首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impacts of livestock grazing in arid and semiarid environments are often concentrated in and around wetlands where animals congregate for water, cooler temperatures, and green forage. We assessed the impacts of winter-spring (November-May) cattle grazing on marsh vegetation cover and occupancy of a highly secretive marsh bird that relies on dense vegetation cover, the California Black Rail (Laterallus jamaicensis coturniculus), in the northern Sierra Nevada foothills of California, U.S.A. Using detection-nondetection data collected during repeated call playback surveys at grazed vs. ungrazed marshes and a "random changes in occupancy" parameterization of a multi-season occupancy model, we examined relationships between occupancy and habitat covariates, while accounting for imperfect detection. Marsh vegetation cover was significantly lower at grazed marshes than at ungrazed marshes during the grazing season in 2007 but not in 2008. Winter-spring grazing had little effect on Black Rail occupancy at irrigated marshes. However, at nonirrigated marshes fed by natural springs and streams, grazed sites had lower occupancy than ungrazed sites. Black Rail occupancy was positively associated with marsh area, irrigation as a water source, and summer vegetation cover, and negatively associated with marsh isolation. Residual dry matter (RDM), a commonly used metric of grazing intensity, was significantly associated with summer marsh vegetation cover at grazed sites but not spring cover. Direct monitoring of marsh vegetation cover, particularly at natural spring- or stream-fed marshes, is recommended to prevent negative impacts to rails from overgrazing.  相似文献   

2.
Crain CM  Albertson LK  Bertness MD 《Ecology》2008,89(10):2889-2899
Secondary succession plays a critical role in driving community structure in natural communities, yet how succession dynamics vary with environmental context is generally unknown. We examined the importance of seedling and vegetative recruitment in the secondary succession of coastal marsh vegetation across a landscape-scale environmental stress gradient. Replicate bare patches were initiated in salt, brackish, and oligohaline marshes in Narragansett Bay, Rhode Island, USA, and allowed to recover unmanipulated or with colonizing seedlings or vegetative runners removed for three years. Seed dispersal and seed bank studies were conducted at the same sites. We found that rates of recovery were 3-10 times faster in brackish and oligohaline marshes than in salt marshes. The fast pace of recovery in oligohaline marshes was driven by seedling colonization, while recovery was dominated by vegetative runners in brackish marshes and by both seedlings and runners in salt marshes. Seed and seedling availability was much greater in oligohaline marshes with up to 24 times the seed bank density compared with salt marshes. In contrast to the facilitated succession generally found in salt marshes, oligohaline marshes follow the tolerance model of succession where numerous species colonize from seed and are slowly displaced by clonal grasses whose recovery is slowed by preemptive competition from seedlings, contributing to the higher species diversity of oligohaline marshes. These findings reveal fundamental differences in the dynamics and assembly of marsh plant communities along estuarine salinity gradients that are important for conceptually understanding wetlands and for guiding the management and restoration of various types of coastal marshes.  相似文献   

3.
Succession occurs on a large part of German salt marshes following abandonment or reduction of grazing. Its speed and effect on the biodiversity of salt marshes has been discussed in the literature. Permanent plot studies show site-dependent differences in successional outcome. If grazing is to be continued, there is uncertainty about the stocking rates that are optimal for the conservation of plant diversity. We present an eight year permanent plot study with different grazing treatments on a high salt marsh at the marsh island of Hallig Langeness, Germany, which is enclosed by a summer dike. The study site is owned by WWF. Successional outcomes on the permanent plots depend on grazing intensity and depth of the groundwater table which is correlated with soil salinity. Intermediate stocking rates support a mixture of halophytes and glycophytes, the relative proportion of which depends on the depth of the groundwater table. Cattle grazing at stocking rates of 0.6 livestock units per ha were found to be optimal for plant diversity conservation. At sites with deeper groundwater tables and no grazing, dominantElymus spp. stands develop and diversity is strongly reduced. If the groundwater table is high, succession following grazing abandonment is retarded and small halophytes prevail.  相似文献   

4.
We studied the impact of livestock grazing on the distribution ofBranta bernicla bernicla (Dark-bellied Brent goose) in the Dutch Wadden Sea during spring. It was hypothesized that livestock facilitate short-term (within-season) grazing for geese as well as long-term (over years). Therefore we measured grazing pressure by geese in salt marsh and polder areas that were either grazed (spring-grazed) or ungrazed during spring (summer-grazed). Additionally, we carried out a preference experiment with captive geese to test the preference between spring-grazed and summer-grazed polder swards. We furthermore compared patterns of use by geese between long-term ungrazed and grazed salt marshes. In May, there is a difference in grazing pressure by geese between polder pastures that are grazed or ungrazed during spring. In this month, the ungrazed polder pastures are abandoned and the geese shift to either the grazed polder pastures or to the salt marsh. Vegetation in the polder that had been spring-grazed had a lower canopy height and a higher tiller density than summer-grazed vegetation. The captive geese in the preference experiment showed a clear preference for vegetation that had been spring-grazed by sheep over ungrazed vegetation. Goose grazing pressure was negatively correlated to canopy height, both on the polder and on the salt marsh. Within the plant communities dominated byFestuca rubra andPuccinellia maritima, marshes that were intensively grazed by livestock generally had higher grazing pressure by geese than long-term ungrazed or lightly grazed salt marshes.  相似文献   

5.
Salt marsh succession after de-embankment was monitored on the East Frisian barrier island Langeoog by investigating permanent plots. Seventy years after embankment salt marsh plants were once again influenced mainly by the tidal regime. From 2002 to 2004 the former high marsh and glycophytic vegetation died out and was replaced by species of lower salt marsh zones. Nitrophytic halophytes like Suaeda maritima, Atriplex prostrata and Artemisia maritima established first because of the high nutrient content in the soil, a direct result of former vegetation decay. With decreasing nitrogen afterwards other species became more competitive. Until 2007 Atriplex portulacoides became more dominant in the lower marsh and Elymus athericus reached dominance in areas where grazing has been abandoned in the high marsh. The dynamics in the study area is much lower than in natural marshes due to the still existing drainage system. Therefore vegetation units with low species diversity are widespread.  相似文献   

6.
Climate change and engineering activities have modified the hydrology and morphology of estuaries. However, the potential effects of these modifications on vegetation succession in estuarine marshes are still poorly understood. Therefore, we studied temporal changes in tidal habitats of the Elbe estuary over a period of 30 years. We compared vegetation maps from 1980 to 2010 and calculated the change in area of habitats with respect to three salinity and three elevational zones. To analyze the direction of the temporal change, we differentiated between progressive and regressive succession. By using regression tree models (conditional inference trees), we identified the most influential factors determining progressive or regressive succession of low marshes. The total area of the estuarine tidal marshes at the Elbe increased by 2 % from 1980 to 2010, but changes were unequal among the salinity zones. In the salt and brackish zones, the area covered by high marshes increased substantially but decreased in the tidal freshwater zone, while that covered by low marshes decreased in all the salinity zones. Additionally, we determined high persistence of tidal flats and high marshes, whereas only 19 to 28 % of the low marshes found in 1980 remained in 2010. In salt and brackish marshes, more than two-thirds of the area that had been identified as low marshes in 1980 had progressively developed into high marshes. In contrast, 44 % of the area of low marshes in tidal freshwater marshes showed regressive succession back into tidal flats. The distance to the navigation channel was the main factor determining successional direction in salt and brackish marshes. Here, greater proximity to the channel was correlated with higher risk of regressive succession. In tidal freshwater marshes, we identified both the distance to the navigation channel and the situation on the river shore (i.e. inner bank, outer bank or straight bank) as the main factors for marsh succession. Here, considerable engineering activities in the channel had simultaneously decreased the mean low water level and increased the mean high water level between 1980 and 2010, which led to an increase in tidal amplitude. It is quite likely that these changes negatively modified marsh distribution, increased regressive succession and, thus, lowered the quality of tidal freshwater marshes.  相似文献   

7.
Grazing by livestock is used as a management tool to prevent the dominance of a single tall-growing specises during succession on European salt marshes. The effects of natural small herbivores are often neglected by managers. Long-term exclosure experiments on the island of Schiermonnikoog show that hares retard vegetation succession at the early stages of salt-marsh development. In the present study we test whether we can scale-up these exclosure studies to a whole salt-marsh system. We compared 30 years of undisturbed vegetation succession at the Wadden Sea islands of Schiermonnikoog, Rottumerplaat (both The Netherlands) and Mellum (Germany). Salt-marsh development started at all sites in the early 1970s. Hares have been present only on Schiermonnikoog. At each site an area was selected covering a gradient from high to low salt marsh. Surface elevation and clay thickness were measured and a vegetation map was made on the three islands. The areas showed similar clay thickness at low surface elevation, indicating similar sedimentation ratesand hence nitrogen inputs. Rottumerplaat and Mellum showed a higher dominance of the late successional speciesAtriplex portulacoides in the low marsh andElymus athericus in the high marsh compared to Schiermonnikoog. Typical mid-successional, important food plant species for hares and geese had a higher abundance at Schiermonnikoog. Patterns of vegetation development in the absence of hares followed the observed patterns in the smallscale exclosure experiments at Schiermonnikoog. Without hare grazing, vegetation succession proceeds more rapidly and leads to the dominance of tall-growing species in earlier stages of succession. The present study shows that next to large herbivores, small herbivores potentially have largescale effects on salt-marsh vegetation succession during the early successional stages.  相似文献   

8.
Overexploitation of predators has been linked to the collapse of a growing number of shallow-water marine ecosystems. However, salt-marsh ecosystems are often viewed and managed as systems controlled by physical processes, despite recent evidence for herbivore-driven die-off of marsh vegetation. Here we use field observations, experiments, and historical records at 14 sites to examine whether the recently reported die-off of northwestern Atlantic salt marshes is associated with the cascading effects of predator dynamics and intensive recreational fishing activity. We found that the localized depletion of top predators at sites accessible to recreational anglers has triggered the proliferation of herbivorous crabs, which in turn results in runaway consumption of marsh vegetation. This suggests that overfishing may be a general mechanism underlying the consumer-driven die-off of salt marshes spreading throughout the western Atlantic. Our findings support the emerging realization that consumers play a dominant role in regulating marine plant communities and can lead to ecosystem collapse when their impacts are amplified by human activities, including recreational fishing.  相似文献   

9.
盐沼植物群落研究进展:分布、演替及影响因子   总被引:2,自引:0,他引:2  
盐沼是全球温带及亚热带地区的主要滨海湿地类型之一,在我国分布广泛。盐沼湿地生态系统敏感、脆弱且具有重要的生态系统服务功能。理解盐沼植物群落时空分布动态的一般规律与生态学机制,是开展盐沼生态系统研究的基础与关键。海陆交界的特殊环境特征是影响盐沼湿地植物群落的空间分布及演替过程的主要因素。在海洋潮汐作用下,盐沼湿地中的盐度、水淹强度、氧化还原电位等非生物因子往往呈梯度分布,这也导致了生物群落中种内、种间关系的变化。在非生物及生物因子的共同作用下,盐沼植物群落也往往沿高程梯度呈带状分布。环境变化是盐沼植物群落演替的驱动因素,在海岸线相对较为稳定的盐沼,植物群落的演替多属自发演替,而在靠近的大型河口的一些持续淤涨的盐沼,植物群落演替通常属于异发演替。沿海地区的水产业、流域上游及沿海地区的工程、污染及生物入侵等直接或间接的人类活动已对盐沼湿地植物群落的产生了深刻影响。经过数十年发展,国际上盐沼植物群落学研究的热点领域主要包括盐沼植物群落与其他生物群落的相互关系、植物群落在盐沼生态系统过程中的作用等。在全球变化背景下,盐沼植物群落对气候变化与海平面升高也日益成为盐沼植物群落学相关的热点。  相似文献   

10.
Coastal marshes are one of the world's most productive ecosystems. Consequently, they have been heavily used by humans for centuries, resulting in ecosystem loss. Direct human modifications such as road crossings and ditches and climatic stressors such as sea‐level rise and extreme storm events have the potential to further degrade the quantity and quality of marsh along coastlines. We used an 18‐year marsh‐bird database to generate population trends for 5 avian species (Rallus crepitans, Tringa semipalmata semipalmata, Ammodramus nelsonii subvirgatus, Ammodramus caudacutus, and Ammodramus maritimus) that breed almost exclusively in tidal marshes, and are potentially vulnerable to marsh degradation and loss as a result of anthropogenic change. We generated community and species trends across 3 spatial scales and explored possible drivers of the changes we observed, including marsh ditching, tidal restriction through road crossings, local rates of sea‐level rise, and potential for extreme flooding events. The specialist community showed negative trends in tidally restricted marshes (?2.4% annually from 1998 to 2012) but was stable in unrestricted marshes across the same period. At the species level, we found negative population trends in 3 of the 5 specialist species, ranging from ?4.2% to 9.0% annually. We suggest that tidal restriction may accelerate degradation of tidal marsh resilience to sea‐level rise by limiting sediment supply necessary for marsh accretion, resulting in specialist habitat loss in tidally restricted marshes. Based on our findings, we predict a collapse of the global population of Saltmarsh Sparrows (A. caudacutus) within the next 50 years and suggest that immediate conservation action is needed to prevent extinction of this species. We also suggest mitigation actions to restore sediment supply to coastal marshes to help sustain this ecosystem into the future.  相似文献   

11.
Abstract:  Die-offs of cordgrass are pervasive throughout western Atlantic salt marshes, yet understanding of the mechanisms precipitating these events is limited. We tested whether herbivory by the native crab , Sesarma reticulatum , is generating die-offs of cordgrass that are currently occurring on Cape Cod, Massachusetts (U.S.A.), by manipulating crab access to cordgrass transplanted into die-off areas and healthy vegetation. We surveyed 12 Cape Cod marshes to investigate whether the extent of cordgrass die-off on creek banks, where die-offs are concentrated, was related to local Sesarma grazing intensity and crab density. We then used archived aerial images to examine whether creek bank die-off areas have expanded over the past 2 decades and tested the hypothesis that release from predation, leading to elevated Sesarma densities, is triggering cordgrass die-offs by tethering crabs where die-offs are pervasive and where die-offs have not yet been reported. Intensity of crab grazing on transplanted cordgrass was an order of magnitude higher in die-off areas than in adjacent vegetation. Surveys revealed that Sesarma herbivory has denuded nearly half the creek banks in Cape Cod marshes, and differences in crab-grazing intensity among marshes explained >80% of variation in the extent of the die-offs. Moreover, the rate of die-off expansion and area of marsh affected have more than doubled since 2000. Crab-tethering experiments suggest that release from predation has triggered elevated crab densities that are driving these die-offs, indicating that disruption of predator–prey interactions may be generating the collapse of marsh ecosystems previously thought to be exclusively under bottom-up control .  相似文献   

12.
Salt marsh development on the coastal barrier island of Schiermonnikoog (The Netherlands) was compared with two other salt marsh systems in the Wadden Sea. Accretion rate, nitrogen accumulation and changes in plant species composition were investigated using chronosequences. The age of the marsh was estimated from aerial photographs and old maps. In 7230 plots, the elevation of the marsh surface, the thickness of the sediment layer (clay) and the presence of plant species was recorded. In addition, the nitrogen pool was measured at each successional stage. Accretion rates were similar in the three salt marshes. Higher accretion rates were found at younger marshes. A strong linear relationship between nitrogen pool size and thickness of the clay layer was found for the three marshes. The accumulation rate of nitrogen is therefore strongly related to the accretion rate. Thus, more nitrogen is present in the sediment of later successional stages where more clay has accumulated. On the high salt marsh (55 cm+MHT),Ameria maritima disappeared andArtemisia maritima, Juncus gerardi andElymus athericus established at sites with a thicker clay layer. On the low salt marsh (25 cm+MHT),Plantago maritima, Puccinellia maritima andLimonium vulgare disappeared andAtriplex (Halimione) portulacoides established. Apparently, with the accumulation of clay and therefore of nitrogen, tall growing species take over in salt marshes not grazed by livestock.  相似文献   

13.
This paper is a summary and elaboration of an earlier publication in Dutch on the compilation of a landscape-ecological map, scale 1 : 50 000, of the Dutch coast. It is argued that such an integrated map is the best basis for the conservation and management of the coastal dunes and salt marshes. It may be combined with local more detailed vegetation maps, some examples of which are mentioned in the context of management. The Dutch North Sea coast is a ca. 350 km long chain of sandy beaches and sand dunes, from only 100 m to more than 10 km wide. On sheltered stretches of dune coasts along estuaries in the Southwest and on the Wadden Sea islands, salt marshes have developed. The small-scale gradient structure of the beach-dune-salt marsh complex is emphasized.  相似文献   

14.
The movement of organic carbon was assessed by statistical and simulation modeling analyses in two marsh types in New Jersey;each marsh contained three water-drainage systems in which three tidal cycles were sampled in May and June 1973. Hourly water samples were obtained and filtered through a gelman Type A glass filter for separation into dissolved (DOC) and particulate (POC) organic carbon components of the total organic carbon (TOC). Simulation data showed that individual creeks and marshes functioned differently on the sampled tidal cycles in regard to net movement of water and organic carbon components. Organic carbon components exhibited similar tidal variations, with significantly lower concentrations at flood slack than at ebb slack. Mid-ebb concentrations were significantly higher than mid-flood concentrations for TOC and POC. Individual marshes showed significantly different concentrations in the latter segments of the tidal cycle for TOC's and POC's. Results indicate that individual creeks, marshes and tidal cycles are not representative of the total movement of organic carbon in estuaries.Paper of the Journal Series, New Jersey Agricultural Experiment Station, Cook College, rutgers—The state University of New Jersey, New Brunswick, New Jersey 08903, USA.  相似文献   

15.
Abstract:  Salt marsh ecosystems are widely considered to be controlled exclusively by bottom–up forces, but there is mounting evidence that human disturbances are triggering consumer control in western Atlantic salt marshes, often with catastrophic consequences. In other marine ecosystems, human disturbances routinely dampen (e.g., coral reefs, sea grass beds) and strengthen (e.g., kelps) consumer control, but current marsh theory predicts little potential interaction between humans and marsh consumers. Thus, human modification of top–down control in salt marshes was not anticipated and was even discounted in current marsh theory, despite loud warnings about the potential for cascading human impacts from work in other marine ecosystems. In spite of recent experiments that have challenged established marsh dogma and demonstrated consumer-driven die-off of salt marsh ecosystems, government agencies and nongovernmental organizations continue to manage marsh die-offs under the old theoretical framework and only consider bottom–up forces as causal agents. This intellectual dependency of many coastal ecologists and managers on system-specific theory (i.e., marsh bottom–up theory) has the potential to have grave repercussions for coastal ecosystem management and conservation in the face of increasing human threats. We stress that marine vascular plant communities (salt marshes, sea grass beds, mangroves) are likely more vulnerable to runaway grazing and consumer-driven collapse than is currently recognized by theory, particularly in low-diversity ecosystems like Atlantic salt marshes.  相似文献   

16.
The zonation of the vegetation along the saline and freshwater marshes of the Damietta estuary of the Nile River was studied from near the river mouth to 20 km upstream. Downstream, the estuarine water is almost stagnant and highly saline with high concentrations of nutrients. This makes the habitat unsuitable for euhydrophytes. Upstream, the vegetation consists mostly of freshwater macrophytes. 75 sampling plots were established in representative stands of the upshore and upstream vegetation zones. Classification and ordination of the data revealed seven vegetation types, indicated A—G. The dominant species of the saline marshes werePhragmites australis, Tamarix nilotica andArthrocnemum macrostachyum (A),Zygophyllum aegyptium andPolygonum equisetiforme (B),Cynodon dactylon andSuaeda vera (C). In the freshwater marshes the dominants were:Ludwigia stolonifera, Persicaria lapathifolia (D),Typha domingensis (E),Eichhornia crassipes (F) andCeratophyllum demersum (G). The first axis of the ordination axis obtained with Detrended Correspondence Analysis can be associated with the upstream gradient. It separates the salt marsh vegetation groups from those of the freshwater marshes. Plant species richness increased upshore along both saline and freshwater marshes. The concentration of dominance increased upstream. Some aspects of proper management of estuarine vegetation are mentioned.  相似文献   

17.
The supply of freshwater to estuarine ecosystems is a critical factor in maintaining the overall health and organization of coastal marshes. Specifically along the Texas Gulf coast, the coupled effects of decreased freshwater inflows to the estuary and natural processes (e.g., precipitation, wind, and tides) can exert significant salt-stress on coastal marsh vegetation. In this project we sought to quantitatively link the inflow of freshwater to the estuary (San Antonio Bay) with Aransas National Wildlife Refuge (ANWR) coastal marsh salinity and assess the influence of salinity and inundation on Carolina wolfberry (Lycium carolinianum Walt.) phenology (leaf and fruit abundance). The Carolina wolfberry is one of the more common high marsh plant species found at ANWR and has been shown to be a key food source for endangered Whooping Cranes which inhabit the coastal marshes of the ANWR each fall/winter. Results from our study show that periods of decreased freshwater inflows to the estuary correlated with increased marsh salinity at the ANWR. Wolfberry plants at ANWR marsh sites displayed increased fruit abundance during years which had lower mean summer time salinity (June, July, and August) in San Antonio Bay; conversely, during years of increased bay salinity during the same summertime months, wolfberry plants showed decreased fruit abundance. Through the continued validation of the relationship between inflows and coastal marsh salinity, we hope to provide additional insight into how wolfberry phenology varies inter-annually across both salinity and inundation regimes and how freshwater inflows may affect food availability for the endangered Whooping Crane.  相似文献   

18.
滨海盐沼及其植物群落的分布与多样性   总被引:1,自引:0,他引:1  
贺强  安渊  崔保山 《生态环境》2010,19(3):657-664
滨海盐沼是广泛存在于世界中、高纬度地区的一种湿地生态系统,具有抵御风暴潮灾害、净化污染物和为珍稀濒危生物提供适宜生境等重要的生态和经济价值。滨海盐沼因随高程变化而急剧变化的环境梯度和植物带状分布现象而为生态学者阐释自然界物种的分布机制提供了理想系统。主要概述了滨海盐沼的定义、特点、类型、全球分布以及潮汐作用、土壤盐度等环境因子特征;阐述了不同尺度下滨海盐沼的植物群落分布和多样性特征。在滨海盐沼植物群落的分布特征上,重点阐述了中尺度下的植物带状分布,即植物群落往往在白海向陆渐高的不同高程梯度上表现出显著的分带分布,不同植物各自占据该梯度上的一定区域。通常认为,带状分布是植物竞争和物理性胁迫共同调控的结果,但其在不同地理区域的普适性仍存争议。滨海植物群落多样性往往较低,在中、小尺度上盐沼植物多样性受控于盐度、潮汐等物理性胁迫、植物间相互作用等因子的作用;在大尺度上盐沼植物多样性可能随纬度增大而增加。系统深入地认识滨海盐沼植物群落生态格局和过程,将为气候变化、生物入侵等人类影响下的滨海盐沼生态系统的管理和恢复提供有益经验。  相似文献   

19.
Abstract:  Although primary productivity in salt marshes is thought to be controlled by physical forces, recent evidence suggests that human disturbances can drive a switch to consumer control in these ecologically valuable ecosystems. We tested the hypothesis that nitrogen enrichment can trigger consumer control in salt marshes in Narragansett Bay, Rhode Island, with (1) a field experiment in which we manipulated nutrient availability (with nutrient additions) and insect herbivory (with insecticide application), (2) a survey of 20 salt marshes that examined the relationship between marsh nutrient status and herbivore pressure, and (3) insect herbivore removal at high and low nutrient input sites to directly test the hypothesis that nutrient enrichment is increasing insect herbivory in these marshes. Experimental nitrogen eutrophication initially increased plant productivity but eventually led to reduced plant biomass due to insect herbivory, and our surveys revealed that marsh nitrogen supply was a good predictor of herbivore damage to plants. Insects had minimal impacts on primary productivity in pristine marshes, but suppressed primary productivity in eutrophic salt marshes by 50–75%. Thus, eutrophication is currently triggering consumer suppression of primary productivity in New England salt marshes and may ultimately jeopardize the ecological and societal services these systems provide.  相似文献   

20.
Salt-marsh estuarine sediments are not homogeneous. It is obvious that a steady state cannot be assumed if the depositional environments under which salt marshes accumulate change from subtidal through non-vegetated intertidal to vegetated intertidal state during their formation. In addition to these, the supply of sedimentary material depends on the tidal prism which changes as salt marshes are formed. Based on the study of cores collected in the estuarine region of Georgia, USA, it was found that the Mn/Al ratios in sediments of marsh cores change from subtidal through non-vegetated intertidal to vegetated intertidal. The relative variation of biogenic silica preserved in sediments of marsh core reflects the relative supply rate of organic carbon (phytoplankton) produced in the water column to the sediment surface at the time of deposition. In this paper it is proposed that sediment manganese and biogenic silica may be applied as geochemical indicators of changing depositional environments and organic carbon originating from phytoplankton in the estuarine salt marsh sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号