首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
常州地区近地面O3及其前物体相关性研究   总被引:1,自引:0,他引:1  
根据2013年全年至2014年6月常州市环境监测中心空气自动监测系统监测子站的臭氧(O3)及其前体物(氮氧化物NOx和一氧化碳CO)的数据资料,着重分析了上述监测因子时间变化特征,并研究了三者之间的相关性.结果表明,受局地光化学反应,常州地区在冬夏两季O3污染程度相差较大,夏季为O3的活跃期浓度较高.O3单日浓度呈单峰型变化.NOx和O3浓度基本成正相关.CO的浓度变化与O3的浓度变化呈明显的正相关,且CO污染相对于O3污染有明显的滞后性.  相似文献   

2.
泰山顶臭氧及其前体物一氧化碳浓度变化规律   总被引:3,自引:2,他引:1  
监测泰山顶O3及其前体物CO的浓度,分析O3和CO浓度的变化规律及其相关性.结果表明,泰山顶O3小时平均浓度超过国家一级标准的频率为15.81%,CO小时平均浓度均达标;O3浓度的日变化幅度较小,说明该地区受周围工业污染影响较小;O3和CO浓度的日变化均呈一高一低的双峰型变化规律,二者具有很好的相关性,O3浓度峰值一般滞后于CO,该区域O3及其前体物CO浓度的变化主要受局地光化学过程控制;O3浓度与CO浓度的日际变化的相关性也较好.  相似文献   

3.
文章分析了潍坊市区大气环境空气质量时空分布特征,监测的污染物为PM_(10)、SO_2、NO_2、PM_(2.5)、O_3、CO共6项。2015~2017年SO_2和NO_2年均浓度基本呈下降趋势,均低于国家二级标准,SO_2/NO_2值呈逐年下降趋势;PM_(10)、PM_(2.5)浓度时间变化规律基本相同,呈现夏季浓度较低、冬季浓度较高;CO年均浓度呈小幅下降趋势;O_3-8 h年均浓度在109~119μg/m~3之间,臭氧的污染不容忽视。从空间分布来看,8个自动监测点位周边情况不同,均能反映其区域环境空气质量状况。  相似文献   

4.
厦门秋季近郊近地面CO2浓度变化特征研究   总被引:2,自引:2,他引:0  
李燕丽  穆超  邓君俊  赵淑惠  杜可 《环境科学》2013,34(5):2018-2024
利用CO2监测仪在厦门近郊中国科学院城市环境研究所超级监测站进行了秋季CO2数据采集,并结合监测站气象要素和气体污染物监测,分析了近地面CO2浓度变化特征、风速风向对其变化特征的影响以及CO2与部分气体污染物的相互关系.结果表明,厦门近郊秋季近地面CO2浓度主要集中分布在375~415μmol.mol-1范围内,约占70.87%;近地面大气CO2日变化曲线呈单峰型结构,CO2浓度日变化范围375.74~418.18μmol.mol-1,日平均最高值出现在黎明前后(408.54μmol.mol-1),最小值出现在午后附近(379.14μmol.mol-1),夜晚(18:00~05:00,北京时间)平均浓度(400.87±4.05)μmol.mol-1高于白天(06:00~17:00)平均浓度(388.86±9.40)μmol.mol-1;风速日变化曲线与CO2呈现完全相反的变化趋势,夜晚时段(22:00~04:00)风速波动范围在1.0~1.5 m.s-1时,对应的CO2浓度变化平稳,基本稳定在(400.72±2.12)μmol.mol-1.白天时段(09:00~18:00)风速变化范围在2.0~2.5 m.s-1时,对应的CO2浓度变化范围较大为379.14~394.83μmol.mol-1;用指数函数模型估测到该站点区域CO2背景浓度为386.84μmol.mol-1;观测期间该站点主要风向为东北偏东,统计该方向上CO2浓度与风速的相关关系,得出CO2浓度与风速呈极显著负相关(r=-0.67),相关系数高于所有方向统计的CO2浓度与风速的相关系数(r=-0.41,P<0.01),不同风向上CO2浓度贡献来源不同;此外,CO2浓度与温度、辐射量呈负相关(r=-0.541/-0.515,P<0.01),与湿度呈正相关(r=0.66,P<0.01);与其它大气气体污染物相比CO2与CO、NO的相关程度较高(r=0.469/0.436,P<0.01),与SO2相关程度较弱(r=0.126,P<0.01),经分析推测监测站点区域CO2排放源部分来自机动车排放,而燃煤排放贡献较小.  相似文献   

5.
该文利用WPS、β射线测尘仪、EMS污染气体监测系统的观测数据,结合观测期间天气形势,分析了青奥会期间南京不同天气型下气溶胶数浓度和污染气体的分布特征。结果表明:观测期间气溶胶数浓度平均为7 302个/cm~3,污染气体(NOx、O_3、SO_2、CO)平均浓度分别为23.09、55.1、8.7和867.3μg/m~3。不同天气型下气溶胶粒径分布差异较大,鞍型场(Ⅱ)、副热带高压(Ⅴ)和冷涡(Ⅲ)控制下数浓度谱呈单峰型分布;大陆高压和热带气旋外围(Ⅰ)控制下数浓度谱呈双峰型分布;冷高压(Ⅳ)控制下数浓度谱呈三峰型分布。同时日浓度变化差异也大,N_(10~300 nm)在Ⅰ型、Ⅲ型、Ⅳ型呈三峰型,在Ⅱ型、Ⅴ型呈双峰型;NOx和CO在Ⅰ型分别呈三峰型和单峰型,其余都是双峰型;O_3一直呈单峰型。  相似文献   

6.
随着经济社会的发展,人们对环境质量更加重视,光化学烟雾成为影响城市环境空气质量的重要因素。利用东北地区大连市全年臭氧监测的时间浓度,对臭氧污染的浓度分布特征,时间以及季节变化特征进行了分析。结果表明:臭氧浓度变化受太阳辐射强度和气温的影响明显,呈单峰型变化,臭氧浓度季节变化趋势明显。春、夏季节臭氧浓度较高,秋季臭氧浓度次之,臭氧与大气中的NO、NO2、CO、VOCs等前体物的浓度、太阳辐射的强度以及CO的浓度都有不同程度的相关性。  相似文献   

7.
通过对燃煤量的调查结果和呼和浩特CO浓度值监测结果分析了CO排放源的分布特征和CO浓度的变化特征,得出高燃煤地区和采暖期CO浓度值较高但低于标准值。对CO中毒事件案例与气象条件关系进行了分析得出逆温、高湿、小风和低气压时不利于一氧化碳浓度扩散,容易引起一氧化碳中毒事件的发生。  相似文献   

8.
利用2016年10月~2018年2月乌鲁木齐市近地面O_3、PM_(2.5)、PM_(10)、NO_2、CO的连续观测资料,主要分析乌鲁木齐市O_3浓度的变化特征与部分前体物质、颗粒物之间的关系。结果表明:(1)2017年月分布:监测期间乌鲁木齐市O_3平均浓度为79.33μg/m~3,O_3浓度较高主要集中在6~9月份,其平均O_3浓度为121.14μg/m~3。O_3季平均浓度整体呈现出夏季春季秋季冬季。(2)时间分布上:O_3小时浓度的日变化分布呈现"单峰型"特点,且日间浓度明显高于夜间。一般在15∶00~16∶00左右达到峰值浓度;空间分布上:对照点浓度城区监测站点,城区外围站点浓度城区监测站点的特征。(3)在O_3与前体物CO、NO_2及与OX之间的关系中,O_3与CO、NO_2均呈显著的负相关关系,相关系数分别为-0.789(P0.01)、-0.871(P0.01),与OX呈显著正相关关系(r=0.985,P0.01)。(4)O_3与大气颗粒物PM_(2.5)、PM_(10)呈明显的负相关关系,其相关系数分别为-0.754(P0.01)、-0.718(P0.01)。  相似文献   

9.
利用东南极大陆沿岸中山站2008—2010年的CO浓度在线观测和相关资料,分析了大气中CO浓度的本底特征及其季节变化.结果显示,在不同风向和风速条件下CO浓度变化很小,表明风向和风速对CO监测结果的影响很小,也表明观测的CO浓度受局地污染源排放影响很小,可以代表南极中山站的本底浓度.中山站与其它南极站相似,CO浓度具有非对称的季节变化,月平均浓度最高值出现在春季(9—10月),最低值在夏末秋初(2—3月),月平均CO浓度在30~65 ppb之间.南极各站的年平均CO浓度的年际变化范围差异不大,均为2~3 ppb.  相似文献   

10.
武汉市大气中TSP、SO_2、NO_x、CO的变化规律研究   总被引:1,自引:0,他引:1  
对武汉市大气中 TSP、SO2 、NOx、CO浓度的日、月、年变化规律以及 TSP、NOx 浓度和车流量之间的关系进行了研究。结果表明 :SO2 浓度与温度之间呈显著性负相关关系 ,NOx 浓度和车流量之间呈显著性正相关关系 ,TSP与 NOx、CO浓度的变化趋势一致 ,机动车尾气烟尘及行驶引起的扬尘 ,将是 TSP的主要来源  相似文献   

11.
根据济南市历下区5个大气例行监测点位2015年上半年PM2.5、PM10、SO2、CO、NO2、O3逐小时浓度的监测数据,通过SPSS软件对各项污染物的相关性进行分析得出:CO与PM2.5、PM10、SO2、NO2强相关性出现次数最多,表明CO排放源是引起颗粒物污染的主要原因之一.对监测点位周边2 km范围内机动车尾气和餐饮燃煤两项污染源进行排放量估算得出:机动车尾气CO、NOx、PM2.5和PM10年排放量分别为388.18吨、111.18吨、4.35吨和4.72吨;餐饮燃煤CO、SO2、NOx年排放量分别为36.0吨、24.0吨和9.6吨.因此,控制CO排放源对改善济南市大气环境质量至关重要.  相似文献   

12.
广州市机动车排放因子隧道测试研究   总被引:13,自引:2,他引:11  
选取广州城市隧道进行连续48h的监测,获得了隧道内NOx,CO,SO2,PM10和HC等污染物的浓度、交通和气象等实测数据,计算出隧道内机动车NOx,CO,SO2,PM-10和HC的单车平均排放因子分别为1.38,15.40,0.14,0.64和1.86g/(km*辆),并得到了8类机动车各种排放污染物的综合排放因子.   相似文献   

13.
瑞丽城区一氧化碳污染的现状   总被引:2,自引:0,他引:2  
经监测,瑞丽市城区街道空气中一氧化碳的日平均浓度己超过国家二级标准,其主要来源是汽车尾气排放,而且其浓度与汽车流量呈线性正相关。主导风与街道斜交,在街道峡谷内形成旋涡流场,使CO向背风面扩散并沿街道输送,导致局部测点浓度过高。目前控制CO浓度宜限制尾气超标汽车入城并合理分流入城汽车。  相似文献   

14.
佳木斯市位于黑龙江省东北部,是黑龙江省东北部地区政治、经济、科技、文化教育、医疗、商贸和交通的中心.根据2016年佳木斯市区四个空气质量监测点位的二氧化硫、二氧化氮、一氧化碳、臭氧、可吸入颗粒物、细颗粒物六项指标的监测数据,分析各监测点位空气质量的功能区类别及各参数变化情况;采用二氧化硫、二氧化氮、可吸入颗粒物三参数评价了各监测点位的空气质量等级,并根据评价结果分析了空气污染的主要原因.  相似文献   

15.
根据3所室内对象的监测数据,将灰色聚类决策引入到室内空气质量的研究中,以室内主要污染物二氧化碳、一氧化碳、可吸入颗粒作为评价指标,建立了室内空气质量聚类标准评价序列及其针对不同灰类的白化权函数,以此分析3种污染物对室内空气质量的综合影响程度,得出室内空气质量的灰色聚类决策结果,从而实现了对室内空气质量的灰色评价.  相似文献   

16.
为了实现充分利用已有环境监测站点数据进行人群精细化暴露评估的目的,同时解决某些待测人群社区周边无监测站点时数据的选择问题,以保定市作为大气高污染研究城市,基于现场监测和Kriging(克里金插值)空间分析方法,明确了在研究大气污染物人群暴露时,某一个固定监测站污染物数据的代表性问题.研究表明:对于大气中φ(SO2)、φ(NO2)、颗粒物及其组分,空气质量监测点位的代表性一般为5~6 km;对于φ(CO)、φ(O3)和φ(VOCs),它们在城市不同地区的空间分布更为均匀,空气质量监测点位的代表性范围更大.通过使用Radial Basis Functions(径向基函数,RBF)、Local Polynomial Interpolation(局部多项式插值,LPI)、Inverse Distance Weighting(反距离权重插值,IDW)、Kriging、Kernel Smoothing(内核平滑插值,KS)和Diffusion Kernel(内核扩散插值,DK)等6种空间分析方法对大气污染物浓度进行预测发现,Kriging方法对大气污染物浓度预测时可使预测值和实测值间的偏差小于10%,准确度最高.因此,在进行某城市某点位的污染物人群暴露浓度预测时,若该点位周边5 km以内有空气质量监测点位,则可用该点位的监测值代替;若5 km以内没有空气质量监测点位,则可基于最近监测点位的污染物浓度进行Kriging空间插值,从而获得该点位的污染物暴露水平.   相似文献   

17.
南京市交通流与NO2、CO时空分布特征关系研究   总被引:1,自引:0,他引:1  
基于南京RFID基站2014年数据,获取南京市主城区范围内多条道路车流量、车速、车队构成信息,结合南京市国控空气质量监测站点NO_2、CO浓度数据,从时间、空间两个维度对交通流特征及污染物浓度趋势进行分析,并对其相关性进行讨论.结果表明,南京市2014年交通第一季度最通畅,第四季度车速最低;2月车流量最低,12月最高,且12月是周末流量最高的月份;工作日早晚高峰车流量与车速变化趋势明显,节假日平缓;夜间大型车辆占近25%.NO_2与CO浓度在2月下降明显,在10—12月攀升到较高水平,与交通流变化趋势同步;净浓度日变化趋势呈双峰,与车流量变化相关性系数在0.57~0.82之间;空间关系上,路网密集、交通拥堵区域污染物浓度明显高于其他区域,表明南京市交通流与气态污染物NO_2、CO变化趋势有高度时空关联.  相似文献   

18.
柳州市区交通与机动车污染排放研究   总被引:1,自引:1,他引:0  
现场监测表明,柳州市机动车保有量迅速增加,而交通基础设施建设相对滞后,导致交通主干道NOX时均浓度在0.04~0.111mg/m3之间,时最大浓度值超标2.75倍,时均值超标路段占所监测路段的100%;TSP时均浓度值为0.11~0.660mg/m3,时均最大浓度值超标倍数达3.3倍,时均值超标路段占所监测路段的87.5%;机动车CO排放量216936.71吨、NOX排放量10431.78吨,小汽车和摩托车成为主要污染源。  相似文献   

19.
中国城市道路机动车CO、HC和NOX排放因子的测定   总被引:25,自引:1,他引:25       下载免费PDF全文
为了测定我国城市道路机动车污染物排放因子,在西安城市交通隧道内设3个空气监测点,对通过隧道的机动车排气形成的污染物浓度、隧道内风速、过往隧道的交通量以及车型进行采样、观测、统计和分类根据测试数据用大气扩散方程求得我国城市道路机动车平均单车 CO、 HC和 NOx排放因子分别为 33.279±12.158、 3.577±1.816和 4.605±1.981 mg/(m·veh).与国外的成果相比,我国城市道路机动车CO、 HC和NOx排放因子分别是发达国家城市道路汽车排放因子的 7~8倍、 8~10倍和 3~4倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号