首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《江苏劳动保护》2011,(4):39-39
特性:环氧乙烷常温下为无色气体,有乙醚气味,易溶于水、乙醇和乙醚。有毒易燃,在空气中易形成爆炸混合物,遇火星、高热有燃烧爆炸危险,化学性质活泼,能与许多化合物起反应。  相似文献   

2.
王晓 《安全》2010,31(4):36-38
乙腈在常温常压下为无色透明液体,闪点为2℃,燃点524℃,爆炸极限3.0%~16.0%。乙睛易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险,与氧化剂能发生强烈反应,燃烧时有发光火焰,与硫酸、发烟硫酸、氯磺酸、过氯酸盐等反应剧烈。  相似文献   

3.
武深秋 《安全》2004,25(6):35-35
苯是无色透明、有强烈芳香味的易燃液体。其蒸气能与空气形成爆炸性混合物,爆炸极限为1.2%~8%。遇明火、高热能引起燃烧爆炸,与氧化剂发生强烈反应,遇明火会引起回燃。不溶于水,比空气重,比重约为空气的2.7倍,蒸气往往漂浮于地表及下水道、沟渠、厂房死角等处,有潜在的爆炸危险。苯属中等毒类,  相似文献   

4.
全一 《安全与健康》2007,(11):53-53
硫酸有强烈的腐蚀性和吸水性,遇水会发生高热而爆炸.与许多物质,特别是木屑、稻草、纸张等接触会有猛烈反应,放出高热,并可引起燃烧.遇到电石、高氯酸盐、硝酸盐、苦味酸盐、金属粉末及其它可燃物等能猛烈反应,发生爆炸或燃烧.  相似文献   

5.
(接上期)11 2,2’-偶氮二异丁腈风险提示遇明火、高热、摩擦、振动、撞击可能引起激烈燃烧或爆炸。受热时性质不稳定,逐渐分解甚至能引起爆炸。理化特性白色晶体或粉末。不溶于水,溶于乙醇、乙醚、甲苯等。分子量164.24,熔点105℃(分解),相对密度(水=1)1.1。主要用途:作为橡胶、塑料等发泡剂,也用于其它有机合成。危害信息【燃烧和爆炸危险性】  相似文献   

6.
正冷藏或冷冻是当前最常用的食品保鲜手段,由于氨有较好的热力学特性、良好的化学稳定性、单位容积制冷量大、价格低廉和制取方便等优点,目前大多数大中型冷库都是采用氨作为制冷剂。但由于氨本身所具有的可引起化学爆炸、燃烧或氨中毒事故等特性,氨一旦泄漏或发生爆炸,可能给涉氨制冷企业造成严重的人员伤亡和经济损失。近年来,我国多家涉氨制冷企业因氨泄漏而导致生产安全事故。  相似文献   

7.
<正>二氯乙烷概念二氯乙烷为无色或浅黄色透明液体,有特殊芳香气。微溶于水,可混溶于醇、醚、氯仿。其蒸气与空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂能发生强烈反应。受高热分解产生有毒的腐蚀性气体。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源引着回燃。主要用途  相似文献   

8.
氨(NH3)英文名称:Ammonia一、理化特性外观气味:无色气体,具有很刺鼻的臭味。相对密度:蒸气0.6蒋点:-77.7℃沸点:-33.35℃门点:自燃点651.22℃蒸气压:1013kPa(25.7℃)爆炸极限:下限16%,上限25%溶解性:易溶于水,在醇中溶解度中等。危险性:氨或空气与氨的混合物遇火能爆炸,通热放出氢和氢及氮氧化物的有毒烟雾。二、对人体危害急性中毒表现氨对粘膜和皮肤有碱性刺激及腐蚀作用。短期吸入大量氨气后可出现流泪、咽痛、声音嘶哑、咳嗽、痰带血丝、胸闷、呼吸困难,可伴有头晕、头痛、恶心、呕吐、乏力等,可出现紫…  相似文献   

9.
季斌 《劳动保护》2022,(11):44-45
苯为无色透明液体,有强烈芳香味,闪点-11℃,爆炸极限1.2%~8.0%(体积比),高度易燃,苯蒸气与空气能形成爆炸性混合物,遇明火、高热能引起燃烧爆炸,吸入高浓度苯可引起急性中毒。生产、使用苯的车间及贮苯场所应设置泄漏检测报警仪,使用防爆型的通风系统和设备,配备两套以上重型防护服。储罐等容器和设备应设置液位计、温度计,并应装有带液位、温度远传记录和报警功能的安全装置,重点储罐等应设置紧急切断装置。充装时使用万向节管道充装系统,控制流速,且有接地装置,防止静电积聚。  相似文献   

10.
工艺流程中氨泄漏事故后果分类研究   总被引:1,自引:0,他引:1  
氨是重要的化工原料和产品,工艺流程中氨主要以氨气、液氨、氨溶液三种状态存在。氨气、液氨、氨溶液理化特性及危险特性不同,可能造成的事故后果类型不同,分别进行三种相态下氨泄漏的事故情景分析。氨气泄漏主要考虑蒸气云爆炸、中毒,液氨泄漏主要考虑沸腾液体扩展蒸气爆炸、蒸气云爆炸、中毒,氨溶液泄漏主要考虑中毒和腐蚀。运用半球模型和高斯模型计算某尿素企业液氨球罐泄漏的危害范围。半球泄漏模型计算方法较简单,但没有考虑氨本身性质及气象条件等因素;高斯模型计算过程较复杂,其计算结果与风速、大气稳定度等条件相关。该两种方法计算结果对预防氨泄漏事故发生和氨泄漏事故预警均具有一定参考意义,如何提高模拟分析的准确度是今后研究工作的重点。  相似文献   

11.
<正>氨在常温常压下为无色气体,有强烈的刺激性气味。20℃、891k Pa下即可液化,并放出大量的热。主要用作致冷剂及制取铵盐和氮肥。在常压下把氨气冷却到-33.4℃,或在常温下把装在密闭容器的氨气加到一定压力,氨气就会液化,成为液氨。液氨可以用来生产尿素等肥料,制造火箭、导弹的推进剂等;鉴于液氨转化为气体时,能吸收大量的热,亦也被用作冷冻剂。氨有毒,易挥发,人体吸入后,会刺激、腐蚀呼吸道;一旦发生爆炸,液氨瞬间泄出,会立即挥发成气体,与空气形成爆炸性混合物,遇明火、高热引起燃烧爆炸。和空  相似文献   

12.
施倚 《劳动保护》2014,(8):119-119
<正>主持人:我们企业是从事半导体集成电路生产的企业,在生产过程中,需要使用各种危险物品,请问:按物质的燃烧特性,危险物品分为哪几类?深圳任济民任济民先生:按燃烧特性,凡有火灾或爆炸危险的物品统称为危险品。可分为以下7类:1.爆炸物品。凡是受到高热、摩擦、冲击等外力作用或受其他因  相似文献   

13.
《劳动保护》2002,(11):50-51
①按燃烧性,危险物品分为几类?按燃烧性,凡有火灾或爆炸危险的物品统称为危险物品,可分为以下7类:1.爆炸物品。凡是受到高热、摩擦、冲击等外力作用或受其他因素激发,能在很短时间内发生剧烈化学反应,放出大量气体和热量,同时伴有巨大声响而爆炸的物质,就是爆炸物品。如:雷管、炸药、鞭炮药等。2.易燃和可燃液体。这类物质极易挥发和燃烧。如汽油、煤油、溶剂油等。3.易燃和助燃气体。这类物质受热、受冲击或遇火花能燃烧或发生爆炸,或有助燃能力,能扩大火灾。如氢、氯、煤气、乙炔等。4.自燃物品。不需要外界火源的作用,由于本身受空气氧…  相似文献   

14.
工业生产中爆炸事故往往是由多元可燃气体与空气混合后遇到明火而引起的,为研究乙烷(C2H6)、乙烯(C2H4)、一氧化碳(CO)、氢气(H2)对甲烷爆炸特性的影响,选取多组分可燃气体甲烷爆炸压力特性和自由基发射光谱的影响进行研究,利用陕西省工业过程安全与应急救援工程技术研究中心重点实验室搭建的多功能球形气体/粉尘爆炸实验装置和单色仪进行爆炸实验测试,同步采集时间—压力曲线、中间产物(OH,CH2O)的发射光谱信号,考察多组分可燃气体浓度对甲烷爆炸压力特性和中间产物的影响。结果表明:在富氧状态下,多组分可燃气体加剧了甲烷—空气混合体系的爆炸剧烈程度,随着体系中氧气含量的减少、由富氧状态变为贫氧状态、促进作用逐渐减弱转变为阻尼作用,爆炸压力特性与中间产物发射光谱参数的影响规律基本保持一致,均呈高度正相关;多元混合体系爆炸剧烈程度越大,自由基发射光谱达到峰值的速度越快,自由基更早、更快的积累是加剧爆炸程度的原因之一。  相似文献   

15.
爆炸伤指由于爆炸造成的人体损伤,广义上的爆炸分化学性爆炸和物理性爆炸两类.前者主要是由炸药类化学物引起,后者由如锅炉、氧气瓶、煤气罐、高压锅等超高压气体引起.另外,局部空气中有较高浓度的粉尘,在一定条件下也能引起爆炸.  相似文献   

16.
一、概述 爆炸极限是表示可燃气体、蒸气和可燃粉尘危险特性的重要参数之一,爆炸极限范围越宽,其危险性越大。对爆炸极限影响因素的了解,有助于搞好安全管理及安全生产,能有效防止和遏制燃烧爆炸事故的发生。  相似文献   

17.
酒精酒精是乙醇的俗称,它在常温、常压下是一种易燃、易挥发的无色透明液体。酒精蒸汽与空气可能形成爆炸性混合物,遇明火、高热会引起爆炸燃烧。家里用酒精消毒,必须采取以下安全措施。  相似文献   

18.
为了将本质安全原理中的缓和原则与粉尘爆炸事故的风险控制联系起来,利用Swiek20 L球形爆炸装置考察了烟煤粉、甘薯粉和镁粉的最大爆炸压力、最大爆压上升速率和爆炸下限等特性,重点考察了点火能量、环境压力以及添加惰化剂等因素的影响。结果表明:降低点火能量能有效缩减粉尘可燃浓度范围,提高粉尘爆炸下限;爆炸危害正相关于环境压力;碳酸钙和碳酸氢钠能有效抑制烟煤尘爆炸,且碳酸钙抑爆效果更好;氯化钾对镁尘爆炸动力学特性的抑制效果更好,而碳酸钙对镁尘爆炸热力学特性的抑制效果更好,且小粒径的惰化剂表现出更好的抑爆炸能力。降低点火能量、控制环境压力和添加惰化剂均可降低粉尘爆炸危害,有助于控制粉尘爆炸风险。  相似文献   

19.
蒋培科 《安全》2011,32(7):4-6
氨属于危险化学品,具有化学品特有的火灾爆炸和毒害危险性,在化工厂使用比较普遍,但作业人员却往往容易忽视其危险性。而一旦泄漏发生爆炸事故,将对现场作业人员和厂区建构筑物造成很大的危害,各地发生的氨泄漏事故案例并不少,所造成的危害也足够人们引起高度重视。如何正确识别氨特有的危险性,采取行之有效的安全技术措施,尽量避免危险事故的发生,减少对人身安全的威胁,已经成为企业管理者和政府安全监管部门的重要课题。本文根据氨的化学性质,假设氨发生泄漏,采用泄漏扩散模型和蒸气云爆炸后果计算模型进行模拟分析,计算其泄漏扩散范围的速度和爆炸时产生的破坏半径,并提出相应的安全对策措施,为企业决策者和政府部门提供参考。  相似文献   

20.
何兴菊 《安全》2009,30(4):26-26
近年来,一些氧气站未按规定检测氧气瓶内残留气体,在使用过程中氧气瓶遇激发能引起化学性爆炸事故,给国家、集体的财产造成损失,给个人和家庭带来不幸。下面就几起爆炸事故案例进行分析,针对气瓶充装站操作者在工作中普遍存在的问题,提出防范、减少此类爆炸事故发生的看法和建议,希望能对遏制此类爆炸事故发生有所帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号