首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Gas exchange was characterized in one- and two year-old spruce (Picea abies L. Karst.) and fir seedlings (Abies alba Mill.) which had been exposed to low levels of ozone, sulfur dioxide and simulated rain or a combination of all three variables in open top chambers from 1983 through 1988. The gas exchange measurements were carried out in March 1988 at the end of the five year experiment. The twigs examined did not exhibit any visible sign of injury, specifically no differences were apparent between trees under the treatments of simulated acidic rain at pH 5.0 and pH 4.0. The study of carbon dioxide response curves showed different effects of the pollutants on the tree species. One-Year-old spruce needles treated with O(3) and simulated acidic precipitation pH 4.0 showed noticeable reduction of net photosynthetic rate. Exposure to the combination O(3) and SO(2) at pH 4.0 resulted in a significant depression of photosynthesis in two-year-old needles Transpiration rate was not decreased to a similar extent. No changes either in photosynthesis or transpiration were found in spruce under fumigation with SO(2) alone. These results indicate that ozone is the principal cause of changes in photosynthetic performance of spruce. It alters mesophyll response rather than reducing stomatal conductance. The specific changes that occur in the mesophyll could be diagnosed as inactivation of a carbon fixing enzyme as well as damage of the electron transport system. Fir seem to be more tolerant to ozone. No changes in photosynthesis and transpiration following exposure to O(3) alone were found. However, SO(2) fumigation, alone or in combination with O(3), resulted in a marked decrease of photosynthetic performance. Particularly, carboxylation efficiency and also maximum carboxylation velocity were depressed indicating a reduction in carbon fixing enzyme activity. No differences between single and combined fumigation treatments regarding these variables were determined. However, parameters measured to determine changes in electron transport rate showed a higher depression in the presence of both pollutants. Transpiration also was reduced by SO(2).  相似文献   

2.
Interest in air pollution injury to native vegetation has been generated with the construction and planned construction of large coal-fired power plants near the coal reserves in the southwest desert areas of the United States. Since information on the effects of SO2 on these native species was not available in the literature, fumigation studies were conducted with portable chambers placed over native species in the field with SO2 and SO2 + NO2. Pollutant concentrations were measured and controlled with instruments located in a mobile laboratory. Each fumigation was of two hours duration and the concentration ranged from 0.5 to 11 ppm SO2 and from 0.1 to 5 ppm NO2. Concentrations of SO2 above 2 ppm were required to cause injury to all but a few of the 87 species studied. Many of the native desert species proved to be highly resistant to injury from these gases.  相似文献   

3.
During three consecutive seasons (1987-1989), the effects of low-levels of O3, SO2 and NO2 singly and in all possible combinations (NO2 in 1988 and 1989 only) on growth and yield of potted plants of spring rape (Brassica napus L. var. napus, 'callypso') were investigated by means of factorial fumigation experiments in open-top chambers. Plants were exposed from the early vegetative stage of development until seed harvest, to charcoal-filtered air (CF; control) and CF which was supplemented for 8-h per day (8.00-16.00) with O3, for 16-h per day with NO2 (16.00-8.00) and continuously with SO2. Including the controls, the 24-h daily mean concentrations [microg m(-3)] ranged between 6-44 (O3), 9-88 (SO2) and 10-43 (NO2). The corresponding daily mean concentrations during the time of fumigation were 10-121 and 11-60 microg m(-3) for O3 and NO2, respectively. Single effects of O3 on growth and yield parameters were mostly negative and the magnitude of this effect was dependent on the season. O3 reduced plant dry weight by 11.3-18.6% and yield of seeds by 11.4-26.9%. While medium levels of SO2 stimulated the weight of pods up to 33%, higher concentrations (88 microg m(-3)) caused a decline of yield of 12.3%. From the significant interactive effects which were observed, it could be established that SO2 and NO2 alone mostly acted positively, but that their interaction with each other and especially with O3 was antagonistic, as some of the detrimental effects of O3 were mitigated by these pollutants. An important antagonistic effect between SO2 and O3 or NO2 was observed on yield. While 56 microg m(-3) SO2 increased yield by 9.9% compared to the control treatment, it aggravated the yield loss caused by O3 from -16.18% to -21.4%, and it reduced the yield stimulation caused by NO2 from +11.8% to +4.2%. Leaf area was the only parameter which was negatively affected by all pollutants, their joint action being synergistic.  相似文献   

4.
Transpiration rates of six urban tree species in Beijing evaluated by thermal dissipation method for one year were correlated to environmental variables in heat, water, and pollutant groups. To sort out colinearity of the explanatory variables, their individual and joint contributions to variance of tree transpiration were determined by the variation and hierarchical partitioning methods. Majority of the variance in transpiration rates was associated with joint effects of variables in heat and water groups and variance due to individual effects of explanatory group were in comparison small. Atmospheric pollutants exerted only minor effects on tree transpiration. Daily transpiration rate was most affected by air temperature, soil temperature, total radiation, vapor pressure deficit, and ozone. Relative humidity would replace soil temperature when factors influencing hourly transpiration rate was considered.  相似文献   

5.
A wide range of aphid/host-crop systems was surveyed by means of fumigation experiments in closed chambers for sensitivity to SO(2) and NO(2) at a concentration of 100 nl litre(-1). Aphid performance was measured by the mean relative growth rate (MRGR) of individual aphids. In all cases, except for Acrythosiphon pisum (Harris) on Vicia fabaL., there were increases in the MRGR of the aphids feeding on fumigated plants as compared to clean air controls, both during and post fumigation. The increases in MRGR ranged from 6 to 75%, with the majority falling between 25 and 40%. A. pisum on V. faba showed a consistent negative response, with decreases in MRGR between -9 and -12%. The changes in aohid MRGR were not due to direct effects, as no significant differences in MRGR were observed between fumigated and clean air chambers when aphids were fed on artificial diet sachets during fumigation.  相似文献   

6.
Both an open-air fumigation system and a laboratory-based system were used to expose decomposing Scots pine (Pinus sylvestris L.) needles to controlled concentrations of SO(2) (arithmetic mean 相似文献   

7.
The lichen species Anaptychia ciliaris, Collema nigrescens, Evernia prunastri, Hypogymnia bitteri, Lobaria pulmonaria, Pseudevernia furfuracea and Usnea rigida s.l. were fumigated with site-relevant concentrations (for Central Europe) of ozone over 80 days (180 microg m(-3) during daytime, 80 microg m(-3) during the night). Chlorophyll fluorescence measurements revealed a significant reduction of Fv/Fm after ozone fumigation in five of the species investigated, indicating severe stress on photosystem II due to ozone. The physiological impairment paralleled our fine structural investigations, revealing a significantly higher percentage of collapsed photobiont cells. This indicates that the effects of ambient ozone concentrations under experimental conditions included biophysical and physiological, as well as structural impairment in the lichens studied.  相似文献   

8.
Toxicity, uptake, and transformation of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] by three species of poplar tree were assessed. Poplar cuttings were grown in sealed flasks with hydrophonic solutions and exposed to various concentrations of atrazine for a period of two weeks. Toxicity effects were evaluated by monitoring transpiration and measuring poplar cutting mass. Exposure to higher atrazine concentrations resulted in decrease of biomass and transpiration accompanied by leaf chlorosis and abscission. However, poplar cuttings exposed to lower concentrations of atrazine grew well and transpired at a constant rate during experiment periods. Poplar cuttings could take up, hydrolyze, and dealkylate atrazine to less toxic metabolites. Metabolism of atrazine occurred in roots, stems, and leaves and became more complete with increased residence time in tissue. These results suggest that phytoremediation is a viable approach to removing atrazine from contaminated water and should be considered for other contaminants.  相似文献   

9.
The response of shrubs of Larrea tridentata (DEC) Coville (creosotebush) exposed to sulphur dioxide (SO(2)) was evaluated using in situ plants of the Majove Desert. Larrea was exposed to acute levels of 0.3 to 2.0 microl litre(-1) SO(2) for periods up to 13 days using field chambers or an open-air fumigation system. Plants exposed in the spring exhibited considerable leaf injury (necrosis and defoliation) when exposed to 2.0 microl litre(-1) SO(2), and in the autumn had leaf injury when exposed to >0.4microl litre(-1) SO(2). Injured plants had higher transpiration rates, less negative water pressure potentials, and/or lower photosynthetic rates than control plants. It is likely that Larrea would not be injured by the typically low SO(2) concentrations and dry environmental conditions of the Mojave Desert. However, if injury were to occur, it would be accompanied by changes in plant-water relations and photosynthesis, followed by recovery after the SO(2) stress was removed.  相似文献   

10.
The rhizosphere plays an important role in altering cadmium (Cd) solubility in paddy soils and Cd accumulation in rice. However, more studies are needed to elucidate the mechanism controlling rice Cd solubility and bioavailability under different rhizosphere conditions to explain the discrepancy of previous studies. A rice culture with nutrient solution and vermiculite was conducted to assess the effects of pH, Eh, and iron (Fe) concentration on Cd, Fe fractions on the vermiculite/root surface and their uptake by rice. The solution pH was set from 4.5 to 7.5, with additions of Fe (30 and 50 mg L?1) and Cd (0.5 and 0.9 mg L?1). At pH 5.5, the Eh in the rice rhizosphere was higher whereas transpiration, Cd2+, and Fe2+ adsorption on the vermiculite/root surface and accumulation in rice were lower than the other pH treatments. Cadmium addition had no impact on pH and Eh in rice rhizosphere while Fe addition decreased pH and increased Eh significantly. Compared with control, Fe addition resulted in the decrease of rhizosphere Cd, Fe solubility and bioavailability. Higher redox potential in the rice rhizosphere resulted in the decline of transpiration, Cd, and Fe accumulation in the rice tissues, suggesting that the transfer of two elements from soil to rice was depressed when the rhizosphere was more oxidized.  相似文献   

11.
Seedlings of the salt secreting mangrove Avicennia marina were exposed to fumes of the volatile fraction of light Arabian crude oil (VFCO) under controlled conditions. Rates of salt secretion were determined in leaves fumigated for 0, 3, and 6 h under four different salinity levels (10, 20, 30, and 40 ppt). Studying the effect of these fumigation periods on stomatal resistance and transpiration was restricted to one salinity level (20 ppt). Opposite to salinity, increasing the fumigation period significantly reduced both salt secretion and transpiration with a significant increase in the stomatal resistance to gas diffusion. During the first day of recovery from fumigation stress, different stomatal oscillation patterns were observed in the treated plants. The amplitude of the oscillations increased with the duration of fumigation. as did the time required for stomatal recovery. Seedlings fumigated for 3 h started to recover within 48 h, while full recovery in seedlings fumigated for 6 h required almost twice that period. The apparent recovery process was evident in the damping off of the amplitude of stomatal oscillations during the measurements period. Data presented herein show that the exposure of mangrove seedlings to VFCO disturbs the normal functions of two major structures in the leaves, i.e. the stomata and the salt glands. The ecophysiological significance of these results was discussed in relation to previous studies.  相似文献   

12.

Toxicity, uptake, and transformation of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] by three species of poplar tree were assessed. Poplar cuttings were grown in sealed flasks with hydrophonic solutions and exposed to various concentrations of atrazine for a period of two weeks. Toxicity effects were evaluated by monitoring transpiration and measuring poplar cutting mass. Exposure to higher atrazine concentrations resulted in decrease of biomass and transpiration accompanied by leaf chlorosis and abscission. However, poplar cuttings exposed to lower concentrations of atrazine grew well and transpired at a constant rate during experiment periods. Poplar cuttings could take up, hydrolyze, and dealkylate atrazine to less toxic metabolites. Metabolism of atrazine occurred in roots, stems, and leaves and became more complete with increased residence time in tissue. These results suggest that phytoremediation is a viable approach to removing atrazine from contaminated water and should be considered for other contaminants.  相似文献   

13.
Polycyclic aromatic hydrocarbons (PAHs) have been widely studied with respect to their carcinogenic and mutagenic effects on animals and human cells. Phenanthrene (PHE) and fluoranthene (FLU) effects on the needle photosynthetic traits of 2-year-old Japanese red pine (Pinus densiflora Sieb. et. Zucc.) seedlings were investigated. Three months after fumigation of foliage with solutions containing these PAHs (10 microM each), FLU had negative effects on net photosynthesis at near-saturating irradiance, stomatal conductance, initial chlorophyll fluorescence, and the contents of total chlorophyll, magnesium, and ribulose 1,5-bisphosphate carboxylase (rubisco) of current-year needles. PHE had similar negative effects to FLU but in lesser magnitude. The effects of the PAHs were mitigated by the addition of an OH-radical scavenger (mannitol) into the PAH solutions. PAHs deposited on the surface of pine needles may induce the generation of reactive oxygen species in the photosynthetic apparatus, a manner closely resembling the action of the herbicide paraquat.  相似文献   

14.
The effects of exposure to 40 nl litre(-1) SO2 + 40 nl litre(-1) NO2 on the reproductive biology of Polypodium interjectum (Shivas), Dryopteris affinis (Lowe) Fraser-Jenkins and Phyllitis scolopendrium (L.) Newman were investigated after 14 weeks exposure in a closed chamber fumigation system. The numbers of sori per pinna were reduced in response to SO2 and NO2 for D. affinis but were unaffected for the other species. Numbers of sporangia in sori and spore viability were reduced in P. interjectum and P. scolopendrium but not in D. affinis in response to the SO2 and NO2 treatment. Spore size was not affected by the pollution treatment. A separate experiment tested viabilities of spores collected from the three species in response to daily spraying with simulated mists at pHs of 2.5, 3.5, 4.5 and 5.6. For all three species, there was little or no spore germination in the pH 2.5 treatment and significantly reduced germination in response to the pH 3.5 as compared to the pH 4.5 and pH 5.6 treatments.  相似文献   

15.
Four-year-old, seed-grown trees of Norway spruce (Picea abies (L.) Karst.) were exposed in open-top chambers to charcoal-filtered air (8 h daily mean 54 microg O(3) m(-3)) over three consecutive summers (1986-1988). In mid-May 1988, before the third season of fumigation and more than 7 months after exposure to ozone the previous summer had terminated, daily rates of transpiration from intact shoots and water loss from excised needles were measured together with the amount of wax on the needle surface. In mid-July, 92 days after the beginning of the third year of exposure, the wettability of needles was assessed by measuring the contact angle of water droplets on the surface of needles. Exposure to 156 microg O(3) m(-3) resulted in a 16% increase in daily transpiration in current year's needles and a 28% increase in 1-year old needles. These effects were associated with slower stomatal closure in response to increasing water deficit in the needles previously exposed to 156 microg m(-3) ozone. The long-lasting nature of such ozone-induced effects could predispose trees to drought and winter desiccation. No significant effects of ozone were found on the amount of wax covering the needle surface, but a marked increase in the wettability of needles exposed to ozone was observed. The far reaching physiological consequences of these effects in the field and the possibility that similar disturbances may contribute to the decline of high-altitude forests of Norway spruce in Europe are discussed.  相似文献   

16.
The effects of exposing plants of Dryopteris filix-mas (L.) Schott, Phyllitis scolopendrium (L.) Newman and Polypodium vulgare L. to 60 nl litre(-1) (122 microg m(-3)) NO(2) for 37 weeks were investigated in a closed chamber fumigation system. There was no effect of NO(2) on the numbers of fronds produced for any species at any time during the exposure period. However, at the end of the study, there was a lower dry weight yield of green shoots of D. filix-mas and P. scolopendrium and a higher yield of green shoots of P. vulgare for plants in the NO(2) treatment as compared to control plants. These differences in shoot dry weights were not accompanied by an effect of NO(2) exposure on total plant dry weights.  相似文献   

17.
Effects of vapours of two herbicides on plantlets of fourteen wild higher plant species and two bryophytes were screened in fumigation experiments using foliar injury, chlorophyll fluorescence and growth as response parameters. After vaporisation of the herbicides for 48 h, concentrations in the chambers reached 77 micrograms m-3 in the chlorpropham treatments and 184 ng m-3 in the ethofumesate treatments. Despite the higher concentrations of the volatile chlorpropham (vapour pressure, VP: 1.3 mP), plants showed no foliar injury, but vapours of this herbicide caused leaf crinkling in the agriophyte Agrostemma githago. The less volatile ethofumesate (VP: 0.56 mP) caused foliar injury in all higher species, with lowest no observed effect concentrations (NOECs) of 75 ng m-3. Chlorpropham affected growth only in Agrostemma, while ethofumesate reduced growth in one third of the higher plant species. Chlorophyll fluorescence proved to be a less suitable response parameter compared to foliar injury and growth. No adverse effects were observed in mosses, probably due to the slow growth and hence small doses of herbicides taken up. The extent of foliar injury due to ethofumesate showed a weak positive relationship to relative growth rates and specific leaf area in the tested higher plant species.  相似文献   

18.
The Chinese Guger-Tree (Schima superba Gard et Champ var. superba) is an important harwood species in Taiwan where the ambient SO(2) concentration in some areas is high. Seedlings were raised in field chambers with and without SO(2) to determine whether this species is affected by this pollutant. After 4 weeks of exposure to 325 ppb of SO(2), the photosynthetic rate of seedlings decreased immediately. During the fumigation period, stem height growth was not inhibited, however, the stem diameter growth was reduced significantly. The dry weight of leaves was unchanged, while stem, root and total seedling weight were lower than those of control plants. Sulfhydryl groups in leaves increased by 75%, whereas they did not change in roots following SO(2) uptake. Superoxide dismutase in leaves did not change, however, peroxidase activity increased significantly. Results suggest that ambient SO(2) in some areas in Taiwan may affect the physiology and growth of the Chinese Guger-Tree.  相似文献   

19.
Pea aphids feeding from birth to maturity on pea plants (Pisum sativum) exposed to SO(2) concentrations of 50 nl litre(-1) or 80 nl litre(-1) showed a significant 19% increase in the rate of nymph production during the reproductive period, compared to control aphids feeding on plants in charcoal-filtered air. The higher nymph production resulted in a mean 4.6% increase in the intrinsic rate of population increase (rm). In longer term glasshouse fumigation experiments pea aphid populations were, on average, 1.8 times greater on pea plants in ambient air plus 45 nl litre(-1) SO(2) than in ambient air alone. Aphid infestation in ambient air caused a 42% reduction in pea yield and affected most plant parameters adversely. Ambient air plus SO(2) had no direct effect on yield, but, in combination with aphid infestation, a further 10% reduction in yield was recorded.  相似文献   

20.
Spruce saplings were grown under different nitrogen fertilization regimes in eight chamberless fumigation systems, which were fumigated with either charcoal-filtered (F) or ambient air (O3). After the third growing season trees were harvested for biomass and non-structural carbohydrate analysis. Nitrogen had an overall positive effect on the investigated plant parameters, resulting in increased shoot elongation, biomass production, fine root soluble carbohydrate concentrations, and also slightly increased starch concentrations of stems and roots. Only needle starch concentrations and fine root sugar alcohol concentrations were decreased. Ozone fumigation resulted in needle discolorations and affected most parameters negatively, including decreased shoot elongation and decreased starch concentrations in roots, stems, and needles. In fine roots, however, soluble carbohydrate concentrations remained unaffected or increased by ozone fumigation. The only significant interaction was an antagonistic effect on root starch concentrations, where higher nitrogen levels alleviated the negative impact of ozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号