首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2015年1月份采集鞍山市主城区共6个采样点的PM_(2.5)样品,并采集了固定源、移动源、开放源、生物质燃烧源、餐饮油烟等5类污染源,使用GC-MS进行16种多环芳烃(PAHs)质量浓度的分析,运用PMF法和毒性当量分别进行了来源解析和毒性评价.结果表明,鞍山市主城区冬季大气PM_(2.5)中ρ(PAHs)和ρ(BaP)较高,PAHs以3环、4环为主,占PAHs总浓度的82.56%;冬季大气中PAHs主要来源为煤烟尘、焦化尘、移动源、开放源、生物质燃烧源和其他污染源,其贡献率分别为27.8%、24.2%、18.1%、13.4%、4.7%和11.8%;毒性评价表明,鞍山市冬季PAHs的TEQ均值为33.51 ng·m~(-3),铁西三道街的毒性当量浓度最高.  相似文献   

2.
《环境化学》2018,(春节)
为研究2017年春节期间北京市城区和郊区大气PM_(2.5)及负载多环芳烃(PAHs)的污染水平和污染特征,分别在北京城区和郊区各选一个监测点,采集大气中的PM_(2.5),采用重量法和超声提取-GC/MS对滤膜上的PM_(2.5)及多环芳烃的浓度进行测定.结果表明,春节期间城郊两地的大气PM_(2.5)和PAHs均呈多峰分布,PM_(2.5)均值分别为104.5μg·m~(-3)和104.6μg·m~(-3),无显著性差异;两地PAHs均值差异具有统计学意义(P=0.001).除夕日(CSFE)烟花集中燃放时段PM_(2.5)在城郊两地的日均浓度较前一日非集中燃放日均有明显升高.春节期间PAHs组成以4环和5环为主,二者之和占PAHs总量的80%以上,特征比值法显示城区污染主要来自燃煤和交通尾气的混合源,郊区燃煤占主导.  相似文献   

3.
用气相色谱-质谱法(GC-MS)定量分析了2013年9月南昌市PM_(2.5)中16种优控多环芳烃(PAHs)含量.结果表明,PAHs总浓度平均值为17.95 ng·m~(-3),变化范围为3.55—39.97 ng·m~(-3).不同环数多环芳烃占总浓度比例由大到小依次为:5环(50.45%)4环(19.32%)6环(17.99%)2环(6.34%)3环(5.90%),表现出明显的机动车尾气排放特征.通过计算PAHs的苯并[a]芘(BaP)毒性当量浓度(9.458—14.454 ng·m~(-3)),表明南昌市PAHs对人体健康存在潜在危害.特征化合物比值法和主成分分析法结果表明,燃煤、机动车尾气、农业燃烧及少量的石油挥发是南昌市PM_(2.5)中PAHs的主要污染源.  相似文献   

4.
雾霾对我国尤其是华北平原地区造成了极大的困扰,其发生常以颗粒物浓度急剧增长为特征,给人群健康带来了极大的风险。为进一步阐释雾霾的形成过程及其健康效应,在冬季雾霾期对北京城区大气颗粒态及气态中18种多环芳烃(PAHs)进行了连续测定,同步监测颗粒物、痕量气体污染物以及气象参数的变化,并对PAHs的浓度、组成、气粒分配等大气行为以及其与气象因素的作用机制进行了探讨。北京城区大气气相和颗粒物相中ΣPAHs浓度分别为585 ng·m~(-3)和705 ng·m~(-3)。雾霾发生时,PM_(2.5)浓度升高了3.6倍,PAHs浓度升高了2.6倍,18种PAHs同系物的浓度均随PM_(2.5)的浓度线性增加,其线性相关性受PAHs来源以及氧化活性的影响;夜间较重质量数的PAHs相对比例增加,主要受日间交通源以及夜间燃烧源贡献强度影响。受颗粒物组成以及湿度的影响,雾霾天气下PAHs颗粒相分配率降低。进一步评估了北京城区人群的PAHs吸入健康效应,冬季雾霾频繁发生下其对人群癌症风险为6.2×10~(-5)。  相似文献   

5.
为了解北京市大气细颗粒物(PM_(2.5))中二■英(PCDD/Fs)的污染特征,利用中流量大气颗粒物采样器,在北京市3个功能区5个采样点(两个市区点、两个工业区点和一个背景点),同步连续采集了大气细颗粒物PM_(2.5)样品.参照US EPA 1613B标准方法,应用高分辨率气相色谱/高分辨率质谱(HRGC/HRMS),分析了PM_(2.5)中17种PCDD/Fs的浓度水平和区域分布特征,并对PCDD/Fs的污染来源做了初步探讨.结果表明,5个采样点PM_(2.5)的日均质量浓度范围102—146μg·m~(-3),平均日均值119μg·m~(-3),超出国家二级标准(75μg·m~(-3))59%,污染较重.在空间分布上,PM_(2.5)的日均浓度表现为工业区大于背景点大于市区的特征.所有采样点17种PCDD/Fs的总浓度范围∑PCDD/Fs是1.60—4.09 pg·m~(-3),平均值3.23 pg·m~(-3),PCDD/Fs总毒性当量∑TEQ范围是140.54—275.69 fg I-TEQ·m~(-3),平均值233.18 fg I-TEQ·m~(-3).与国内外其他城市相比,北京市大气PM_(2.5)中PCDD/Fs污染处于相当或略高水平.OCDD、OCDF和1,2,3,4,7,8-HpCDF是PCDD/Fs的主要组成成分,分别占总浓度∑PCDD/Fs的10%、19%和24%.对于总毒性当量∑TEQ贡献最大的是2,3,4,7,8-PeCDF,占总毒性当量的48.3%,∑PCDDs/∑PCDFs比值范围为0.19—0.23,平均值0.22,属于典型的"热源"特征.在浓度变化上, PCDDs呈现为随氯取代个数的增加而增加,除OCDF外, PCDFs的各单体浓度也随着取代氯原子个数的增加而增大.在区域分布上,PCDD/Fs浓度表现为工业区高于市区,市区大于背景点,充分体现了局地源的特点.采样期间工业热过程(化石燃料燃烧、电弧炉、烧结和冶炼等)、机动车排放和固体垃圾焚烧是北京冬季大气PM_(2.5)中PCDD/Fs和PM_(2.5)污染水平的主要影响因素.  相似文献   

6.
于2015年1月至11月在广州利用大流量大气颗粒物采样器采集细颗粒物(PM_(2.5))样品,并利用热光反射法(TOR)测定大气颗粒物中有机碳(OC)和元素碳(EC)浓度。结果表明,广州ρ(PM_(2.5))年均值为(69.5±35.6)μg·m~(-3),是GB 3095—2012《环境空气质量标准》中PM_(2.5)年均质量浓度二级标准限值(35μg·m~(-3))的2.0倍,表明广州大气细颗粒物污染严重。OC、EC和总碳气溶胶(TCA)的年均质量浓度分别为(8.31±4.53)、(3.56±2.72)和(16.85±9.60)μg·m~(-3),分别占PM_(2.5)质量浓度的13.2%、5.9%和27.0%,表明含碳组分是PM_(2.5)的重要组成部分。OC和EC浓度季节变化规律存在差异性,OC浓度在冬季最高,而EC浓度在秋季最高。OC和EC的相关性弱和比值高的特征结果表明冬季二次有机碳(SOC)污染最严重,其平均质量浓度为6.9μg·m~(-3),占OC质量浓度的62.4%。主成分分析结果表明,冬季和春季广州PM_(2.5)中碳组分来源较复杂,主要包括机动车尾气、燃煤和生物质燃烧,夏季碳组分的主导污染来源是燃煤和机动车尾气,而秋季碳组分主要来源于机动车尾气。  相似文献   

7.
北京大气颗粒物中多环芳烃浓度季节变化及来源分析   总被引:13,自引:1,他引:12  
使用大流量滤膜采样器,从2006年9月至2007年8月,每周同时采集北京城市大气可吸入颗粒物(PM10)和细粒子样品(PM2.5)各一次,二氯甲烷超声抽提一气相色谱/质谱分析了17种多环芳烃(PAHs)浓度,结果表明,春、夏、秋、冬四季北京大气PM10和PM2.5中PAHs总量分别为63.8±44.6ng·m-3、43.2±4.5ng·m-3、84.7±108.3ng·m-3、348.0±250.0ng·m-3和54.7±17.3ng·m-3、40.3±8.6ng·m-3、66.1±81.5ng·m-3、337.7±267.2ng·m-3;约有70%的PAHs存在于细粒子PM2.5中,其质量浓度有明显季节变化,冬季>秋季>春季>夏季;颗粒物中PAHs主要以4、5、6环存在,其中4环以上占79.4%.源解析表明,北京大气颗粒物中的PAHs主要来自燃煤,同时汽油、柴油燃烧排放也不能忽略.结合气象要素分析,温度升高和太阳辐射增强易造成多环芳烃挥发和反应,湿沉降有利于多环芳烃随颗粒物清除.  相似文献   

8.
采集安徽省淮南市3个燃煤发电锅炉排放的气态和颗粒态样品,通过GC-MS测定美国环保局优控的16种多环芳烃(PAHs),并对其残留、赋存和分配特征进行了分析研究.结果表明,PM_(10)相和气相中PAHs的质量浓度范围分别为2.9—7.5μg·m~(-3)和6.0—15.1μg·m~(-3),PAHs的质量浓度明显受到锅炉类型、装机容量与燃烧条件的影响,静电除尘器(ESP)对气相PAHs清除效率较低;PM_(10)相中PAHs主要为中分子量4环和高分子量5环,分别占总PAHs的35.8%—49.3%和16.2%—27.3%,与PM_(10)相相比,气相PAHs主要分布为2—3环,而4—6环PAHs含量较少.脱硫装置有效地提高了高分子PAHs的去除率;PM_(10)相及气相中PAHs分布不均衡,吸收作用主导了PM_(10)相与气相之间的PAHs分配;PAHs单体显示出不同的主导分配机制,主要由于它们之间不同的化学亲和力和蒸气压所导致的.  相似文献   

9.
以东莞市2011年夏季不同区域的大气颗粒物为研究对象,定性定量分析了其中多环芳烃(PAHs)及硝基多环芳烃(NPAHs)的浓度、组成.采用特征比值法分析了PAHs及NPAHs的来源,并通过PEFs毒性评价法评价了颗粒物中多环芳烃及硝基多环芳烃的BaP等效毒性,估算出个体致癌指数.结果表明东莞市颗粒物上16种多环芳烃总含量在12.60—193.95 ng·m-3范围内,6种硝基多环芳烃的总含量在5.88—62.79 ng·m-3,隧道环境中多环芳烃及硝基多环芳烃的浓度最高.除隧道环境中颗粒物的等效毒性及个体致癌指数超标外,东莞市颗粒物上PAHs及NPAHs对人体均不构成严重威胁.  相似文献   

10.
餐饮源是城市大气细颗粒物PM_(2.5)的一个重要来源,为了解餐饮源PM_(2.5)排放特征及来源,测定了室外烧烤和食堂两种不同类型餐饮源排放的PM_(2.5)浓度以及PM_(2.5)中的有机污染物;利用气相色谱-质谱仪(GC/MS)检测出主要污染物为正构烷烃、酸类、醛类、酮类、酯类、烯烃、多环芳烃等有机污染物,通过与大气对照样品的对比分析,对污染物的来源做了简要解析.比对结果显示,室外烧烤样品PM_(2.5)浓度为905.6±160.9μg·m~(-3)、食堂样品PM_(2.5)浓度为343.9±30.6μg·m~(-3)、大气对照样品PM_(2.5)浓度为76.7±1.7μg·m~(-3).室外烧烤是食堂排放PM_(2.5)质量浓度的2—3.4倍,是环境大气PM_(2.5)质量浓度的9.5—13.6倍.烧烤油烟排放的PM_(2.5)中有机物主要为有机酸(47.29%),其次是醛酮类(12.97%);校园食堂油烟样品中除了烷烃类(45.2%),脂肪酸类(11.76%)和醛酮类(8.84%)排放也较明显;脂肪酸类可能由动物脂肪灼烧产生,而醛、酮类物质可能来源于香精等食品添加剂的高温分解.大气对照样品中检测到少量醛酮类有机物,未检测到酸类有机物,由此推测醛、酮、酸可能是餐饮油烟中典型排放的污染物.  相似文献   

11.
广州夏季办公室内细颗粒中多环芳烃污染特征研究   总被引:1,自引:0,他引:1  
大部分的都市办公人群每天在办公室至少度过8 h。而室外环境的渗透、办公室内吸烟、办公设备使用和中央通风系统均可能导致细颗粒物及多环芳烃(PAHs)在室内积聚而造成微环境污染。2015年5—6月,在广州市3种不同功能区(商住区、高新产业区、工业区)共选取了14间不同类型的办公室,对其室内外PM_(2.5)和多环芳烃进行同步监测。结果表明,(1)14间中有12间办公室内的PM_(2.5)浓度水平高于世界卫生组织(WHO)的推荐值25μg·m-3;(2)与国内外类似研究相比,办公室内外∑16PAHs及Ba P-eq的监测浓度水平均较低,并呈现一致规律:文印>室外>吸烟>多人>单人>无窗(无人),其中Ba P-eq低于欧盟规定的安全限值1 ng·m-3;(3)文印工作和吸烟行为与室内PM_(2.5)和PAHs浓度升高有密切关系,分别对5环和4环PAHs贡献明显;(4)其他无明显内源的办公室的细颗粒中PAHs污染在监测期间主要来源于室外贡献。  相似文献   

12.
以北京市西三环地区北京工商大学作为采样点,在2017年3—5月共采集气相、颗粒相(PM_(2.5)、PM_(10)、TSP)样品54个,对样品中28种PCBs单体进行定性定量分析,研究大气中多氯联苯(PCBs)的污染特征、在不同粒径颗粒物(PM_(2.5)、PM_(10)、TSP)中的分布规律和气粒分配行为.结果表明,北京市西三环地区大气中PCBs总浓度为144—859 pg·m~(-3),在国内外处于中等水平.其中,气相样品中PCBs浓度为131—814 pg·m~(-3),平均浓度为495 pg·m~(-3),占大气中PCBs总浓度的94.95%;颗粒相样品中PCBs浓度为12.3—48.9 pg·m~(-3),平均浓度为26.3 pg·m~(-3),占大气中PCBs总浓度的5.05%.低氯代PCBs更多地分布在气相上,高氯代PCBs更多地分布在颗粒相上.对不同粒径颗粒物(≤2.5μm、2.5—10μm、10μm)中PCBs的分析表明,PCBs主要分布在≤2.5μm的颗粒物中.不同粒径颗粒物中所含PCBs同系物的组成比例接近,以三氯至七氯为主,占颗粒物中PCBs总含量的88%以上.用过冷饱和蒸气压P0L(Pa)和分配系数Kp来描述PCBs的气粒分配行为,lg Kp-lg P0L的斜率为-0.3653,说明北京西三环地区大气中PCBs的气粒分配未达到平衡状态,在气粒分配过程中以吸收机制为主.  相似文献   

13.
杭州市大气总悬浮颗粒物中多环芳烃的HPLC分析   总被引:2,自引:0,他引:2  
史坚  黄成臣  徐鸿  孙鸿良 《环境化学》2003,22(6):629-630
由于大部分致癌多环芳烃 (PAHs)与颗粒物 (TSP)有联系 .而分子量 (MW)≥ 2 2 8的PAHs绝大部分 ( >99% )是以颗粒态形式被采集的 .因此 ,分析研究大气颗粒物中PAHs的含量具有重要意义 .本文分析了杭州市 5个大气监测国控网络点一年 1 2个月TSP中 1 5种PAHs浓度的分布特征 .1 样  相似文献   

14.
张啸  崔阳  张桂香  何秋生  王新明 《环境化学》2014,(12):2144-2151
对太原市2012年3—10月雨水中16种溶解态多环芳烃(PAHs)的分布特征、沉降通量和来源进行了分析.结果表明,16种PAHs总的(∑16-PAHs)平均浓度为1081.2 ng·L-1(范围为316.8—6272.3 ng·L-1),以2—3环PAHs为主,占75.4%,4环和5—6环PAHs分别占18.2%和6.4%.∑16-PAHs浓度与温度(P<0.05)和电导率(P<0.01)呈显著正相关.同一场降雨不同阶段的∑16-PAHs浓度及其组成与降雨量有关.∑16-PAHs的全年平均沉降通量为481.5 ng·m-2·d-1,9月的沉降通量最高(2342.8 ng·m-2·d-1),其次是7月(1604.4 ng·m-2·d-1),10月的最低(83.3 ng·m-2·d-1),其中2—3环PAHs的沉降通量明显高于4环和5—6环PAHs,∑16-PAHs的月沉降通量与月平均降雨量(P<0.01)和降雨频次(P<0.05)呈显著正相关.利用特征比值法判断PAHs的主要来源是煤燃烧,同时也存在一定的石油燃烧源和少部分的石油源.  相似文献   

15.
研究太原市城区大气颗粒物质量浓度时空变化规律,可以为实施更有效的大气污染综合治理手段提供科学依据。以太原市9个国家空气质量自动监测站的数据为基础,运用统计分析和Kriging插值法,对太原市城区2019年大气颗粒物的时空分布进行了分析。结果表明,2019年太原市城区PM_(2.5)和PM_(10)年均质量浓度分别为56μg·m~(-3)和107μg·m~(-3),是国家二级标准限值的1.60、1.53倍,以PM_(2.5)和PM_(10)为首要污染物占总超标天数的44.03%和12.58%;PM_(2.5)/PM_(10)年均值为0.52,PM_(2.5)对PM_(10)贡献较大;PM_(2.5)季平均质量浓度为冬季(87μg·m~(-3))秋季(50μg·m~(-3))春季(49μg·m~(-3))夏季(34μg·m~(-3)),PM_(10)为冬季(123μg·m~(-3))春季(120μg·m~(-3))秋季(98μg·m~(-3))夏季(64μg·m~(-3));PM_(2.5)和PM_(10)质量浓度月变化呈U型,二者平均质量浓度1月最高,8月最低;PM_(2.5)和PM_(10)24h质量浓度变化呈"单峰单谷"型,峰值在10:00,谷值在17:00;取暖期PM_(2.5)与CO、SO2和NO_2相关性高于其他时段;太原市城区PM_(2.5)和PM_(10)质量浓度空间分布总体上呈北低南高之势,PM_(2.5)春夏秋季的空间分布格局与太原市城区生产、生活、交通干道分布格局比较吻合。以上结果提示秋冬季是太原市城区颗粒物治理的关键时期,位于南部的小店和晋源区为重点防控治理区域。  相似文献   

16.
氨基酸是大气颗粒物中一类重要的极性有机物,一定程度上可以反映生物气溶胶的贡献,也是大气氮沉降的重要部分,目前人们对大气细颗粒物中氨基酸的浓度和组成了解还很少。为了解上海大气细颗粒物中水溶性氨基酸的分布特征,利用大流量采样器采集了不同季节的PM_(2.5)样品,采用邻苯二甲醛/N-乙酰-L-半胱氨酸柱前衍生高效液相色谱法,分析了水溶性氨基酸(游离态及结合态)的浓度和组成。上海PM_(2.5)中游离态氨基酸(FAA)的浓度为0.058—0.690 nmol·m~(-3),平均为0.287nmol·m~(-3),冬、春季浓度稍高,但季节变化不显著。结合态氨基酸(CAA)的浓度为0.200—10.911 nmol·m~(-3),平均1.731 nmol·m~(-3),春季最高,秋季次之,冬季最低。FAA浓度与SO42-、NH_4~+、水溶性有机氮等主要水溶性组分间均存在显著相关性,细颗粒物的吸附及大气扩散条件可能是影响FAA浓度的重要因素,而CAA浓度与其他水溶性组分间不存在显著相关性。游离态氨基酸的组成以甘氨酸为主(51.9%),丙氨酸次之(12.9%),丝氨酸(7.1%)、天冬氨酸(5.5%)、谷氨酸(5.1%)、酪氨酸(4.9%)和苯丙氨酸(4.8%)也有一定含量,而亮氨酸、异亮氨酸和缬氨酸的含量很低;结合态氨基酸的组成与游离态氨基酸有明显差别,单体分布更均匀,甘氨酸的含量最高(29.3%),丝氨酸(12.5%)、谷氨酸(12.2%)、丙氨酸(10.8%)和苯丙氨酸(9.7%)是主要的单体化合物,大气光化学转化可能是造成上海PM_(2.5)中游离态氨基酸和结合态氨基酸组成差异的重要原因。主成分分析结果表明,化石燃料燃烧、生物质燃烧并非上海PM_(2.5)中氨基酸的主要来源。该研究结果能为大气细颗粒物环境影响研究提供基础数据。  相似文献   

17.
在北京城区四环以内采集了33个冬季道路沉积物样品,分析其中多环芳烃(PAHs)的含量、分布特征、来源和生态风险.结果表明,16种多环芳烃(PAHs)∑16PAHs的浓度范围为931.0—2668.7 ng·g~(-1)干重,平均浓度为1602.4 ng·g~(-1)干重,污染物的组成以4环和3环PAHs为主.通过LMW/HMW(低分子量与高分子量PAHs的比值)法、特征比值法和主成分分析法得出,道路沉积物中PAHs主要来自于煤、化石燃料的燃烧以及交通尾气的排放.由TEQBa P分析结果可知,33个采样点PAHs的∑16TEQBa P范围为58.2—324.4 ng·g-1干重,平均值为139.3 ng·g~(-1)干重;所有采样点的∑10TEQBa P范围为33.1—266.8 ng·g~(-1)干重,平均值为95.0 ng·g-1干重,均超过荷兰土壤的目标参考值,说明北京市冬季道路沉积物中PAHs存在潜在的生态风险;其中7种致癌性PAHs(Ba A、Chr、Bb F、Bk F、Ba P、IPY和DBA)的TEQBa P占∑16TEQBa P的96.1%—99.3%,平均值为98.5%,是∑16TEQBa P的主要贡献者,并且Ba P的贡献率最大.  相似文献   

18.
北京市冬季大气气溶胶中PAHs的污染特征   总被引:2,自引:0,他引:2  
利用大流量颗粒物采样器采集了2005-2006年冬季北京市大气气溶胶中PM10和PM2.5样品,采用气相色谱/质谱技术对样品中的多环芳烃进行检测.结果表明:北京市冬季大气颗粒物PM10和PM2.5中PAHs总量分别为520.5±476.9ng·m-3和326.8±294.3ng·m-3,且大部分存在于细粒子中,4环以上的稠环芳烃占总浓度的87%.根据荧蒽/芘等比值指标判别,北京市冬季PAHs主要以燃煤排放为主,其次是石油燃烧交通排放.风速增大和太阳辐射曝辐量增强,都会降低颗粒物中多环芳烃浓度.  相似文献   

19.
随着城市化进程的加快,生态环境恶化,改善空气质量已成为社会所关注的重要环境问题。不同的植被结构可以有效调控大气颗粒物浓度,提高负离子的浓度,是改善空气质量的重要组成部分。为探究不同植被结构对空气质量的调控能力以及影响空气质量的因素,以沈阳市东陵公园为研究对象,采用定点观测法,监测8块不同植被结构内大气颗粒物(PM_(2.5)、PM_(10))和空气负离子浓度,并同步观测气象因子。研究结果表明,(1)不同植被结构调控大气颗粒物的能力存在差异,但是不显著。PM_(2.5)和PM_(10)日平均质量浓度在S1(稠李Padus avium+萱草Hemerocallis fulva)均为最高,分别是(48.63±18.05)μg·m~(-3)和(68.55±20.64)μg·m~(-3);S3(云杉Picea asperata+榆叶梅Amygdalus triloba+牛筋草Eleusine indica)最低,分别是(28.95±8.91)μg·m~(-3)和(45.21±10.38)μg·m~(-3)。PM_(2.5)和PM_(10)日平均质量浓度变化范围分别为(28.95—48.63)μg·m~(-3)和(45.21—68.55)μg·m~(-3)。(2)不同植被结构内空气负离子浓度存在显著性差异。空气负离子日平均浓度在S7(油松Pinus tabuliformis+桃叶卫矛Euonymus bungeanus+玉簪Hosta plantaginea)最高,为(1 007.50±53.10)ion·cm~(-3);S1(稠李+萱草)最低,为(446.21±34.9) ion·cm~(-3)。空气负离子日平均浓度范围(446.21—1 007.50) ion·cm~(-3)。(3)大气颗粒物(PM_(2.5)、PM_(10))和空气负离子浓度与乔木层郁闭度和相对湿度呈正显著相关,而与温度呈负显著相关;大气颗粒物浓度与空气负离子浓度呈负显著相关。以上研究结果可为优化城市绿地植被结构和改善空气质量提供一定的借鉴。  相似文献   

20.
利用2018年1—12月西安市13个环境空气质量监测点的六项大气污染常规分析指标(PM_(10)、PM_(2.5)、O_3、SO_2、NO_2和CO)逐小时监测数据,结合气象条件(温度、相对湿度、风向、风速、大气压、光照、紫外辐射、混合层高度及大气能见度)和颗粒物样品采集,对西安市近地面大气污染物浓度特征进行分析,结果表明,西安市近地面大气污染物浓度呈现明显的季节变化特征,冬季空气污染物主要为颗粒物(PM_(10)、PM_(2.5))对应质量浓度分别为:(154.04±92.88)、(101.84±60.11)μg·m~(-3),PM_(2.5)/PM_(10)的值为0.66,夏季空气污染物主要为O_3,质量浓度为(89.07±20.62)μg·m~(-3);西安市冬季PM_(2.5)数浓度、表面积浓度、质量浓度分别为(51 890±14 619)cm~(-3)、(2 882.21±939.83)μm~2·cm~(-3)、(0.32±0.13)mg·m~(-3),PM_(10)数浓度、质量浓度、表面积浓度分别为(51 897±14 618)cm~(-3)、(3 410.50±1 060.31)μm~2·cm~(-3)、(0.86±0.29)mg·m~(-3),数浓度粒径分布集中在0.010≤d_p≤0.484μm,占总数浓度的99.13%,表面积浓度粒径分布集中在0.072≤d_p≤8.136μm,占总表面积浓度的98.32%,质量浓度粒径分布集中在0.316≤dp≤8.136μm,占总质量浓度的98.75%。颗粒物数浓度对大气能见度影响最大的3个粒径段分别为d_p=0.762μm、d_p=1.956μm、d_p=1.232μm,3个粒径段与能见度的R~2(拟合优度)分别为:0.840、0.789、0.775;西安市夏季,在近地面环境温度大于30.23℃,相对湿度小于58.09%,光照强度大于107.83 W·m~(-2),紫外辐射强度大于324.10μW·cm~(-2)时,有利于近地大气层中高质量浓度O_3((112.16±53.01)μg·m~(-3))的生成与累积。研究结果可为西安市及汾渭平原其他城市大气污染物减排、大气污染防治策略的制定提供数据支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号