首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fault tree analysis (FTA) is an important method to analyze the failure causes of engineering systems and evaluate their safety and reliability. In practical application, the probabilities of bottom events in FTA are usually estimated according to the opinions of experts or engineers because it is difficult to obtain sufficient probability data of bottom events in fault tree. However, in many cases, there are many experts with different opinions or different forms of opinions. How to reasonably aggregate expert opinions is a challenge for the engineering application of fault tree method. In this study, a fuzzy fault tree analysis approach based on similarity aggregation method (SAM-FFTA) has been proposed. This method combines SAM with fuzzy set theory and can handled comprehensively diverse forms of opinions of different experts to obtain the probabilities of bottom events in fault tree. Finally, for verifying the applicability and flexibility of the proposed method, a natural gas spherical storage tank with a volume of 10,000 m3 was analyzed, and the importance of each bottom event was determined. The results show that flame, lightning spark, electrostatic spark, impact spark, mechanical breakdown and deformation/breakage have the most significant influence on the explosion of the natural gas spherical storage tank.  相似文献   

2.
In quantitative fault tree analysis of a system, exact failure probability values of components are utilized to calculate the failure probability of the system. However, in many real world problems, it is problematic to get precise and sufficient failure data of system components due to insufficient or imprecise information about components, changing environment or new components. A methodology has already been developed by employing fuzzy set theory for the system reliability evaluation by utilizing qualitative failure data of system components when quantitative failure data of components are inaccessible or insufficient. This paper extends the concept of fuzzy set to intuitionistic fuzzy set and proposes a novel approach to evaluate system failure probability using intuitionistic fuzzy fault tree analysis with qualitative failure data of system components. The qualitative failure data such as expert opinions are collected as linguistic terms. These linguistic terms are then quantified by triangular intuitionistic fuzzy numbers in form of membership function and non-membership function. Additionally, a method is developed for combining the different opinions of experts. To illustrate the applicability of proposed approach, a case study of the crude oil tank fire and explosion accident is performed. The obtained results are very close to the results from pre-existing approaches which confirm that the proposed approach is a more realistic alternative for the study of system reliability in intuitionistic fuzzy environment when quantitative failure data of system components are not known. To help decision makers for improving the security execution of the crude oil tank system, importance measures including Fussell-Vesely importance and cut sets importance are also executed.  相似文献   

3.
IntroductionWith the development of industries and increased diversity of their associated hazards, the importance of identifying these hazards and controlling the Occupational Health and Safety (OHS) risks has also dramatically augmented. Currently, there is a serious need for a risk management system to identify and prioritize risks with the aim of providing corrective/preventive measures to minimize the negative consequences of OHS risks. In fact, this system can help the protection of employees’ health and reduction of organizational costs. Method: The present study proposes a hybrid decision-making approach based on the Failure Mode and Effect Analysis (FMEA), Fuzzy Cognitive Map (FCM), and Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) for assessing and prioritizing OHS risks. After identifying the risks and determining the values of the risk assessment criteria via the FMEA technique, the attempt is made to determine the weights of criteria based on their causal relationships through FCM and the hybrid learning algorithm. Then, the risk prioritization is carried out using the MOORA method based on the decision matrix (the output of the FMEA) and the weights of the criteria (the output of the FCM). Results: The results from the implementation of the proposed approach in a manufacturing company reveal that the score at issue can overcome some of the drawbacks of the traditional Risk Priority Number (RPN) in the conventional FMEA, including lack of assignment the different relative importance to the assessment criteria, inability to take into account other important management criteria, lack of consideration of causal relationships among criteria, and high dependence of the prioritization on the experts’ opinions, which finally provides a full and distinct risk prioritization.  相似文献   

4.
为分析海底管道运行中存在的泄漏风险,提出1种基于毕达哥拉斯模糊数与贝叶斯网络的风险评估模型。首先,通过毕达哥拉斯模糊数转换专家定性评价,拓展专家意见模糊范围;然后,结合主客观组合赋权法,利用毕达哥拉斯梯形爱因斯坦混合几何算子(PTFEHG)实现专家意见的聚合;最后,通过贝叶斯网络的推理与敏感性分析,计算海底管道泄漏风险的失效概率,并辨识关键风险因素。研究结果表明:该方法可以结合专家意见对海底管道泄漏风险进行定量分析,并识别导致泄漏事故的关键风险因素,对海底管道安全管理具有指导意义。  相似文献   

5.
Performance evaluation of Health, Safety and Environment (HSE) is the measurement of a company's achievement in HSE management. In order to receive a comprehensive and objective evaluation result, it is necessary to consider all evaluation factors and experts at different levels when HSE performance assessment is conducted. To improve conventional HSE performance evaluation, where weighted average method was used, a Fuzzy Comprehensive Evaluation (FCE) method is used in this study by taking experts' weights into account. Further, an HSE operating performance assessment system is designed to simplify manual and complex assessment process and generate charts and analysis reports automatically. Finally, a case of petrochemical enterprise is used to illustrate the effectiveness of the method and system.  相似文献   

6.
In this paper, a new method based on Fuzzy theory is presented to estimate the occurrence possibility of vapor cloud explosion (VCE) of flammable materials. This new method helps the analyst to overcome some uncertainties associated with estimating VCE possibility with the Event Tree (ET) technique. In this multi-variable model, the physical properties of the released material and the characteristics of the surrounding environment are used as the parameters specifying the occurrence possibility of intermediate events leading to a VCE. Factors such as area classification, degree of congestion of a plant and release rate are notably affecting the output results. Moreover, the proposed method benefits from experts' opinions in the estimation of the VCE possibility. A refrigeration cycle is used as the case study and the probability of VCE occurrence is determined for different scenarios. In this study, sensitivity analysis is performed on the model parameters to assess their effect on the final values of the VCE possibility. Furthermore, the results are compared with the results obtained using other existing models.  相似文献   

7.
The performance evaluation of integrity management has become the focus of attention because integrity management has become widely accepted by pipeline operators. This paper proposes a three-index system of pipeline integrity management performance evaluation (TISPIMPE), which includes system construction, implementation process, and pipeline health status, comprehensively evaluating the status, adequacy, and effectiveness of integrity management. It helps the pipeline operators to determine the weakness in each step. Based on the improved analytic hierarchy process (AHP), the different backgrounds of experts are fully considered, and experts' opinions are revised. The adjustment coefficient of performance evaluation is set up simultaneously, and the evaluation results are adjusted to make the results more reasonable. Taking the performance evaluation of pipeline integrity management of an oil and gas company as an example, it is shown that TISPIMPE has reasonable practicability and can accurately reflect the shortcomings of pipeline integrity management. TISPIMPE can effectively help pipeline managers comprehensively and systematically evaluate the performance of pipeline integrity management and gain an in-depth understanding of pipeline operation status.  相似文献   

8.
In highly complex industries, capturing and employing expert systems is significantly important to an organization's success considering the advantages of knowledge-based systems. The two most important issues within the expert system applications in risk and reliability analysis are the acquisition of domain experts' professional knowledge and the reasoning and representation of the knowledge that might be expressed. The first issue can be correctly handled by employing a heterogeneous group of experts during the expert knowledge acquisition processes. The members of an expert panel regularly represent different experiences and knowledge. Subsequently, this diversity produces various sorts of information which may be known or unknown, accurate or inaccurate, and complete or incomplete based on its cross-functional and multidisciplinary nature. The second issue, as a promising tool for knowledge reasoning, still suffers from lack of deficiencies such as weight and certainty factor, and are insufficient to accurately represent complex rule-based expert systems. The outputs in current expert system applications in probabilistic risk assessment could not accurately represent the increasingly complex knowledge-based systems. The reason is the lack of certainty and self-assurance of experts when they are expressing their opinions. In this paper, a novel methodology is presented based on the concept of Z-numbers to overcome this issue. A case study in a high-tech process industry is provided in detail to demonstrate the application and feasibility of the proposed methodology.  相似文献   

9.
The problem of less and/or even lack of information and uncertainty in modeling and decision making plays a key role in many engineering problems; so that, it results in designers and engineers could not reach to sure solutions for the problems under consideration. In this paper, an application of the fuzzy logic for modeling the uncertainty involved in the problem of pipeline risk assessment is developed. For achieving the aim, relative risk score (RRS) methodology, one of the most popular techniques in pipeline risk assessment, is integrated with fuzzy logic. The proposed model is performed on fuzzy logic toolbox of MATLAB® using Mamdani algorithm based on experts' knowledge. A typical case study is implemented and a comparison between the classical risk assessment approach and the proposed model is made. The results demonstrate that the proposed model provides more accurate, precise, sure results; so that, it can be taken into account as an intelligent risk assessment tool in different engineering problems.  相似文献   

10.
The risk graph (RG) is widely used to evaluate the safety integrity level (SIL) of safety instrument systems (SIS). However, subjective opinion-based conventional RGs cannot provide successful results for the problems of risk parameters, such as shortages or lack of data; hence, the output of a conventional approach lacks sufficient reliability. We introduced the fuzzy improved risk graph (FIRG), an extension of fuzzy set theory, to deal with possible ambiguities during SIL study and increase the reliability of conventional RGs. In the present study, the levels of consequences defined as linguistic terms were converted into qualitative intervals; therefore, by correlating the proposed approach with experts’ opinions and attributing weight factors, a desired SIL value was obtained. The output of this new approach can be compared directly with quantitative risk assessment techniques to improve the safety performance of industrial systems.  相似文献   

11.
针对模糊综合评判法在进行列车运行控制系统可靠性评估时的不足,提出基于模糊灰色聚类和组合赋权法的可靠性评估方法,以更客观地评估铁路信号系统的可靠性,降低评估结果的不准确性和不可靠性。首先,利用组合赋权法分别计算CTCS-3级列车运行控制系统各子系统基本单元的权重。然后,采用灰色聚类法评估列车运行控制系统各子系统的可靠性。最后,在对列车运行控制系统子系统可靠性评估结果的基础上,结合各子系统权重值,利用模糊综合评判方法,评估整个列车运行控制系统的可靠性。结果表明,基于模糊灰色聚类和组合赋权法的可靠性评估方法能够实现CTCS-3级列车运行控制系统可靠性评估,评估结果符合实际情况。  相似文献   

12.
对传统的HAZOP分析中偏差原因发生可能性进行量化。对于有统计数据的,根据行业数据、公司经验及企业事故建立HAZOP风险分析统计数据库;对于没有统计数据的HAZOP分析偏差原因发生概率,通过专家主观评判,用模糊数理论将专家自然语言转换为模糊数,采用左右模糊排序法将模糊数转换为模糊失效概率值。研究了偏差后果严重程度的划分标准,并根据偏差原因概率和偏差后果严重程度确定风险等级,利用风险矩阵得出偏差风险的大小。从而把HAZOP分析方法从定性改进为半定量的分析方法。据此对石油化工装置进行了HAZOP风险分析。  相似文献   

13.
Failure mode and effect analysis (FMEA), which aims to identify and assess potential failure modes in a system, has been widely utilized in diverse areas for improving and enhancing the performance of systems due to it is a powerful and useful risk and reliability assessment instrument. However, the conventional FMEA approach has been suffered several criticisms for it has some shortcomings, such as unable to handle ambiguous and uncertain information, neglect the relative weights of risk criteria, and without considering the psychological behaviors of decision-makers. To ameliorate these limitations, this paper aims at establishing a hybrid risk ranking model of FMEA via combing linguistic neutrosophic numbers, regret theory, and PROMETHEE (Preference ranking organization method for enrichment evaluation) approach. In the presented model, linguistic neutrosophic numbers are adopted to capture decision-makers’ evaluation regarding the failure modes on each risk criterion. A modified PROMETHEE approach based on regret theory is presented to obtain the risk priority of failure modes considering the psychological behaviors of decision-makers. Moreover, a maximizing deviation model and TOPSIS (Technique for order preference similar to ideal solution) are separately applied to derive the weights of risk criteria and decision-makers. Finally, a numerical example relating to the supercritical water gasification system is employed to implement the presented method, and the effectiveness and feasibility of the proposed model are validated by the results derived from a sensitivity and comparison analysis.  相似文献   

14.
Abnormal process situation may lead to tremendous negative impact on sustainability, wellbeing of workers and adjacent communities, company's profit, and stability of supply chains. Failure of equipment and process subsystems are among the primary causes of abnormal situations. The conventional approach in handling failure-based abnormal situations has usually focused on operational strategies. Such an approach overlooks the critical role of process design in mitigating failure, while simultaneously considering the effects of such failure on process economic performance. The aim of this work is to introduce a systematic methodology that accounts for failure early enough during the conceptual design stages. Once a base-case design is developed, the methodology starts by identifying the sources of failure that are caused by reliability issues including equipment, operational procedures, and human errors for a given process system or subsystem. This allows for the identification of critical process subsystem(s) that are more failure-prone or cause greater downtime than other subsystems. Bayesian updating and Monte Carlo techniques are utilized to determine the appropriate distributions for the failure and repair scenario(s), respectively, in question. Markov analysis is used to determine the system availability. Next, the process revenue is described as a function of inherent availability. The effects of failures are incorporated into profitability calculations to establish an economic framework for trading off failure and profitability. In the proposed framework, the economic potential of alternative design scenarios is evaluated and an optimization formulation with the objective of maximizing incremental return on investment (IROI) is utilized to make a design decision. A case study on an ethylene plant is solved to demonstrate the applicability and value of the proposed approach.  相似文献   

15.
Process plants may be subjected to dangerous events. Different methodologies are nowadays employed to identify failure events, that can lead to severe accidents, and to assess the relative probability of occurrence. As for rare events reliability data are generally poor, leading to a partial or incomplete knowledge of the process, the classical probabilistic approach can not be successfully used. Such an uncertainty, called epistemic uncertainty, can be treated by means of different methodologies, alternative to the probabilistic one. In this work, the Evidence Theory or Dempster–Shafer theory (DST) is proposed to deal with this kind of uncertainty. In particular, the classical Fault Tree Analysis (FTA) is considered when input data are supplied by experts in an interval form. The practical problem of information acquisition from experts is discussed and two realistic scenarios are proposed. A methodology to propagate such an uncertainty through the fault tree up to the Top Event (TE) and to determine the belief measures is supplied. The analysis is illustrated by means of two simple series/parallel systems. An application to a real industrial safety system is finally performed and discussed.  相似文献   

16.
Quantitative risk assessment (QRA) is a powerful and popular technique to support risk-based decisions. Unfortunately, QRAs are often hampered by significant uncertainty in the frequency of failure estimation for physical assets. This uncertainty is largely due to lack of quality failure data in published sources. The failure data may be limited, incompatible and/or outdated. Consequently, there is a need for robust methods and tools that can incorporate all available information to facilitate reliability analysis of critical assets such as pipelines, pressure vessels, rotating equipment, etc. This paper presents a novel practical approach that can be used to help overcome data scarcity issues in reliability analysis. A Bayesian framework is implemented to cohesively integrate objective data with expert opinion with the aim toward deriving time to failure distributions for physical assets. The Analytic Hierarchy Process is utilized to aggregate time to failure estimates from multiple experts to minimize biases and address inconsistencies in their estimates. These estimates are summarized in the form of informative priors that are implemented in a Bayesian update procedure for the Weibull distribution. The flexibility of the proposed methodology allows for efficiently dealing with data limitations. Application of the proposed approach is illustrated using a case study.  相似文献   

17.
FMECA法是一种定性的分析方法,它通过对目标系统下各单元的功能、潜在故障模式、故障原因、故障率及严重性进行分析,找出危险性较高的故障模式和设计中的薄弱环节。模糊综合分析法可以将定性的评价结果以定量的形式表达,但其评价结果具有模糊性。提出了一种将FMECA法与模糊综合分析法相结合的评价方法,既可以减少模糊综合分析评价结果的模糊性,又可以将FMECA法的定性描述以定量的形式表达,使评价结果更加客观、合理。并以大型游乐设施中自旋滑车的桥轴为例,运用FMECA-模糊综合分析法对其进行风险评价,计算结果表明其风险等级较低,与实际检验结果相符。  相似文献   

18.
Petrochemical facilities and plants require essential ongoing maintenance to ensure high levels of reliability and safety. A risk-based maintenance (RBM) strategy is a useful tool to design a cost-effective maintenance schedule; its objective is to reduce overall risk in the operating facility. In risk assessment of a failure scenario, consequences often have three key features: personnel safety effect, environmental threat and economic loss. In this paper, to quantify the severity of personnel injury and environmental pollution, a failure modes and effects analysis (FMEA) method is developed using subjective information derived from domain experts. On the basis of failure probability and consequence analysis, the risk is calculated and compared against the known acceptable risk criteria. To facilitate the comparison, a risk index is introduced, and weight factors are determined by an analytic hierarchy process. Finally, the appropriate maintenance tasks are scheduled under the risk constraints. A case study of a continuous catalytic reforming plant is used to illustrate the proposed approach. The results indicate that FMEA is helpful to identify critical facilities; the RBM strategy can increase the reliability of high-risk facilities, and corrective maintenance is the preferred approach for low-risk facilities to reduce maintenance expenditure.  相似文献   

19.
Occupational accidents in the construction industry are more common compared with other fields and these accidents are more severe compared with the global average in developing countries, especially in Iran. Studies which lead to the source of these accidents and suggest solutions for them are therefore valuable. In this study a combination of the failure mode and effects analysis method and fuzzy theory is used as a semi-qualitative–quantitative method for analyzing risks and failure modes. The main causes of occupational accidents in this field were identified and analyzed based on three factors; severity, detection and occurrence. Based on whether the risks are high or low priority, modifying actions were suggested to reduce the occupational risks. Finally, the results showed that high priority risks had a 40% decrease due to these actions.  相似文献   

20.
Significant human risk factors in aircraft maintenance technicians   总被引:3,自引:0,他引:3  
We examined significant human risk factors in aircraft maintenance technicians (AMTs) in the airline industry. We conducted an empirical study of Taiwan’s airlines to determine these risk factors and to illustrate how a quantifiable evaluation approach integrates experts’ opinions about the relative importance of risk factors. We developed an expert questionnaire and modified the human factors SHELL model to categorize the risk factors that we derived from the literature and the opinions of 107 senior experts. The empirical results showed that there are nine significant risk factors out of 77 preliminary and 46 primary risk factors. The results also provided support for the approach and model presented in this work, demonstrating that they are both strategically effective and practically acceptable. Analyzing and ranking the significant risk factors for AMTs in this fashion may help airlines to better focus on their major operational and managerial weaknesses in order to improve maintenance operations under the condition of limited resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号