首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Atmospheric dust deposition is a major external iron source for remote surface ocean waters. Organic complexation is known to play a role in the dissolution of iron-containing minerals. In this paper, we present our study on the effect of oxalate on dust iron solubility in simulated rainwater. Our results reveal that the solubility of iron carried by analogs of different African dusts varies with the dust source. Our experiments indicate a positive linear correlation between iron solubility and oxalate concentration. Soluble iron (SFe) increases from 0.0025(±0.0005)% to 0.26(±0.01)% of total iron, considering all dust sources and with oxalate concentrations ranging from 0 to 8 μM. These results show that the observed variability of iron solubility in aerosols collected over the Atlantic Ocean is, at least partly, due to an increase in dust iron solubility, with the presence of oxalate complexation, rather than to the presence of more soluble anthropogenic iron. Considering the mineralogical composition of those particles, experiments with pure minerals (hematite, goethite and illite) were performed to study the dissolution process. We found that oxalate promotes the solubility of iron contained in clay and hence confirmed that more than 95% of SFe from soil dust is provided by clay (illite). This experimental work enables us to establish a parameterization of iron solubility in dust as a function of oxalate concentration and based on the individual iron solubility of pure iron-bearing minerals usually present in dust particles. Finally, our results emphasize that oxalate contributes to iron solubility on the same order of magnitude as the acid processes. Organic complexation appears to be a process that increases iron solubility and likely enhances the bioavailability of iron from dust.  相似文献   

2.
Hanoch RJ  Shao H  Butler EC 《Chemosphere》2006,63(2):323-334
This study investigated the transformation of carbon tetrachloride (CT) by goethite, hematite, magnetite, and kaolinite treated with bisulfide to form coatings of iron monosulfide (FeS) and other Fe(II) species. These coatings contribute to abiotic natural attenuation in anaerobic environments. Batch kinetic experiments were performed under anoxic conditions at pH 8.0. Surface-area-normalized pseudo-first-order rate constants for CT transformation did not differ significantly for the three HS- treated iron oxides, but the rate of CT transformation by bisulfide-treated kaolinite was significantly lower, most likely due to kaolinite's lower iron content. The yield of chloroform (CF) from CT transformation was typically approximately 1%. There was negligible or only slight adsorption of several natural organic matter (NOM) model compounds to the surface of HS- treated goethite, and these compounds had no influence on CT transformation rate constants or CF yields. Juglone, on the other hand, adsorbed to a greater extent, and also significantly influenced the CF yield, increasing it by a factor of approximately 20 for HS- treated hematite. We speculate that juglone or its HS- addition product adsorbed to the mineral surface and acted as a hydrogen atom donor that reacted with the trichloromethyl radical intermediate, increasing the CF yield.  相似文献   

3.
Potentiometric titrations and lead sorption tests were conducted using muscovite, clinochlore, hematite, goethite, quartz, and a mixture of these same minerals. Mechanistic models were developed to represent and interpret these data. The aim was isolating the specific contribution of each mineral in proton and lead binding. Acid-base properties of each single mineral as well as their mixture were represented by discrete models, which consider the dissociation of n monoprotic sites (n-site/n-K(H) models). A one-site/one-K(H) model (logK(H1) = 10.69) was chosen for quartz (dissociation of SiOH edge hydroxyl groups). Goethite and hematite (FeOH groups) were represented by the same one-site/one-K(H) model (logK(H1) = 10.35). Three-site/three-K(H) models were used for muscovite (logK(H1) = 4.18; logK(H2) = 6.65; logK(H3) = 9.67) and clinochlore (logK(H1) = 3.84; logK(H2) = 6.57; logK(H3) = 9.71) assuming that SiOH and AlOH of the aluminosilicate matrix dissociate in the acid-neutral pH range while SiOH groups of quartz inclusions dissociate in the basic range. Similarly, the mixture of these minerals was represented by a three-site/three-K(H) model (logK(H1) = 3.39; logK(H2) = 6.72; logK(H3) = 10.82). According to crossed comparisons with single minerals, the first two sites of the mixture were associated with the aluminosilicate matrix (SiOH and AlOH respectively) and the third site with iron oxides (FeOH) and quartz groups. Additivity of proton binding in the mixture was demonstrated by simulating the mixture's titration curve. A unified model for the entire set of titration curves (single minerals and mixture) was also developed introducing a three-peak distribution function for proton affinity constants. Experimental data for lead sorption onto the mixture and individual minerals in 3-5 pH range denoted the competition between protons and metallic ions. The entire set of lead isotherms (individual mineral and mixture data) was represented adequately by a unified model taking into account both monodentate and bidentate complexes with the three active sites (additivity of lead binding). Experimental data of metal distribution in solid and liquid phases were successfully simulated by implementing the protonation and the surface complexation constants into the database of a dedicated software for chemical equilibria.  相似文献   

4.
The effect of goethite (α-FeOOH), hematite (α-Fe203) and maghemite (γ-Fe203) on the aqueous photoreduction of divalent mercury with organic acids (oxalate, formate and acetate) is investigated. Laboratory photochemistry experiments with synthetic iron oxides and simulated sunlight were performed to assess the role of the oxides on the photoreduction. Ambient aerosol was also collected and introduced as the solid phase to compare its effect with that of synthetic oxides. It is observed that the presence of various iron oxides or aerosol particles enhances the photoreduction. It is also found that the hydroxyl radicals produced in the hematite-oxalate systems can re-oxidize the reduced mercury back to Hg(II). Based on the experimental observations, mechanisms responsible for the Hg(II) reduction are proposed. The kinetics of Hg0 oxidation by hydroxyl radicals was also studied by a steady-state kinetic technique using nitrate photolysis as the * OH radical source. The second-order rate constant is determined to be 2.0 × 109 M s−1. The implications of the studied reactions on the atmospheric chemistry of mercury are discussed.  相似文献   

5.
GOAL AND SCOPE AND BACKGROUND: The application of a promising method, termed sorptive flotation, for the removal of chromium(VI) and zinc ions was the aim of the present paper. A special case of sorptive flotation is adsorbing colloid flotation. Suitable sorbent preparation techniques have been developed in the laboratory. METHODS: Sorptive flotation, consisting of the sorption and flotation processes combined in series, has proved to give fast and satisfactory treatment of the industrial streams and effluents bearing dilute aqueous solutions of zinc and chromium(VI). RESULTS AND DISCUSSION: Goethite has proved to be effective for the removal of chromium(VI) and zinc ions. Also, adsorbing colloid flotation with ferric hydroxide (as the co-precipitant) could be an alternative method to the above-mentioned separation of metal ions. In both cases, chromium(VI) (pH=4) and zinc (pH=7) removal was about 100%. CONCLUSION: The reasons for selecting the iron-based bonding materials, like goethite and/or in-situ produced ferric hydroxide, are that they are cheap, easily synthesized, suitable both for cation and anion sorption, and, furthermore, that they present low risks for adding a further pollutant to the system. Promising results were obtained. RECOMMENDATION AND OUTLOOK: The application of goethite and in-situ produced ferric hydroxide has demonstrated their effectiveness in the removal of heavy metal ions, such as chromium anions and zinc cations. A proposed continuation of current work is the utilization of similar iron oxides, for instance synthesized akaganeite. The comparison between the results reported in this paper with the results reported in the literature, also deserves attention.  相似文献   

6.
Hanna K  Carteret C 《Chemosphere》2007,70(2):178-186
The adsorption of naphthoic acids to iron oxides and hydroxides influences strongly their mobility in soils and sediments. Sorption of 1-hydroxy-2-naphthoic acid (HNA) to three iron oxides was examined over a wide range of conditions (pH, ionic strength, sorbate and sorbent concentrations). In the examination of HNA sorption, Tempkin model was performed to fit sorption data of HNA onto all iron oxides. The adsorption in the Henry law range increases in the order: goethite相似文献   

7.
Electrochemical peroxidation (ECP), an emerging remediation technology, with direct electric current applied to steel electrode and small addition of H2O2, was used to remove As(III) from contaminated aqueous solutions. Bench scale experiments were conducted to evaluate the sorption and distribution of arsenic between the soluble and solid state hydrous ferric oxides (HFO) formed as part of the ECP process. ECP was effective in removing arsenic from the aqueous solution, with >98% of the applied As(III) adsorbed on HFO. Removal was complete within 3 min of ECP treatment and apparently independent of the initial pH of the water (3.5-9.5). In the absence of H2O2 more As(III) was adsorbed by solid state iron at pH 9.5 than at 3.5 (2600 vs. 1750 microg l(-1)). Thus H2O2 was crucial to oxidize As(III) to As(V) which is more strongly retained by HFO. Removal of As was not significantly affected by the concentration of H2O2 or by current processing time. The optimal operating conditions were pH < 6.5, H2O2 concentration of 10 mg l(-1) and current process time not exceeding 3 min. X-ray diffraction (XRD), diffuse-reflectance infrared Fourier transform (DRIFT) spectroscopy and transmission electron microscopy (TEM) were applied to study the HFO deposits. The XRD data indicated the prevalence of poorly ordered Fe minerals in the suspended ECP solids with a dominance of 5 line ferrihydrite in the absence of H2O2. At pH 3.5 and with 100 mg H2O2 l(-1), akaganeite was formed, whereas an incipient hematitic phase, reflection at 0.39 nm, occurred at pH 6.5. DRIFT data indicate that both As(III) and As(V) were specifically adsorbed onto HFO at acid and neutral pH. TEM observations indicated the presence of spherical shape ferrihydrite and provided evidence for possible formation of subrounded hematite and acicular shape goethite.  相似文献   

8.

Two-line ferrihydrite (2LFh) was aged for 12 years under ambient conditions and sheltered from light in the presence of Lu(III) used as surrogate for trivalent actinides. 2LFh aging produced hematite rhombohedra with overgrown acicular goethite particles. Analysis of the homogeneous suspension by asymmetrical flow field-flow fractionation (AsFlFFF) coupled to ICP-MS indicated that particles have a mean hydrodynamic diameter of about 140 nm and the strong correlation of the Fe and Lu fractograms hinted at a structural association of the lanthanide with the solid phase(s). Unfortunately, recoveries were low and thus results cannot be considered representative of the whole sample. The suspension was centrifuged and X-ray absorption spectroscopy (XAS) at the Lu L3-edge on the settled particles indicated that Lu(III) is sixfold coordinated by oxygen atoms, pointing to a retention by structural incorporation within particles. This result is consistent with AsFlFFF results on the same suspension without centrifugation. The detection of next nearest Fe and O atoms were consistent with the structure of goethite, ruling out incorporation within hematite. After centrifugation of the suspension, only nanoparticulate needle-like particles, very likely goethite, could be detected in the supernatant by ESEM. AsFlFFF data of the supernatant were comparable to that obtained for the homogeneous suspension, whereas XAS indicated that Lu(III) is predominantly present as dissolved species in the supernatant. Results from both techniques can be interpreted as a major fraction of Lu present as aqueous ions and a minor fraction as structurally incorporated. Findings from this study are corroborated by STEM-HAADF data and results from DFT calculations in a companion paper.

  相似文献   

9.
Mak MS  Lo IM 《Chemosphere》2011,84(2):234-240
This study investigated the removal kinetics and mechanisms of Cr(VI) and As(V) by Fe(0) in the presence of fulvic acid (FA) and humic acid (HA) by means of batch experiments. The focus was on the involvements of FA and HA in redox reactions, metal complexation, and iron corrosion product aggregation in the removal of Cr(VI) and As(V) removal by Fe(0). Synthetic groundwater was used as the background electrolyte to simulate typical groundwater. The results showed faster Cr(VI) removal in the presence of HA compared to FA. Fluorescence spectroscopy revealed that no redox reaction occurred in the FA and HA. The results of the speciation modeling indicate that the free Fe(II) concentration was higher in the presence of HA, resulting in a higher removal rate of Cr(VI). However, the removal of As(V) was inhibited in the HA solution. Speciation modeling showed that the concentration of dissolved metal-natural organic matter (metal-NOM) complexes significantly affected the aggregation of the iron corrosion products which in turn affected the removal of As(V). The aggregation was found to be induced by gel-bridging of metal-NOM with the iron corrosion products. The effects of metal-NOM on the aggregation of the iron corrosion products were further confirmed by TEM studies. Larger sizes of iron corrosion products were formed in the FA solution compared to HA solution. This study can shed light on understanding the relationships between the properties of NOM (especially the content of metal-binding sites) and the removal of Cr(VI) and As(V) by Fe(0).  相似文献   

10.
Kim HS  Kang WH  Kim M  Park JY  Hwang I 《Chemosphere》2008,73(5):813-819
Reactive reductants of cement/Fe(II) systems in dechlorinating chlorinated hydrocarbons are unknown. This study initially evaluated reactivities of potential reactive agents of cement/Fe(II) systems such as hematite (alpha-Fe(2)O(3)), goethite (alpha-FeOOH), lepidocrocite (gamma-FeOOH), akaganeite (beta-FeOOH), ettringite (Ca(6)Al(2)(SO(4))(3)(OH)(12)), Friedel's salt (Ca(4)Al(2)Cl(2)(OH)(12)), and hydrocalumite (Ca(2)Al(OH)(6)(OH).3H(2)O) in reductively dechlorinating trichloroethylene (TCE) in the presence of Fe(II). It was found that a hematite/Fe(II) system shows TCE degradation characteristics similar to those of cement/Fe(II) systems in terms of degradation kinetics, Fe(II) dose dependence, and final products distribution. It was therefore suspected that Fe(III)-containing phases of cement hydrates in cement/Fe(II) systems behaved similarly to the hematite. CaO, which was initially introduced as a pH buffer, was observed to participate in or catalyze the formation of reactive reductants in the hematite/Fe(II) system, because its addition enhanced the reactivities of hematite/Fe(II) systems. From the SEM (scanning electron microscope) and XRD (X-ray diffraction) analyses that were carried out on the solids from hematite/Fe(II) suspensions, it was discovered that a sulfate green rust with a hexagonal-plate structure was probably a reactive reductant for TCE. However, SEM analyses conducted on a cement/Fe(II) system showed that hexagonal-plate crystals, which were presumed to be sulfate green rusts, were much less abundant in the cement/Fe(II) than in the hematite/Fe(II) systems. It was not possible to identify any crystalline minerals in the cement/Fe(II) system by using XRD analysis, probably because of the complexity of the cement hydrates. These observations suggest that major reactive reductants of cement/Fe(II) systems may differ from those of hematite/Fe(II) systems.  相似文献   

11.
5种铁氧化物去除As(V)性能的比较研究   总被引:8,自引:1,他引:7  
为了从铁氧化物中筛选得到潜在经济有效的除砷材料,对5种铁氧化物去除As(V)的性能进行了比较研究。吸附实验结果表明,其吸附容量依次为施氏矿物四方纤铁矿水铁矿赤铁矿针铁矿,其吸附过程均符合准二级动力学,约24 h时吸附达到平衡。其中,pH=5时,施氏矿物的吸附容量达到83 mg/g。分别投加500 mg/L和300 mg/L的施氏矿物,可将含砷1.484 mg/L和0.850 mg/L、高TOC含量和高pH特征的模拟配水砷浓度降至0.01 mg/L以下。鉴于施氏矿物良好的吸附除砷性能,进一步通过SEM、FTIR和电位滴定对其表面特性进行了深入研究,结果显示,本研究中制备的施氏矿物存在结构性或表面吸附的SO42-,其(质子)表面位密度约为4.32个/nm2,表面质子化常数pK1为4.60,pK2为-8.98。  相似文献   

12.
Leaching of mercury from coal combustion byproducts is a concern because of the toxicity of mercury. Leachability of mercury can be assessed by using sequential extraction procedures. Sequential extraction procedures are commonly used to determine the speciation and mobility of trace metals in solid samples and are designed to differentiate among metals bound by different mechanisms and to different solid phases. This study evaluated the selectivity and effectiveness of a sequential extraction process used to determine mercury binding mechanisms to various materials. A six-step sequential extraction process was applied to laboratory-synthesized materials with known mercury concentrations and binding mechanisms. These materials were calcite, hematite, goethite, and titanium dioxide. Fly ash from a full-scale power plant was also investigated. The concentrations of mercury were measured using inductively coupled plasma (ICP) mass spectrometry, whereas the major elements were measured by ICP atomic emission spectrometry. The materials were characterized by X-ray powder diffraction and scanning electron microscopy with energy dispersive spectroscopy. The sequential extraction procedure provided information about the solid phases with which mercury was associated in the solid sample. The procedure effectively extracted mercury from the target phases. The procedure was generally selective in extracting mercury. However, some steps in the procedure extracted mercury from nontarget phases, and others resulted in mercury redistribution. Iron from hematite and goethite was only leached in the reducible and residual extraction steps. Some mercury associated with goethite was extracted in the ion exchangeable step, whereas mercury associated with hematite was extracted almost entirely in the residual step. Calcium in calcite and mercury associated with calcite were primarily removed in the acid-soluble extraction step. Titanium in titanium dioxide and mercury adsorbed onto titanium dioxide were extracted almost entirely in the residual step.  相似文献   

13.
Antimony sorption at gibbsite-water interface   总被引:3,自引:0,他引:3  
Antimony (Sb) is extensively used in flame retardants, lead-acid batteries, solder, cable coverings, ammunition, fireworks, ceramic and porcelain glazes and semiconductors. However, the geochemical fate of antimony (Sb) remained largely unexplored. Among the different Sb species, Sb (V) is the dominant form in the soil environment in a very wide redox range. Although earlier studies have examined the fate of Sb in the presence of iron oxides such as goethite and hematite, few studies till date reported the interaction of Sb (V) with gibbsite, a common soil Al-oxide mineral. The objective of this study was to understand the sorption behavior of Sb (V) on gibbsite as a function of various solution properties such as pH, ionic strength (I), and initial Sb concentrations, and to interpret the sorption-edge data using a surface complexation model. A batch sorption study with 20 g L−1 gibbsite was conducted using initial Sb concentrations range of 2.03-16.43 μM, pH values between 2 and 10, and ionic strengths (I) between 0.001 and 0.1 M. The results suggest that Sb (V) sorbs strongly to the gibbsite surface, possibly via inner-sphere type mechanism with the formation of a binuclear monodentate surface complex. Weak I effect was noticed in sorption-edge data or in the isotherm data at a low surface coverage. Sorption of Sb (V) on gibbsite was highest in the pH range of 2-4, and negligible at pH 10. Our results suggest that gibbsite will likely play an important role in immobilizing Sb (V) in the soil environment.  相似文献   

14.

Purpose

Two series of activated carbons modified by Fe (II) and Fe (III) (denoted as AC/N-FeII and AC/N-FeIII), respectively, were used as adsorbents for the removal of phosphate in aqueous solutions.

Method

The synthesized adsorbent materials were investigated by different experimental analysis means. The adsorption of phosphate on activated carbons has been studied in kinetic and equilibrium conditions taking into account the adsorbate concentration, temperature, and solution pH as major influential factors.

Results

Maximum removals of phosphate are obtained in the pH range of 3.78?C6.84 for both adsorbents. Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Results suggest that the main phase formed in AC/N-FeII and AC/N-FeIII is goethite and akaganeite, respectively; the presence of iron oxides significantly affected the surface area and the pore structure of the activated carbon.

Conclusions

Studies revealed that iron-doped activated carbons were effective in removing phosphate. AC/N-FeII has a higher phosphate removal capacity than AC/N-FeIII, which could be attributed to its better intra-particle diffusion and higher binding energy. The activation energy for adsorption was calculated to be 22.23 and 10.89 kJ mol?1 for AC/N-FeII and AC/N-FeIII, respectively. The adsorption process was complex; both surface adsorption and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.  相似文献   

15.
An experimental and theoretical study of Eu(III) sorption on goethite surface was performed in the presence of different background electrolytes (NaCl, NaNO3, KNO3). Results were described using a simple surface complexation, the double-layer model (DLM), and calculations were performed using either Fiteql3.2 or Jchess codes. The surface acidity constants and sites density were first determined by potentiometric titrations. The influence of electrolyte ions on the value of point of zero charge was studied by both potentiometric and electrokinetic measurements in order to assess their possible retention on goethite. The sorption of Eu(III) was then investigated by the batch method, in the three background electrolytes, as a function of pH. The presence of electrolyte ions was found to decrease the immobilization of Eu on goethite. Sorption results were modelled considering ternary surface complexes (goethite surface/europium/electrolyte ions).  相似文献   

16.
Red mud-modified biochar (RM-BC) has been produced to be utilized as a novel adsorbent to remove As because it can effectively combine the beneficial features of red mud (rich metal oxide composition and porous structure) and biochar (large surface area and porous structure properties). SEM-EDS and XRD analyses demonstrated that red mud had loaded successfully on the surface of biochar. With the increasing of pH in solution, arsenate (As(V)) adsorption on RM-BC decreased while arsenite (As(III)) increased. Arsenate adsorption kinetics process on RM-BC fitted the pseudo-second-order model, while that of As(III) favored the Elovich model. All sorption isotherms produced superior fits with the Langmuir model. RM-BC exhibited improved As removal capabilities, with a maximum adsorption capacity (Qmax) for As(V) of 5923 μg g?1, approximately ten times greater than that of the untreated BC (552.0 μg g?1). Furthermore, it has been indicated that the adsorption of As(V) on RM-BC may be strongly associated with iron oxides (hematite and magnetite) and aluminum oxides (gibbsite) by X-ray absorption near-edge spectroscopy (XANES), which was possibly because of surface complexation and electrostatic interactions. RM-BC may be used as a valuable adsorbent for removing As in the environment due to the waste materials being relatively abundant.  相似文献   

17.
Photooxidation of arsenite by natural goethite in suspended solution   总被引:1,自引:0,他引:1  
Iron and arsenic have been found to coexist in a water environment and the fate of arsenite in the aquatic system is influenced by iron. Goethite is a form of iron hydroxide, which is commonly found in sediments. In previous studies, we have used iron complexes to degrade organic pollutants. Results have shown that some organic pollutants could be totally degraded by iron complexes and our work indicated that iron might cause conversion of arsenic when irradiated. This work attempts to investigate the conversion of arsenite [As(III)] using natural goethite, as the iron source, to quantify the effect of various factors on photooxidation. We also consider the possible mechanism for photooxidation of As(III) using a suspension of natural goethite. The As(III) concentration variation under illumination was compared with the one in the dark to quantify the contribution of light to As(III) oxidation to As(V) in goethite suspended solution. The experiments under N2 and air atmosphere confirmed the participation of dissolved oxygen. The photooxidation efficiency of As(III) under different conditions was compared to determine the effect of different environmental factors such as pH value, goethite concentration, and humic acid concentration on the photooxidation reaction. In the solution containing 100 μg L?1 arsenite and 0.1 g?L?1 suspended goethite at pH 3.0, nearly 80 % of As(III) was photooxidized after irradiation by a 250-W metal halogen lamp (λ?≥?313 nm) after 6 h. The effects of initial pH and goethite concentration and humic acid concentration were all examined. The results show that the greatest efficiency of photooxidation of As(III) was at pH 3.0. The extent of photooxidation decreased with increasing goethite concentration and fell sharply in the presence of humic acid under the conditions in this work. Although about 80 % of As(III) was photooxidized after irradiation by a 250-W halogen lamp at pH 3.0 in the presence of goethite suspension, photooxidation was also affected by factors such as pH, concentration of goethite, and presence of humic acid. The scavenger experiments showed that the HO? radical and photogenerated hole are the predominant oxidants in this system responsible for 87.1 % oxidation of As(III), while HO 2 ? /O 2 ?? is responsible for 12.9 % oxidation of As(III).  相似文献   

18.
To better understand the Hg(II) adsorption by some typical soils and explore the insights about the binding between Hg(II) and soils, a batch of adsorption and characteristic experiments was conducted. Results showed that Hg(II) adsorption was well fitted by the Langmuir and Freundlich. The maximum adsorption amount of cinnamon soil (2094.73 mg kg?1) was nearly tenfold as much as that of saline soil (229.49 mg kg?1). The specific adsorption of Hg(II) on four soil surface was confirmed by X-ray photoelectron spectroscopy (XPS) owing to the change of elemental bonding energy after adsorption. However, the specific adsorption is mainly derived from some substances in the soil. Fourier transform infrared spectroscopy (FTIR) demonstrated that multiple oxygen-containing functional groups (O–H, C=O, and C–O) were involved in the Hg(II) adsorption, and the content of oxygen functional groups determined the adsorption capacity of the soil. Meanwhile, scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM–EDS) more intuitive revealed the binding of mercury to organic matter, metal oxides, and clay minerals in the soil and fundamentally confirmed the results of XPS and FTIR to further elucidate adsorptive phenomena. The complexation with oxygen-containing functional groups and the precipitation with minerals were likely the primary mechanisms for Hg(II) adsorption on several typical soils. This study is critical in understanding the transportation of Hg(II) in different soils and discovering potential preventative measures.  相似文献   

19.
Xu N  Christodoulatos C  Braida W 《Chemosphere》2006,64(8):1325-1333
The mobility of Mo in soils and sediments depends on several factors including soil mineralogy and the presence of other oxyanions that compete with Mo for the adsorbent's retention sites. Batch experiments addressing Mo adsorption onto goethite were conducted with phosphate, sulfate, silicate, and tungstate as competing anions in order to produce competitive two anions adsorption envelopes, as well as competitive two anions adsorption isotherms. Tungstate and phosphate appear to be the strongest competitors of Mo for the adsorption sites of goethite, whereas little competitive effects were observed in the case of silicate and sulfate. Mo adsorption isotherm from a phosphate solution was similar to the one from a tungstate solution. The charge distribution multi-site complexation (CD-MUSIC) model was used to predict competitive adsorption between MoO(4)(2-) and other anions (i.e., phosphate, sulfate, silicate and tungstate) using model parameters obtained from the fitting of single ion adsorption envelopes. CD-MUSIC results strongly agree with the experimental adsorption envelopes of molybdate over the pH range from 3.5 to 10. Furthermore, CD-MUSIC prediction of the molybdate adsorption isotherm show a satisfactory fit of the experimental results. Modeling results suggest that the diprotonated monodentate complexes, FeOW(OH)(5)(-0.5) and FeOMo(OH)(5)(-0.5), were respectively the dominant complexes of adsorbed W and Mo on goethite 110 faces at low pH. The model suggests that Mo and W are retained mainly by the formation of monodentate complexes on the goethite surface. Our results indicate that surface complexation modeling may have applications in predicting competitive adsorption in more complex systems containing multiple competing ions.  相似文献   

20.
A phosphate complexation model is developed, in an attempt to understand the mechanistic basis of chemically mediated phosphate removal. The model presented here is based on geochemical reaction modeling techniques and uses known surface reactions possible on hydrous ferric oxide (HFO). The types of surface reactions and their reaction stoichiometry and binding energies (logK values) are taken from literature models of phosphate interactions with iron oxides. The most important modeling parameter is the proportionality of converting moles of precipitated HFO to reactive site density. For well-mixed systems and phosphate exposed to ferric chloride during HFO precipitation, there is a phosphate capacity of 1.18 phosphate ions per iron atom. In poorly mixed systems with phosphate exposed to iron after HFO formation, the capacity decreased to 25% of the well-mixed value. The same surface complexation model can describe multiple data sets, by varying only a single parameter proportional to the availability of reactive oxygen functional groups. This reflects the unavailability of reactive oxygen groups to bind phosphate. Electron microscope images and dye adsorption experiments demonstrate changes in reactive surface area with aging of HFO particles. Engineering implications of the model/mechanism are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号