首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Leaching and tracer experiments in batches at L/S 20 were performed with 3-month-old MSWI bottom ash separated into eight different particle sizes. The time-dependent leaching of major elements (Ca(2+), K(+), Na(+), Cl(-) and SO(4)(-2)) was monitored for up to 747 h. Physical properties of the particles, the specific surface (BET), pore volume and pore volume distribution over pore sizes (BJH) were determined for all particle classes by N(2) adsorption/desorption experiments. Some common features of physical pore structure for all particles were revealed. The specific surface and the particle pore volume were found to be negatively correlated with particle size, ranging from 3.2 m(2)/g to 25.7 m(2)/g for the surface area and from 0.0086 cm(3)/g to 0.091 cm(3)/g for the pore volume. Not surprisingly, the specific surface area was found to be the major material parameter that governed the leaching behavior for all elements (Ca(2+), K(+), Na(+), Cl(-) and SO(4)(-2)) and particle sizes. The diffusion resistance was determined independently by separate tracer (tritium) experiments. Diffusion gave a significant contribution to the apparent leaching kinetics for all elements during the first 10-40 h (depending on the particle size) of leaching and surface reaction was the overall rate controlling mechanism at late times for all particle sizes. For Ca(2+) and SO(4)(-2), the coupled effect of diffusion resistance and the degree of under-saturation in the intra particle pore volume was found to be a major rate limiting dissolution mechanism for both early and late times. The solubility control in the intra particulate porosity may undermine any attempt to treat bottom ash by washing out the sulfate. Even for high liquid/solid ratios, the solubility in the intra-particular porosity will limit the release rate.  相似文献   

2.
Animal wastes are a major contributor of nutrients and enteric microorganisms to surface water and ground water. Polyacrylamide (PAM) mixtures are an effective flocculent, and we hypothesized that they would reduce transport of microorganisms in flowing water. After waste water running at 60.0 1 min(-1) flowed over PAM + Al2(SO4)3, or PAM + CaO in furrows, total coliform bacteria (TC) and fecal coliform bacteria (FC) were reduced by 30-50% at 1 and 50 m downstream of the treatments compared to the control. In a column study, PAM + Al2(SO4)3, and PAM + CaO applied to sandy, sandy loam, loam, and clay soils reduced NH4+ and ortho-P concentrations in leachate compared to the source waste water and the control. PAM + Al2(SO4)3 and PAM + CaO applied to sandy, sandy loam and loam soils reduced both total and ortho-P, concentrations in leachate compared to he source wastewater and control treatment. In a field study, PAM + Al2(SO4)3, or PAM + CaO treatments did not consistently reduce NH4+, NO3-, ortho-P, and total P concentrations in wastewater flowing over any soil compared to inflow wastewater or the control treatment. With proper application PAM + Al2(SO4)3 and PAM + CaO may be able to reduce the numbers of enteric bacteria in slowly flowing wastewater running off animal confinement areas, reducing the amount of pollutants entering surface water and groundwater.  相似文献   

3.
The effects of chronically enhanced (NH(4))(2)SO(4) deposition on ion concentrations in soil solution and ionic fluxes were investigated in a Picea abies plot at Grizedale forest, NW England. Soil cores closed at the base and containing a ceramic suction cup sampler were 'roofed' and watered every 2 weeks with bulk throughfall collected in the field. Treatments consisted of the inclusion of living roots from mature trees in the lysimeters and increasing (NH(4))(2)SO(4) deposition (NS treatment) to ambient + 75 kg N ha(-1) a(-1). Rainfall, throughfall and soil solutions were collected every 2 weeks during 18 months, and analysed for major cations and anions. NO(3)(-) fluxes significantly increased following NS treatment, and were balanced by increased Al(3+) losses. Increased SO(4)(2-) concentrations played a minor role in controlling soil solution cation concentrations. The soil exchange complex was dominated by Al and, during the experimental period, cores of all treatments 'switched' from Ca(2+) to Al(3+) leaching, leading to mean [Formula: see text] molar ratios in soil solution of NS treated cores of 0.24. The experiment confirmed that the most sensitive soils to acidification (through deposition or changing environmental conditions) are those with low base saturation, and with a pH in the lower Ca, or Al buffer ranges.  相似文献   

4.
Kim SK  Kim KH  Ihm SK 《Chemosphere》2007,68(2):287-292
The nature of active copper species is well-known to vary with copper loading, i.e., isolated Cu(2+) to bulk CuO. In this work, however, the effect of copper loading on the activity and the selectivity was investigated for the wet oxidation of phenol over CuO(x)/Al(2)O(3) catalysts. The activity and the mineralization selectivity of the catalysts increased with copper loading up to 7wt% and remained almost the same at a higher loading. The optimum copper loading was about 7wt% for the wet oxidation of phenol over CuO(x)/Al(2)O(3) catalysts in this work. The nature of copper species with different loading was characterized with TPR, XRD, and XANES. The chemical states of copper in the CuO(x)/Al(2)O(3) catalysts were confirmed as varying with copper loading: isolated Cu(2+) ions for 1wt%; highly dispersed Cu(2+) cluster for 5wt% and 7wt%, and bulk CuO for 10-25wt%. The stability of the CuO(x)/Al(2)O(3) catalysts with different copper loading was also studied with respect to carbonaceous deposits and copper leaching.  相似文献   

5.
A chemical analysis of suspended particulate matter (SPM) collected near the world famous Taj Mahal monument at Agra has been carried out. SPM samples collected on glass fibre filters were analysed for water-soluble sulphate, nitrate, chloride and ammonium ions. The data were derived from over 200 samples (each of 24 h), collected continuously during the winter periods (October through to March) of 1984-1985 and 1985-1986. The SO(4)(2-) and NO(3)(-) components are acidic in nature causing corrosion and effects on visibility, and so were studied in more detail. Mean values for SO(4)(2-) and NO(3)(-) derived from two-year data are 7.2 microg m(-3) and 8.2 microg m(-3), respectively. The SO(4)(2-)/SO(2) and NO(3)(-)/NO(2) ratiosobserved indicate faster conversion of SO(2) to SO(4)(2-) than NO(2) to NO(3)(-), the maximum levels being in January. Thus, both SO(4)(2-) and NO(3)(-) results appear to offer more promising indices of air quality than do SPM data alone.  相似文献   

6.
The effect of ions, including Na(+), Mg(2+), Ca(2+), Cl(-), SO(4)(2-) and CO(3)(2-), at various initial concentrations, on the kinetics of cadmium sorption by chitin was studied at 25 degrees C and free initial pH solution in batch conditions. The presence of these ions in solution was found to inhibit the uptake of cadmium by chitin to different degrees: sodium and chloride ions have no significant effect. For Mg(2+), Ca(2+), SO(4)(2-) and CO(3)(2-) ions, the effects ranged from a large inhibition of cadmium by Ca(2+) and CO(3)(2-) to a weak inhibition by Mg(2+) and SO(4)(2-). These results indicate that the uptake sites of these ions are the same. No ion was found to enhance cadmium uptake. The results also showed that the kinetics of sorption are best described by a pseudo second-order expression than a first or second-order model.  相似文献   

7.
This work focuses on bulk deposition in a rural area located around a large coal-fired power station in northeast Spain. Deposition chemistry was characterised by high concentrations of SO(4)(2-), Ca(2+) and NH(4)(+), which were relatively high when compared with other rural areas. Monthly bulk deposition evolution of major ions was the result of two superimposed patterns: one pattern related to the volume of precipitation and the other showed the seasonal influence of the major ionic sources. A major local origin was attributed to bulk deposition of SO(4)(2-), NH(4)(+), and Ca(2+), whereas a relatively higher contribution of an external source was deduced for NO(3)(-), Na(+) and Cl(-). The SO(4)(2-) concentrations showed a significant correlation with the local SO(2) emissions. High levels of Ca(2+) were due to the high alkalinity of soils in the study area, although an external origin was attributed to the frequent air mass intrusions from the Sahara. Sources of NH(4)(+) were related to intensive livestock farming in the area. Total suspended particles exert a marked influence over bulk deposition and neutralisation. Thus, despite the high emissions of SO(2) in the area, neutral pH values have always been attained given that the concentrations of Ca(2+) and NH(4)(+) account for the total neutralisation of NO(3)(-) and SO(4)(2-).  相似文献   

8.
Ammonium (NH(4)(+)) concentrations in air and precipitation at the Institute of Ecosystem Studies (IES) in southeastern New York, USA declined over an 11-year period from 1988 to 1999, but increased from 1999 to 2001. These trends in particulate NH(4)(+) correlated well with trends in particulate SO(4)(2-) over the 1988-2001 period. The NH(4)(+) trends were not as well correlated with local cattle and milk production, which declined continuously throughout the period. This suggests that regional transport of SO(4)(2-) may have a greater impact on concentrations of NH(4)(+) and subsequent deposition than local agricultural emissions of NH(3). Ammonium concentrations in precipitation correlated significantly with precipitation SO(4)(2-) concentrations for the 1984-2001 period although NH(4)(+) in precipitation increased after 1999 and SO(4)(2-) in precipitation continued to decline after 1999. The correlation between NH(4)(+) and SO(4)(2-) was stronger for particulates than for precipitation. Particulate NH(4)(+) concentrations were also correlated with particulate SO(4)(2-) concentrations at 31 of 35 eastern U.S. CASTNet sites that had at least 10 years of data. Air concentrations of NH(4)(+) and SO(4)(2-) were more strongly correlated at the sites that were located within an agricultural landscape than in forested sites. At most of the sites there was either no trend or a decrease in NH(4)(+) dry deposition during the 1988-2001 period. The sites that showed an increasing trend in NH(4)(+) dry deposition were generally located in the southeastern U.S. The results of this study suggest that, in the northeastern U.S., air concentrations of NH(4)(+) and subsequent deposition may be more closely linked to SO(4)(2-) and thus SO(2) emissions than with NH(3) emissions. These results also suggest that reductions in S emissions have reduced NH(4)(+) transport to and NH(4)(+)-N deposition in the Northeast.  相似文献   

9.
The chemical composition of throughfall and canopy leaching, as well as the acid neutralizing capacity and alkalinity depended on the age of Norway spruce (Picea abies Karst) stands and season of the year. A higher amount of sulphur and strong acids was deposited to the soil in the older age classes. Concentrations of SO(4)(2)(-), K(+), H(+), Mn(2+), Fe(2+) and Zn(2+) in throughfall were higher than in bulk precipitation in any season. This suggests that these ions were washed out or washed from the surface of needles and/or barks. The other ions NO(3)(-), NH(4)(+), Ca(2+) and Mg(2+) were retained by the canopy, in particular Ca(2+) and Mg(2+) during the growing season in young stands. Principal component analysis identified five factors responsible for the data structure and suggested the major anthropogenic emission sources were acidic emission (SO(4)(2)(-)+NO(3)(-)), heavy metals-dust particles (Fe(2+)+Mn(2+)+Zn(2+)), ammonium (NH(4)(+)) and H(+), while the natural-origin emission was mineral dust (Na(+)+K(+)+Ca(2+)+Mg(2+)).  相似文献   

10.
A novel dual coagulant system of polyaluminum chloride sulfate (PACS) and polydiallyldimethylammonium chloride (PDADMAC) was used to treat natural algae-laden water from Meiliang Gulf, Lake Taihu. PACS (Aln(OH)mCl3n-m-2k(SO4)k) has a mass ratio of 10 %, a SO4 2?/Al3 + mole ratio of 0.0664, and an OH/Al mole ratio of 2. The PDADMAC ([C8H16NCl]m) has a MW which ranges from 5?×?105 to 20?×?105 Da. The variations of contaminants in water samples during treatments were estimated in the form of principal component analysis (PCA) factor scores and conventional variables (turbidity, DOC, etc.). Parallel factor analysis determined four chromophoric dissolved organic matters (CDOM) components, and PCA identified four integrated principle factors. PCA factor 1 had significant correlations with chlorophyll-a (r?=?0.718), protein-like CDOM C1 (0.689), and C2 (0.756). Factor 2 correlated with UV254 (0.672), humic-like CDOM component C3 (0.716), and C4 (0.758). Factors 3 and 4 had correlations with NH3-N (0.748) and T-P (0.769), respectively. The variations of PCA factors scores revealed that PACS contributed less aluminum dissolution than PAC to obtain equivalent removal efficiency of contaminants. This might be due to the high cationic charge and pre-hydrolyzation of PACS. Compared with PACS coagulation (20 mg L?1), the removal of PCA factors 1, 2, and 4 increased 45, 33, and 12 %, respectively, in combined PACS–PDADMAC treatment (0.8 mg L?1?+?20 mg L?1). Since PAC contained more Al (0.053 g/1 g) than PACS (0.028 g/1 g), the results indicated that PACS contributed less Al dissolution into the water to obtain equivalent removal efficiency.  相似文献   

11.
Effect of vegetation type on throughfall deposition and seepage flux   总被引:1,自引:0,他引:1  
This paper compares different vegetation types (coniferous and deciduous forest, grassed and pure heathland) in terms of input (throughfall deposition) and output (seepage flux) in a region with intermediate nitrogen load (+/-20kg Nha(-1)y(-1) via bulk precipitation) in comparable conditions in north Belgium. Coniferous forest (two plots Pinus sylvestris and two plots Pinus nigra) received significantly higher nitrogen and sulphur throughfall deposition than deciduous forest and heathland. Grassed and pure heathland had significantly highest throughfall quantities of Ca(2+) and Mg(2+), respectively. The observed differences in throughfall deposition between the different vegetation types were not univocally reflected in the ion seepage flux. Considerable seepage fluxes of NO(3)(-), SO(4)(2-), Ca(2+) and Al(III) were only found under the P. nigra plots. We discuss our hypothesis that the P. nigra forests already evolved to a situation of N saturation, while the other vegetation types did not.  相似文献   

12.
To evaluate the changes in sulphur pools in response to acidic deposition, two studies were made-one in southwest Sweden where podzolic B horizons originally sampled in 1951 were resampled in 1989. At the Norrliden site, northern Sweden, sulphur pools in control plots were compared to plots that had been subjected to H(2)SO(4) application between 1971 and 1976. The results show that in southwest Sweden neither organic S nor extractable SO(4)(2-) increased significantly over the 38-year period, despite a decreasing pH and a high S deposition. At Norrliden, about 37% of the applied S was still remaining in the upper and central parts of the Bs horizon, most of which was inorganic sulphate. These contrasting results are explained by intrinsic differences in the soil organic carbon status between the sites-in southwest Sweden, organic carbon concentrations were high which inhibited SO(4)(2-) adsorption. Low organic carbon concentrations and high extractable Fe/Al concentrations promoted SO(4)(2-) adsorption and caused a low subsequent SO(4)(2-) desorption rate at the Norrliden site. The results suggest that sulphate adsorption may be an important mechanism which delays the response in soil chemistry to H(2)SO(4) deposition, provided that soil organic carbon concentrations are low. Organic S retention was not shown to be an important S retention mechanism in any of the sites studied.  相似文献   

13.
以某制浆造纸厂生化出水Fenton/絮凝深度处理工艺长期运行数据为依据,系统分析了H2O2、废酸液(FeSO4含量约8%)、硫酸铝、PAM及氧化钙等处理药剂用量与水量、进水负荷和COD去除量之间的关系。结果表明,H2O2、废酸液、硫酸铝、PAM及氧化钙的单位水量平均投加量分别为0.05、2.18、0.07、0.0075和0.27 kg/m3,而去除单位COD的药剂平均消耗量分别为0.20、8.48、0.27、0.029和1.06 kg/(kg COD);H2O2、废酸液、硫酸铝和氧化钙的用量随进水负荷的增大而增加,而PAM随进水负荷的变化较小。H2O2和FeSO4的投加摩尔比(MH2O2/Fe2+)主要集中在1.0-2.0之间,其中在1.0-1.6之间的累积频率达到93%。该工艺的出水COD和SS分别为65-100 mg/L和20-30 mg/L,达到《制浆造纸工业水污染物排放标准》(GB 3544-2008)排放要求。废水深度处理成本约为1.01元/m3,其中药剂费用约0.58元/m3,占56.98%。  相似文献   

14.
Hsu JC  Lin CJ  Liao CH  Chen ST 《Chemosphere》2008,72(7):1049-1055
This study describes the competitive effects of selected ions and natural organic matter on As(V) removal using reclaimed iron-oxide coated sands (RIOCS) in the single- and multi-ion systems. A 2(7-3) factional factorial experimental design (FFD) was employed for screening main competitive factors in this adsorption process. As a result, the inhibitive competition effects of the anions on As(V) removal in the single ion system were in the following sequence: PO(4)(3-)>SiO(3)(2-)>HCO(3)(-)>humic acid (HA)>SO(4)(2-)>Cl(-), whereas the cation Ca(2+) was observed to enhance the As(V) removal. In addition, the optimum initial pH for As(V) removal in single-ion system was 5. Based on the estimates of major effects and interactions from the FFD, PO(4)(3-), SiO(3)(2-), Ca(2+) and HA were important factors on As(V) removal in the multi-ion system. The promoters for the As(V) removal were found to be Ca(2+) and, to a lesser extent, SO(4)(2-). The competitive effects of these ions on As(V) removal were in the order of PO(4)(3-), SiO(3)(2-), HA, HCO(3)(-), and Cl(-). In the single ion system, the efficiencies of As(V) removal range from 75% to 96%, much higher than those in the multi-ion system (44%) at the initial pH 5. Clearly, there were some complex anion interactions in the multi-ion system. To promote the removal of As(V) by RIOCS, it is proposed to lower the pH in the single-ion system, while in the multi-ion system, the increase of the Ca(2+) concentration, or decreases of PO(4)(3-), SiO(3)(2-) and HA concentrations is suggested.  相似文献   

15.
Usefulness of a method of artificial foliage was tested for estimation of total ionic inputs from the atmosphere to forest ecosystems, as well as of processes relevant to ionic fluxes through tree canopies: uptake, leaching, passive flow. The studies were performed in Norway spruce and European beech stands in Karkonosze Mountains (Poland), in 1995-97. Artificial leaves of increasing leaf area index: 0, 2, 6 and 12 m(2) m(-2 )were placed above standard rain collectors. It has been found that total atmospheric fluxes of H(+), NH(4)(+), Ca(2+), Mg(2+), Pb(2+), NO(3)(-) and SO(4)(2-) rose as surface area of the foliage increased. This was especially true for nitrate, sulphate and ammonium. No such relationship was found for K(+), Na(+), Zn(2+), Cd(2+), Cu(2+) and PO(4)(3-). The increase in anion fluxes exceeded that in neutralising cations (NH(4)(+), Na(+), K(+), Mg(2+), Ca(2+)) and led to progressive rainwater acidification with the increase in the foliage area. An analysis of net canopy exchange (atmospheric input-throughfall flux) has shown that SO(4)(2-), PO(4)(3-), Na(+), Ca(2+) and Cu(2+) flowed passively through the tree crowns; NH(4)(+), NO(3)(-), Zn(2+), Cd(2+) and occasionally Pb(2+) were efficiently absorbed, whereas K(+) was leached from the canopies. Beech was more effective in modifying ionic pool from the atmosphere than spruce. This related to H(+) (greater absorption) and Mg(2+) (greater leaching). It has been demonstrated that the results concerning trends in net canopy exchange and produced by the simple method of artificial foliage are comparable to more sophisticated techniques of the measurements. This proves the method to be useful.  相似文献   

16.
The synthesis of Mg(2+)-Al(3+)-SO(4)(2-)-hydrotalcite-type compound from the acid wastewaters of the aluminium anodising industry has been studied as a possible way of reducing the emissions to the environment, recovering simultaneously resource materials as a valuable mineral. The process of synthesis was carried out using rinse wastewater solutions generated from the anodising treatment when a cascade rinsing system is employed. The method of co-precipitation at constant pH was employed for such a process, using MgO as a source of magnesium. The synthesis was studied as a function of precipitation pH (8-10) and flow rate of reagent mixture (5-30 ml min(-1)). High pH of precipitation and low flow rate of reagent mixture (5-15 ml min(-1)) were found optimal to improve the crystallinity of the synthesised product. The mineral characterisation was performed using X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and differential thermal analysis, all of which indicated characteristics typical of the desired compound. Almost 100% of the aluminium initially present in the acid wastewater solutions was recovered in the form of Mg(2+)-Al(3+)-SO(4)(2-)-hydrotalcite-type compound.  相似文献   

17.
采用共沉淀法制备了纳米四氧化三铁(Fe3O4),并进行必要表征,制备所得的Fe3O4粒径与商品Fe3O4相当,均为15~20nm。在中性、碱性条件下,制备的材料表面带负电,而在弱酸性条件下,则带正电。制备出的Fe3O4与商品的Fe3O4一样,对对硝基甲苯具有相同的机械催化降解效率,均符合准一级反应动力学。  相似文献   

18.
Cheung KH  Gu JD 《Chemosphere》2003,52(9):1523-1529
An enrichment consortium and an isolate (isolate TKW) of sulfate-reducing bacteria (SRB) have been obtained from metal-contaminated marine sediments of Tokwawan, Hong Kong SAR. These bacteria are capable of reducing highly toxic and soluble hexavalent chromium (Cr6+) enzymatically into less toxic and insoluble trivalent chromium (Cr3+) under anaerobic conditions. The enrichment consortium almost completely (98.5%) reduced 0.6 mM Cr6+ in 168 h and the rate of reduction was 0.5 g (Cr6+) g(protein)(-1)h(-1). In comparison, with Cr6+ as the sole electron acceptor (as a surrogate for SO4(2-)), isolate TKW reduced 94.5% of the initially added Cr6+ (0.36 mM) in 288 h, with the rate of 0.26 g (Cr6+) g(protein)(-1)h(-1). Adsorption by these bacteria was not the major mechanism contributing to the transformation or removal of Cr6+. The biomass and Cr3+ in the cultures increased simultaneously with the reduction of Cr6+. These indigenous SRB might have potential application in bioremediation of metal contaminated sediments.  相似文献   

19.
Fe(3+)-, Cr(3+)-, Cu(2+)-, Mn(2+)-, Co(2+)-, and Ni(2+)-exchanged Al2O3-pillared interlayer clay (PILC) or TiO2-PILC catalysts are investigated for the selective catalytic reduction (SCR) of nitric oxide by ammonia in the presence of excess oxygen. Fe(3+)-exchanged pillared clay is found to be the most active. The catalytic activity of Fe-TiO2-PILC could be further improved by the addition of a small amount of cerium ions or cerium oxide. H2O and SO2 increase both the activity and the product selectivity to N2. The maximum activity on the Ce-Fe-TiO2-PILC is more than 3 times as active as that on a vanadium catalyst. Moreover, compared to the V2O5-WO3/TiO2 catalyst, the Fe-TiO2-PILC catalysts show higher N2/N2O product selectivities and substantially lower activities (by approximately 85%) for SO2 oxidation to SO3 under the same reaction conditions. A 100-hr run in the presence of H2O and SO2 for the CeO2/Fe-TiO2-PILC catalyst showed no decrease in activity.  相似文献   

20.
Evaluation of accelerated dechlorination of p,p'-DDT in acidic paddy soil   总被引:5,自引:0,他引:5  
Yao FX  Jiang X  Yu GF  Wang F  Bian YR 《Chemosphere》2006,64(4):628-633
The reductive dechlorination and behavior of p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) was investigated in a paddy soil. Treatment with 5% (w/w) metallic iron (Fe(0)) resulted in sharp decrease of p,p'-DDT, whereas there was no extra effect when 2% (w/w) aluminum sulfate (Al(2)(SO(4))(3)) was added to the Fe(0) treatment. These results suggest that Fe(0) could effectively promote the reductive dechlorination of p,p'-DDT and its metabolites while Al(2)(SO(4))(3) did not show any effect on those processes. Furthermore, p,p'-DDT and its daughter compounds inhibited holistic soil respiration greatly at first but could be metabolized by certain species of indigenous microorganisms after a period of adaptation time in the soil. When treated with Fe(0), the polluted soil produced much less CO(2) while the addition of Al(2)(SO(4))(3) counteracted its negative effect to much extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号