalopa stage the delay began at the 0.1 ppm level at all 3 temperature cycles when larvae were exposed to hydroprene from hatching. A significant delay was also observed at 0.1 ppm hydroprene at the two lower cycles when larvae were exposed to hydroprene only in the megalopa stage; at 30° to 35°C a significant delay was observed only at the 0.5 ppm level. The results show that metamorphosis to the first crab stage was not inhibited at the 0.5 ppm level of hydroprene or lower. Reduction in survival and increase in duration of larval development were presumably related to stress conditions caused by hydroprene. The results also suggest an interaction between temperature and hydroprene on survival of megalopa larvae and duration of larval development.  相似文献   

20.
Cod (Gadus morhua L.) eggs may develop and hatch within temperatures of −1.5 to 12 °C, but little is known about the effects of very low temperatures on larval characteristics. Eggs of the Northeast Arctic cod (Gadus morhua) were incubated at 1, 5 or 8 °C from Day 1 after fertilisation until hatching, and transferred to 5 °C after hatching. Histological samples of the axial musculature were taken at hatching and 5 d after hatching, and the data on muscle cellularity from these samples were related to survival and hatching, size, developmental data and viability of the yolk sac larvae. All larvae hatched at the same developmental stage. Incubation of eggs at 1 °C produced shorter larvae with a larger yolk sac and more, small deep fibres at hatching than larvae from eggs incubated at 5 or 8 °C. The larval size difference was still present 5 d after hatching, a time at which the larvae from 1 °C-incubated eggs were less developed and less resistant to an acute viability stress test (65 ppt salinity). Although there were no differences between temperature groups in number and size of muscle fibres 5 d after hatching, the deep fibres of the 1 °C-group contained less myofibrils than the two other groups. The phenotype of the larvae at hatching was thus affected within these incubation temperatures. Although all groups were transferred to the same temperature after hatching, the lowest egg incubation temperature (1 °C) still had a negative effect 5 d after hatching, as these larvae were both smaller, less resistant to stress and had less functional muscles at the time of first feeding. Our conclusion is therefore that 1 °C is close to, or below, the lower thermal tolerance limit for normal functional development of Northeast Arctic cod. The results are discussed in relation to larval viability and recruitment of this species in the wild. Received: 4 February 1998 / Accepted: 10 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号