首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments on the flame propagation of starch dust explosion with the participation of ultrafine Mg(OH)2 in a vertical duct were conducted to reveal the inerting evolution of explosion processes. Combining the dynamic behaviors of flame propagation, the formation law of gaseous combustion products, and the heat dissipation features of solid inert particles, the inerting mechanism of explosion flame propagation is discussed. Results indicate that the ultrafine of Mg(OH)2 powders can cause the agglomeration of suspended dust clouds, which makes the flame combustion reaction zone fragmented and forms multiple small flame regions. The flame reaction zone presents non-homogeneous insufficient combustion, which leads to the obstruction of the explosion flame propagation process and the obvious pulsation propagation phenomenon. As the proportion of ultrafine Mg(OH)2 increases, flame speed, flame luminescence intensity, flame temperature and deflagration pressure all show different degrees of inerting behavior. The addition of ultrafine Mg(OH)2 not only causes partial inerting on the explosion flame, but also the heat dissipation of solid inert particles affects the acceleration of its propagation. The explosion flame propagation is inhibited by the synergistic effect of inert gas-solid phase, which attenuates the risk of starch explosion. The gas-solid synergistic inerting mechanism of starch explosion flame propagation by ultrafine Mg(OH)2 is further revealed.  相似文献   

2.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   

3.
To identify a superior explosion suppressant for Al-Mg alloy dust explosion, the inhibition effects of Al(OH)3 and Mg(OH)2 powders on Al-Mg alloy explosion were investigated. A flame propagation suppression experiment was carried out using a modified Hartmann tube experimental system, an explosion pressure suppression experiment was carried out using a 20-L spherical explosion experimental system, and the suppression mechanisms of the two kinds of powders on Al-Mg alloy dust explosion were further investigated. The results demonstrate that by increasing the mass percentages of Al(OH)3 and Mg(OH)2, the flame height, flame propagation speed and explosion pressure of deflagration can be effectively reduced. When 80% Mg(OH)2 powder was added, the explosion pressure was reduced to less than 0.1 MPa, and the explosion was restrained. Due to the strong polarity of the surface of Mg(OH)2, agglomeration easily occurs; hence, when the added quantity is small, the inhibition effect is weaker than that of Al(OH)3. Because the Mg(OH)2 decomposition temperature is higher, the same quantity absorbs more heat and exhibits stronger adsorption of free radicals. Therefore, to fully suppress Al-Mg alloy explosion, the suppression effect of Mg(OH)2 powder is better.  相似文献   

4.
Study of flame distribution laws and the hazard effects in a tunnel gas explosion accident is of great importance for safety issue. However, it has not yet been fully explored. The object of present work is mainly to study the effects of premixed gas concentration on the distribution law of the flame region and the hazard effects involving methane-air explosion in a tube and a tunnel based on experimental and numerical results. The experiments were conducted in a tube with one end closed and the other open. The tube was partially filled with premixed methane-air mixture with six different premixed methane concentrations. Major simulation works were performed in a full-scale tunnel with a length of 1000 m. The first 56 m of the tunnel were occupied by methane–air mixture. Results show that the flame region is always longer than the original gas region in any case. Concentration has significant effects on the flame region distribution and the explosion behaviors. In the tube, peak overpressures and maximum rates of overpressure rise (dp/dt)max for mixtures with lower and higher concentrations are great lower than that for mixtures close to stoichiometric concentration. Due to the gas diffusion effect, not the stoichiometric mixture but the mixture with a slightly higher concentration of 11% gets the highest peak overpressure and the shock wave speed along the tube. In the full-scale tunnel, for fuel lean and stoichiometric mixture, the maximum peak combustion rates is achieved before arriving at the boundary of the original methane accumulation region, while for fuel rich mixture, the maximum value appears beyond the region. It is also found that the flame region for the case of stoichiometric mixture is the shortest as 72 m since the higher explosion intensity shortens the gas diffusion time. The case for concentration of 13% can reach up to a longest value of 128 m for longer diffusion time and the abundant fuel. The “serious injury and death” zone caused by shock wave may reach up to 3–8 times of the length of the original methane occupied region, which is the widest damage region.  相似文献   

5.
To achieve the rapid prediction of minimum ignition energy (MIE) for premixed gases with wide-span equivalence ratios, a theoretical model is developed based on the proposed idea of flame propagation layer by layer. The validity and high accuracy of this model in predicting MIE have been corroborated against experimental data (from literature) and traditional models. In comparison, this model is mainly applicable to uniform premixed flammable mixtures, and the ignition source needs to be regarded as a punctiform energy source. Nevertheless, this model can exhibit higher accuracy (up to 90%) than traditional models when applied to premixed gases with wide-span equivalence ratios, such as C3H8-air mixtures with 0.7–1.5 equivalence ratios, CH4-air mixtures with 0.7–1.25 equivalence ratios, H2-air mixtures with 0.6–3.15 equivalence ratios et al. Further, the model parameters have been pre-determined using a 20 L spherical closed explosion setup with a high-speed camera, and then the MIE of common flammable gases (CH4, C2H6, C3H8, C4H10, C2H4, C3H6, C2H2, C3H4, C2H6O, CO and H2) under stoichiometric or wide-span equivalence ratios has been calculated. Eventually, the influences of model parameters on MIE have been discussed. Results show that MIE is the sum of the energy required for flame propagation during ignition. The increase in exothermic and heat transfer efficiency for fuel molecules can reduce MIE, whereas prolonging the flame induction period can increase MIE.  相似文献   

6.
Flame propagation behaviors of nano- and micro-polymethyl methacrylate (PMMA) dust explosions were experimentally studied in the open-space dust explosion apparatus. High-speed photography with normal and microscopic lenses were used to record the particle combustion behaviors and flame microstructures. Simple physical models were developed to explore the flame propagation mechanisms. High-speed photographs showed two distinct flame propagation behaviors of nano- and micro-PMMA dust explosions. For nano-particles, flame was characterized by a regular spherical shape and spatially continuous combustion structure combined with a number of luminous spot flames. The flame propagation mechanism was similar to that of a premixed gas flame coupled with solid surface combustion of the agglomerates. In comparison, for micro-particles, flame was characterized by clusters of flames and the irregular flame front, which was inferred to be composed of the diffusion flame accompanying the local premixed flame. It was indicated that smaller particles maintained the leading part of the propagating flame and governed the combustion process of PMMA dust clouds. Increasing the mass densities from 105 g/m3 to 217 g/m3 for 100 nm PMMA particles, and from 72 g/m3 to 170 g/m3 for 30 μm PMMA particles, the flame luminous intensity, scale and the average propagation velocity were enhanced. Besides, the flame front became more irregular for 30 μm PMMA dust clouds.  相似文献   

7.
水雾抑制气体爆炸火焰传播的实验研究   总被引:13,自引:3,他引:13  
利用自行设计的全程透明的火焰加速管系统和细水雾实验系统 ,对不同水雾条件下的气体火焰传播现象进行了实验研究。运用光电传感器与CCD摄像技术 ,笔者分析了不同水雾条件下的甲烷预混气体火焰传播速度、传播火焰阵面轨迹 ;探讨了水雾抑制气体火焰传播的机理及条件。实验发现了在一定条件水雾作用下的气体传播火焰阵面拉伸与火焰驻留的现象与条件 ,实验结果表明 :水雾对气体爆炸火焰传播的抑制是由于水雾作用于火焰阵面反应区 ,降低了反应区内火焰温度和气体燃烧速度 ,减缓了火焰阵面传热与传质的进行 ,从而使传播火焰得以抑制 ;而水雾对气体爆炸火焰传播的抑制效果与水雾通量、雾区浓度、水雾区长度以及火焰到达水雾区的火焰传播速度有关  相似文献   

8.
To reveal the effects of different inert gases on explosion characteristics during low density polyethylene (LDPE) dust explosion and optimize the explosion-proof process, eight N2 (CO2)/air mixed inerting conditions were experimentally studied. Typical inerting conditions with 12 L cylindrical explosive tank were used to study the characteristics on the flame propagation. The thermogravimetric analysis with related theories were used to further explain the mechanism and quantities in low density polyethylene (LDPE) dust explosion with different inert gases. The results showed that the reduction of O2 concentration could effectively delay the progress of flame growth process and weaken the effect of dust combustion reaction. The flame growth process of condition (N2/air (18% O2)) was 2.05 times slower than that of the non-inert condition. The explosion strength was obviously reduced, and the characteristic parameters such as explosion pressure and flame propagation speed were also affected by the decrease of O2 concentration. For LDPE powder, the smaller the median diameter, the greater the explosion intensity and the lower the limiting oxygen content (LOC). The LOC with CO2 was usually higher than that with N2 and the effect of CO2 was significantly better than N2 in inerting.  相似文献   

9.
To explore the inhibitory effects of CF3I and CO2 gas on the explosion pressure and flame propagation characteristics of 9.5% methane, a spherical 20 L experimental explosion device was used to study the effect of the gas explosion suppressants on the maximum explosion pressure, maximum explosion pressure rise rate and flame propagation speed of methane. The results indicated that with a gradual increase in the volume fraction of the gas explosion suppressant, the maximum explosion pressure of methane and maximum explosion pressure rise rate gradually decreased, and the time taken to reach the maximum explosion pressure and maximum explosion pressure rise rate was gradually delayed. At the same time, the flame propagation speed gradually decreased. Additionally, the time taken for the flame to reach the edge of the window and the time taken for a crack as well as a cellular structure to appear on the flame surface was gradually delayed. The fluid dynamics uncertainty was suppressed. The explosion pressure and flame propagation processes were markedly suppressed, but the flame buoyancy instability was gradually enhanced. By comparing the effects of the two gas explosion suppressants on the pressure and flame propagation characteristics, it was found that at the same volume fraction, trifluoroiodomethane was significantly better than carbon dioxide in suppressing the explosion of methane. By comparing the reduction rates of the characteristic methane explosion parameters at a volume fraction of 9.5%, it was observed that the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure was approximately 4.6 times that of the same amount of carbon dioxide, and the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure rise rate and flame propagation speed was approximately 2.7 times that of the same amount of carbon dioxide. The addition of 0.5%–1.5% trifluoromethane to 4% and 8% carbon dioxide can improve the explosion suppression efficiency of carbon dioxide. This enhancing phenomenon is a comprehensive manifestation of the oxygen-decreasing effect of carbon dioxide and the trifluoroiodomethane-related endothermic effect and reduction in key free radicals.  相似文献   

10.
We investigate the PAN dust explosion inhibition behaviors of NaHCO3 and Al(OH)3 in a 20 L spherical explosion system and a transparent pipe explosion propagation test system. The results show that, in the standard 20 L spherical explosion system, the highest PAN dust explosion concentration is 500 g/m3, the maximum explosion pressure is 0.661 MPa, and the maximum explosion pressure increase rate is 31.64 MPa/s; adding 50% NaHCO3 and 60% Al(OH)3 can totally inhibit PAN dust explosion. In the DN0.15 m transparent pipe explosion propagation test system, for 500 g/m3 PAN dust, the initial explosion flame velocity is 102 m/s, the initial pressure is 0.46 MPa, and the initial temperature is 967 °C; adding 60% NaHCO3 and 70% Al(OH)3 can totally inhibit PAN dust explosion flames. Through FTIR and TG analyses, we obtain the explosion products and pyrolysis patterns of the explosion products of PAN dust, NaHCO3, and Al(OH)3. On this basis, we also summarize the PAN dust explosion inhibition mechanisms of NaHCO3 and Al(OH)3.  相似文献   

11.
为研究管道结构对氢-空预混气体爆炸特性影响,采用实验与数值模拟相结合的方法,分析不同管道结构内氢-空预混气体燃爆时火焰传播进程、爆炸压力、湍流动能变化及流场分布。结果表明:90°弯管对氢-空预混气体爆炸强度增强作用明显高于T型分岔管和直管。火焰阵面在结构突变处褶皱变形较明显,并出现大尺度强湍流和涡团,气团脉动速度与湍流燃烧速率不断增大,氢-空预混气体质量扩散速率与热量扩散速率增大,湍流动能呈迅速上升趋势。  相似文献   

12.
李一涵  邱榕  蒋勇 《火灾科学》2005,14(4):199-206
本文使用了详细化学反应动力学机理计算模拟了混合有乙醇及典型自由基引导的甲烷预混火焰结构.该反应机理由Marinov研究组研究发表,包含有56个组分以及372个反应.本文的计算使用了CHEMKIN-3以及预混火焰代码,热力学及输运部分的计算基于Sandia国家实验室和Marinov研究室发布的数据库.火焰结构中主要产物的变化,关键中间产物和次要组分的计算结果显示加入乙醇和自由基都可以减少着火延迟.本文计算了三种不同条件下的火焰结构,分别为预混CH4/O2/N2火焰;预混甲烷/乙醇火焰;和加入引导自由基在甲烷/乙醇混合燃料中.此外还有含有自由基的甲烷火焰和加入乙醇的甲烷火焰比较.  相似文献   

13.
为了揭示空气中丙烷火焰传播特性,利用纹影系统记录了预混气体小能量点火条件下火焰形成与传播过程,得到了火焰表面的微观结构特征,分析了混合气体火焰的稳定性及其影响因素。结果表明:丙烷/空气混合物火焰发展过程及其表面微观特征与浓度直接相关;当混合物浓度接近爆炸上下限时,火焰扩展速率整体不大于0.5 m/s,燃烧区域向上漂浮,浮力成为影响火焰失稳的主导因素;当混合物浓度靠理论配比时,火焰呈规则球形扩展,火焰稳定性按照先减弱后增强的趋势发展,火焰表面褶皱的形成及演化规律是热扩散不稳定性和流体力学不稳定性共存与竞争的作用结果。  相似文献   

14.
Experiments using an open space dust explosion apparatus and a standard 20 L explosion apparatus on nano and micron polymethyl methacrylate dust explosions were conducted to reveal the differences in flame and pressure evolutions. Then the effect of combustion and flame propagation regimes on the explosion overpressure characteristics was discussed. The results showed that the flame propagation behavior, flame temperature distribution and ion current distribution all demonstrated the different flame structures for nano and micron dust explosions. The combustion and flame propagation of 100 nm and 30 μm PMMA dust clouds were mainly controlled by the heat transfer efficiency between the particles and external heat sources. Compared with the cluster diffusion dominant combustion of 30 μm dust flame, the premixed-gas dominant combustion of 100 nm dust flame determined a quicker pyrolysis and combustion reaction rate, a faster flame propagation velocity, a stronger combustion reaction intensity, a quicker heat release rate and a higher amount of released reaction heat, which resulted in an earlier pressure rise, a larger maximum overpressure and a higher explosion hazard class. The complex combustion and propagation regime of agglomerated particles strongly influenced the nano flame propagation and explosion pressure evolution characteristics, and limited the maximum overpressure.  相似文献   

15.
Preventing the propagation of flames in a pipeline is an effective measure for avoiding gas explosion accidents and reducing losses. To evaluate the effect of wire mesh, acting as a porous media, experimental and simulation studies are conducted to determine the influence of the wire mesh on the dynamics of premixed methane/air flame propagation in a semi-closed pipe. Four different kinds of wire mesh with different numbers of layers are chosen in the experiments and simulation, and the mechanism of wire mesh quenching of the flame is investigated. The experimental and simulation results are consistent. Flames are quenched when 4 layers of 40-mesh or 3 layers of 60-mesh wire mesh are used; however, once the flame propagates through the wire mesh, the risk of methane combustion may increase. The wire mesh becomes the key factor causing flame folds and acceleration, and the greater the number of layers or the larger the mesh size is, the more obvious the folds after the flame passes through the wire mesh. Moreover, the combination of heat absorption and disruption of the continuous flame surface by the mesh causes flame quenching. Wire mesh can effectively attenuate the flame temperature during premixed flame propagation in a pipe, and the attenuated maximum rate reaches approximately 79% in the case of adding 3 layers of 60-mesh wire mesh.  相似文献   

16.
This work investigates the suppression effect of Novec-1230 on H2 jet flame. The suppressants are motivated by N2 flow to get higher momentum and approach the reaction kernel at flame base. The flame area with Novec-1230 is always smaller than that with water mist at the same condition. Novec-1230 exhibits better suppression effect on reaction kernel. The higher-momentum jet flame is more difficult to be suppressed. This is because that the higher-momentum flame makes the suppressant approach the reaction kernel more difficult. In addition, the high N2 flow rate containing suppressant could destroy flame temperature structure and decrease it. Results inferred that the temperature of flame with Novec-1230 is higher than that with water mist. Moreover, the lower minimum extinguishing time indicates that the suppression efficiency of Novec-1230 is better than that of water mist. The jet flame is extinguished only when H2 flow rate is low and N2 flow rate is high. There are two reasons: one is that the higher-momentum jet flame prevents suppressants to enter flame core. The other one is that the burner nozzle is heated to as igniting source during suppression progress. Furthermore, the burning velocity, adiabatic flame temperature, heat production and free radicals are investigated theoretically at Φ = 1.6, 1.0, 0.8 and 0.6. Results indicate that the burning velocity with Novec-1230 is much lower than that with water mist. The adiabatic flame temperature, heat production and free radicals increase firstly and then decrease with Novec-1230 addition at lean flame.  相似文献   

17.
Low-concentration gas transported in pipelines may lead to explosion accidents because gas with a concentration of less than 30% is prone to explode. To reduce the incidence of gas explosions, water sealing of fire barriers is implemented, and explosion venting devices are installed along the pipeline. To investigate their suppression effect on low-concentration gas explosion, experiments using methane–air premixed gas under different conditions were implemented on a DN500 pipeline test system. The effects of three types of explosion venting forms (rupture disc, asbestos board, and plastic film) on explosion overpressure and flame were compared and analysed. Results show that the rupture disc, asbestos board, and plastic film can achieve adequate explosion venting, causing the peak decay rates of explosion overpressure to reach 82.37%, 81.72%, and 90.79%, respectively. The foregoing indicates that the greater the static activation pressure of the explosion venting form, the higher the peak explosion overpressure at each measurement point. Moreover, the shorter the explosion flame duration, the greater the flame propagation velocity. The research results provide an essential theoretical foundation for the effective suppression of gas explosion accidents in the process of low-concentration gas transportation.  相似文献   

18.
The safety issue of ethanol gasoline and the methods to control or weaken its explosion have attracted attention. To clarify the effect of C6F12O (perfluoro(2-methyl-3-pentanone)) on the explosion of ethanol gasoline-air mixtures and intrinsic mechanism, the explosion overpressure and flame propagation behavior under different equivalence ratios (φ = 0.6–0.8) and C6F12O concentrations (χinh = 0–4.0%) were experimentally obtained. The detailed inhibitor reaction process was also obtained by CHEMKIN based on a new assembly kinetic mechanism. The results show that the effects of C6F12O on the explosion characteristics of ethanol gasoline varied with χinh and φ. For rich flames, C6F12O is more effective than and heptafluoropropane (C₃HF₇) and nitrogen (N2) in suppressing explosions; for lean and equivalence ratio flames, the addition of C6F12O may result in more severe explosions. The decrease in chemical reactivity is mainly because the mole fractions of OH and H radicals and the proportion of paths H radicals involved decrease after adding C6F12O, and R1500: CF3COF + H = CF3CO + HF, R965: CF2:O + H = CF:O + HF, R863: CF3 + H = CF2 + HF are main suppressing reactions.  相似文献   

19.
To reveal the effects of particle characteristics, including particle thermal characteristics and size distributions, on flame propagation mechanisms during dust explosions clearly, the flame structures of dust clouds formed by different materials and particle size distributions were recorded using an approach combining high-speed photography and a band-pass filter. Two obviously different flame propagation mechanisms were observed in the experiments: kinetics-controlled regime and devolatilization-controlled regime. Kinetics-controlled regime was characterized by a regular shape and spatially continuous combustion zone structure, which was similar to the premixed gas explosions. On the contrary, devolatilization-controlled regime was characterized by a complicated structure that exhibited heterogeneous combustion characteristics, discrete blue luminous spots appeared surrounding the yellow luminous zone. It was also demonstrated experimentally that the flame propagation mechanisms transited from kinetics-controlled to devolatilization-controlled while decreasing the volatility of the materials or increasing the size of the particles. Damköhler number was defined as the ratio of the heating and devolatilization characteristic time to the combustion reaction characteristic time, to reflect the transition of flame propagation mechanisms in dust explosions. It was found that the kinetics-controlled regime and devolatilization-controlled regime can be categorized by whether Damköhler number was less than 1 or larger than 1.  相似文献   

20.
The coupling of gas explosion flame and shock wave is analyzed. In the gas explosion process, shock wave is affected by the flame directly, and shock wave also induces the flame. Inhibiting explosion can be achieved by the interference between the flame and shock wave propagation. If the coupling effects can be damaged, the adverse effects caused by the explosion should be mitigated and controlled. According to the structure characteristics of foam ceramics, the coupling effects mechanism of ceramic foam on gas explosion flame and shock wave is researched. When the explosion goes through the structure of foam ceramics, the flame can be quenched and the shock wave be attenuated. After the flame is quenched, the supply of precursor shock wave energy is cut off. Due to lack of energy supply, the destructive effects of blast wave will be reduced effectively. Coupling effects of the flame and shock wave can be damaged by the special structure of foam ceramics. Studies suggest that a certain function to represent the structure characteristics of foam ceramics must exist. For a certain material of foam ceramics, the sure porosity δ and the pore diameter d also can be get, which is the key to research and develop foam ceramic suppression technology of gas explosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号