首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Symbioses between dinoflagellates in the genus Symbiodinium (commonly referred to as zooxanthellae) and scleractinian corals are an essential feature for the maintenance of coral reefs. The fine-scale diversity and population structure of the zooxanthellae inhabiting the coral Pocillopora meandrina, a major reef building species in Polynesia, was examined. We used two polymorphic microsatellites to study seven populations from the South Pacific, whose host structuring has been previously investigated. The symbionts of P. meandrina showed high levels of diversity, with more than one zooxanthella genotype being identified in most of the host individuals. Genetic differentiation between symbiont populations was detected at a large scale (2,000 km) between the Tonga and the Society Archipelagos. Within the Society Archipelago, the two most remote populations (Tahiti and Bora-Bora; 200 km apart) were only weakly differentiated from each other. Statistical tests demonstrated that the symbiont genetic structure was not correlated with that of its host, suggesting that dispersal of the symbionts, whether they are transported within a host larva or free in the water, depends mainly on distance and water currents. In addition, the data suggests that hosts may acquire new symbionts after maternal transmission, possibly following a disturbance event. Lastly, the weak differentiation between symbiont populations of P. verrucosa and P. meandrina, both from Moorea, indicated that there was some host-symbiont fine-scale specificity detectable at the genetic resolution offered by microsatellites.  相似文献   

2.
Marine sponges harbor dense and highly diverse bacterial communities, and some percentage of the microflora appears to be specialized for the sponge habitat. Bacterial diversity was examined in Chondrilla nucula Schmidt to test the hypothesis that some subset of sponge symbiont communities is highly similar regardless of the species of host or habitat requirements of the host. C. nucula was collected from a mangrove channel on Lower Matcumbe Key in the Florida Keys (25°53′N; 80°42′W) in August 1999. Domain-specific universal bacterial primers were used to amplify the 16S rDNA gene from genomic DNA that had been extracted from sponges and the surrounding water. An RFLP technique was used to assess diversity of sponge-associated and environmental bacterial communities. The clone library from C. nucula contained 21 operational taxonomic units (OTUs). None of the 53 OTUs from adjacent water samples were found in the C. nucula library indicating that a distinct community was present in the sponge. Sequence analysis indicated that C. nucula harbors a microbial community as diverse as the microbes from other sponges in different habitats around the world. Phylogenetic analysis placed several C. nucula clones in clades dominated by bacteria that appear to be sponge specialists (e.g., Acidobacteria, Bacteroidetes, and Cyanobacteria). Proportional representation of major bacterial taxonomic groups represented in symbiont communities was compared as a function of geographic location of sponge hosts. This study supports the hypothesis that sponges from different oceans existing in dissimilar habitats harbor closely related bacteria that are distinct from other bacterial lineages and appear specialized for residing within sponges.  相似文献   

3.
Zooxanthellae in different stages of two opposite processes, degradation and proliferation, were found in the planulae of hermatypic corals. The formation of new zooxanthellae is balanced by degraded zooxanthellae in newly released planulae. The number of dividing zooxanthellae and degraded zooxanthellae during the day amounted to approximately 2 to 3% of the standing stock. In settled planulae and particularly in motionless planulae of Stylophora pistillata (Esper, 1797), the degraded zooxanthellae outnumbered proliferous zooxanthellae. The proliferation and degradation of zooxanthellae and the extrusion of degraded remnants of zooxanthellae are significantly phased. Swimming planulae are more autotrophic than motionless planulae. The physiological parameters of settled planulae with exoskeleton are similar to those of adult polyps. The significance of zooxanthella degradation in the vital functions of planulae is discussed. We suggest that the degradation of zooxanthellae in planulae occurs by the digestion of symbionts by host cells. Received: 5 March 1997 / Accepted: 6 August 1997  相似文献   

4.
In the Red Sea, the zooxanthellate sponge Cliona vastifica (Hancock) is mainly present at >15 m depth or in shaded areas. To test whether its scarcity in unshaded areas of shallower waters is linked to the functional inefficiency of its photosymbionts at high irradiances, sponges were transferred from 30 m to a six times higher light regime at 12 m depth, and then returned to their original location. During this time, photosynthetic responses to irradiance were measured as rapid light curves (RLCs) in situ by pulse amplitude modulated (PAM) fluorometry using a portable underwater device, and samples were taken for microscopic determinations of zooxanthellar abundance. The zooxanthellae harboured by this sponge adapted to the higher irradiance at 12 m by increasing both their light saturation points and relative photosynthetic electron transport rates (ETRs). The ETRs at light saturation increased almost fourfold within 15–20 days of transfer to the shallower water, and decreased back to almost their original values after the sponges were returned to 30 m depth. This, as well as the fact that the photosynthetic light responses within an individual sponge were in accordance with the irradiance incident to specific surfaces, shows that these photosymbionts are highly adaptable to various irradiances. There was no significant change in the number of zooxanthellae per sponge area throughout these experiments, and the different photosynthetic responses were likely due to adaptations of the photosynthetic apparatus within each zooxanthella. In conclusion, it seems that parameters other than the hypothesised inability of the photosymbionts to adapt adequately to high light conditions are the cause of C. vastifica's rareness in unshaded shallow areas of the Red Sea. Received: 25 April 2000 / Accepted: 13 October 2000  相似文献   

5.
Marine sponges can host a variety of cyanobacterial and bacterial symbionts, but it is often unclear whether these symbionts are generalists that occur in many host species or specialists that occur only in certain species or populations of sponges. The filamentous cyanobacterium Oscillatoria spongeliae is found in the sponges Dysidea n. sp. aff. herbacea 1A and 1B, and similar cyanobacteria are found in D. n. sp. aff. granulosa. We amplified and sequenced sponge nuclear ribosomal DNA (rDNA) and cyanobacterial 16S rDNA from specimens of these three sponges. We then used these sequences to construct phylogenies for host sponges and their symbiotic cyanobacteria. Each of these three sponge species hosts a distinct cyanobacterial clade, suggesting a high degree of host specificity and potential coevolution between symbiotic cyanobacteria and their host sponges.  相似文献   

6.
Cyanobacterial symbionts in the sponge Diacarnus erythraenus from the Red Sea were identified in both adult sponges and their larvae by 16S rDNA sequencing. A single cyanobacterial type was found in all samples. This cyanobacterial type is closely related to other sponge cyanobacterial symbionts. The cyanobacterial rDNA, together with the morphological analysis by electron and fluorescence microscopy, provided evidence for vertical transmission of the symbionts in this sponge. In addition, we show phenotypic plasticity of the symbionts inside the sponge, probably as a result of variability in light availability inside the sponge tissue. Finally, the reproduction of Diacarnus erythraenus is also described.Matan Oren, Laura Steindler have contributed equally to the work.  相似文献   

7.
We measured the relationship between symbiont diversity, nutritional potential, and symbiotic success in the cnidarian–dinoflagellate symbiosis, by infecting aposymbiotic (i.e. symbiont-free) specimens of the model sea anemone Aiptasia sp. with a range of Symbiodinium types. Four cultured heterologous Symbiodinium types (i.e. originally isolated from other host species) were used, plus both cultured and freshly isolated homologous zooxanthellae (i.e. from Aiptasia sp.). Rates of photosynthesis, respiration, and symbiont growth were measured during symbiosis establishment and used to estimate the contribution of the zooxanthellae to the animal’s respiratory carbon demands (CZAR). Anemones containing Symbiodinium B1 (both homologous and heterologous) tended to attain higher CZAR values and hence benefit most from their symbiotic partners. This was despite Symbiodinium B1 not achieving the highest cell densities, though it did grow more quickly during the earliest stages of the infection process. Rather, the heterologous Symbiodinium types A1.4, E2, and F5.1 attained the highest densities, with populations of E2 and F5.1 also exhibiting the highest photosynthetic rates. This apparent success was countered, however, by very high rates of symbiosis respiration that ultimately resulted in lower CZAR values. This study highlights the impact of symbiont type on the functionality and autotrophic potential of the symbiosis. Most interestingly, it suggests that certain heterologous symbionts may behave opportunistically, proliferating rapidly but in a manner that is energetically costly to the host. Such negative host–symbiont interactions may contribute to the host–symbiont specificity seen in cnidarian–dinoflagellate symbioses and potentially limit the potential for partner switching as an adaptive mechanism.  相似文献   

8.
The population dynamics of zooxanthellae living in the mantle of a giant clam, Tridacna derasa, was studied. The giant clams with shell lengths of 5 to 6 cm which had been reared in the Palau Mariculture Demonstration Center, in the Republic of Palau, were transferred to aquaria on deck of the R.V. “Sohgen-maru” and kept in running sea water at 29 to 30 °C. Two clams were removed from the aquaria, and zooxanthellae in the mantle were isolated every 2 h for 24 h. Numbers of the zooxanthellae in or not in the cell division stage were counted for calculations of the zooxanthellae population in the mantle and their mitotic index (MI). The MI increased after sunset and reached the maximum values of 6.1 to 11.5% at 03:00 to 05:00 hrs. The specific growth rate, μ, estimated from the MI was 0.083 to 0.14 d−1. Five clams were kept in each of 2 Plexiglas containers in the aquarium for collection of the discharged feces every 3 to 4 h. The discharged zooxanthellae in the feces were counted. The zooxanthellae discharged in 24 h were 0.38 to 1.46% of the total zooxanthella population in the mantle, and 2.7 to 16.9% of the newly formed zooxanthella population in a day. Increase of zooxanthella population in the mantle was estimated from clam shell growth rate and from the correlation between zooxanthella population and clam shell size. Daily increase of zooxanthella population in the mantle was estimated to be approximately 7.6 to 19% of the newly formed zooxanthella population. Therefore, the sum of zooxanthellae populations accounting for daily increase in the mantle and discharge in the feces was 11 to 36% of the newly formed population. About 64 to 89% of the newly formed cells were missing; some of these may have been digested by the clam. Received: 14 July 1996 / Accepted: 19 August 1996  相似文献   

9.
The effect of ammonium (5, 10 M N) and phosphate (2, 5, 10 M P) on the growth of the giant clam Tridacna gigas and its symbiotic dinoflagellate Symbiodinium sp. was examined. A 3 mo exposure to these nutritients significantly increased the N or P composition of the soft tissues, as reflected in a corresponding change in C:N:P ratio. Furthermore, exposure to N or N+P markedly increased the amount of soft tissue, but P alone did not, demonstrating that increased availability of inorganic nitrogen enhances tissue growth of the clam host. With addition of N, or N+P, there was a significant increase in the total number of zooxanthellae per clam, with a corresponding decrease in chlorophyll a (chl a) content per zooxanthella. However, only with N+P was there an increase in the zooxanthellae mitotic index. The inverse relationship between zooxanthellae number and chl a per zooxanthella is consistent with phytoplankton studies indicating conditions of nutrient-limitation. Furthermore, the unaffected C:N:P composition of the zooxanthellae and their relatively low specific-growth rates (4 to 10%) also suggest that they are nutrient-limited in vivo. In particular, their high mean C:N:P ratio of 303:52:1 indicates that, relative to C, they are much more depleted in P and less in N than are free-living phytoplankton. Furthermore, polyphosphates (phosphate reserves) were undetectable, and the activity levels of acid phosphatase in the zooxanthellae were relatively high and not influenced by the host's exposure to increased P concentrations in the sea water, implicating the clam host in active regulation of P availability to its symbiotic algae. This is strong evidence that N-limitation of clam zooxanthellae is a function of the availability of ammonium to the symbiosis while, irrespective of nutrient levels in sea water, clam zooxanthellae still show characteristics of P-limitation.  相似文献   

10.
Surface tissue of the reef coral Pocillopora capitata contained approximately 34% lipid on a dry weight basis. Of this, 75% was storage lipid (wax ester and triglyceride) and 25% structural (phospholipid, galactolipid, etc.). Based on chlorophyll a: lipid ratios of intact coral and isolated zooxanthellae, it was determined that over 90% of the storage lipid resided in the host tissue. One half of the structural lipids was found in the host and the other in the symbiotic algae. Gentle fractionation of coral tissue indicated that zooxanthellae possessed less than 14% of the total coral protein. Coral tips and isolated zooxanthellae were incubated with sodium acetate-1-14C in light and dark to obtain lipogenic rates and proportions of fatty acids and lipid classes synthesized. The rate of lipid synthesis from acetate-1-14C by intact coral was stimulated three-fold in the light (1200 lux), which indicated that the majority of coral lipogenesis occurred in the zooxanthellae. Intact coral triglycerides contained ca. 68% of the 14C-activity and wax esters ca. 21%. Zooxanthellae isolated by the Water Pik technique synthesized negligible amounts of wax ester, which implied that wax ester synthesis was a property of the animal tissue. Isolated zooxanthellae and intact coral synthesized identical triglyceride fatty acids from acetate-1-14C. This study provides evidence for a carbon cycle between host and symbiont whereby the zooxanthellae take up host-derived carbon (probably in the form of acetate), synthesize fatty acids using their photosynthetically derived energy, and return the lipid to the host where it appears as wax ester and triglyceride.  相似文献   

11.
Three taxonomically distant sponges Pericharax heteroraphis, Jaspis stellifera and Neofibularia irata contain phenotypically similar bacterial symbionts which differ from bacteria in the ambient water. These symbionts are predominant in the sponges and were detected after computer analysis of 526 heterotrophic bacterial strains tested for 76 characters. These facultative anaerobic symbionts metabolize a wide range of compounds and may be important in removing waste products while the sponges are not circulating water. The bacteria produce sticky-mucoid colonies and thus would contribute to sponge structural rigidity. The fourth sponge Ircinia wistarii contains a mixed aerobic population similar to that in the ambient water. The majority of the bacteria are located around the inhalant canals, facilitating the uptake of dissolved organic matter and oxygen from the incoming water.  相似文献   

12.
The composition, distribution and infestation sequence of organisms that destroy the commercially valuable shells of the black oyster Pinctada margaritifera var. cumingii Jameson, 1901 were studied. Three ecologically different groups of boring (euendolithic) organisms were identified: (1) phototrophic boring microorganisms (cyanobacteria, Hyella caespitosa, Hyella sp., Mastigocoleus testarum, Plectonema terebrans, and green algae, Phaeophila dendroides, Ostreobium quekettii); (2) heterotrophic boring microorganisms (fungi, Ostracoblabe implexa); (3) filter-feeding boring organisms (sponges, Cliona margaritiferae, C. vastifica). The phototrophic endoliths dominate the external pristmatic region of the shell, whereas the valuable interior nacreous region is attacked mainly by heterotrophs. Boring patterns reflect in part the shape and behaviour of the organisms and in part the structural properties of the shell, and inflict different types of damage. Infestation starts with microbial borers, which prepare the conditions for later invasion by more damaging clionid sponges. The infestation begins always at the apex, the oldest part of the shells, from which the periostracum is often removed by natural attrition or by cleaning procedure. The rate of bioerosion in 1 yr-old hatchery shells is 36 times higher than in natural populations.  相似文献   

13.
The soft coral Anthelia glauca Lamarck, 1816, of the family Xeniidae, is found on the reefs of KwaZulu-Natal, South Africa. Its gastrodermal cells contain numerous endosymbiotic unicellular algae (zooxanthellae). A. glauca is a gonochoric species that simultaneously broods its planulae within the pharyngeal cavity of the polyps. Symbiotic algae appear with zygote formation within the pharynx, embedded in amorphous material. The algal cells adhere to the ciliated ectodermal surface of immature planulae and are most probably endocytosed by them. Zooxanthellae are translocated towards the basal part of the ectoderm. Gaps are subsequently opened in the mesoglea into which symbionts surrounded by ectodermally derived material, including plasma membrane, pass. The basal membrane of endodermal cells disintegrates, and the algae bulge into spaces formed in the underlying endoderm. Throughout the process, each zooxanthella resides within a vacuolar membrane in the detached ectodermal cytoplasm. The acquisition process is essentially one in which zooxanthellae are translocated from the pharyngeal cavity into the ectoderm and then through the mesoglea into the endoderm, culminating in the final symbiotic state. The direct transmission of symbiotic algae to the eggs or larvae probably provides the most efficient means whereby zooxanthellae are acquired by the host progeny. Received: 15 July 1997 / Accepted: 25 February 1998  相似文献   

14.
Corallimorpharians may dominate some habitats on coral reefs and compete with stony corals for access to light, yet little is known concerning their photosynthetic traits. At Eilat in the northern Red Sea, we observed that the abundance of individuals of the corallimorpharian Rhodactis rhodostoma decreased significantly with depth on the reef slope. Field and laboratory experiments revealed that they employ several mechanisms of photoadaptation to high irradiance on the shallow reef flat. Their endosymbiotic microalgae (zooxanthellae) varied significantly in both abundance and chlorophyll content with level of irradiance. Use of a diving pulse amplitude modulated fluorometer revealed that the zooxanthellae of R. rhodostoma effectively disperse excess light energy by expressing significantly higher values of non-photochemical quenching and maximum excitation pressure on photosystem II when experimentally exposed to high light (HL) versus low light (LL). Host corallimorpharian tissues mediated this response by shielding the algal symbionts from high irradiance. The endoderm of host tentacles thickened significantly and microalgal cells were located further from the mesoglea in HL than in LL. The clades of zooxanthellae hosted by the corallimorpharians also varied with depth. In shallow water, all sampled individuals hosted clade C zooxanthellae, while in deep water the majority hosted clade D. The photosynthetic output of individuals of R. rhodostoma was less affected by HL than was that of a stony coral examined. When exposed to both high temperature (HT) and HL, individuals of R. rhodostoma reduced their maximum quantum yield, but not when exposed to HL at low temperature (LT). In contrast, colonies of the scleractinian coral Favia favus reduced their photosynthetic output when exposed to HL in both temperature regimes. After 2 weeks of HT stress, R. rhodostoma polyps appeared to bleach completely but re-established their zooxanthella populations upon return to ambient temperature. We conclude that mechanisms of photoadaptation to high irradiance employed by both the endosymbiotic zooxanthellae and host corallimorpharians may explain in part the abundance of R. rhodostoma on some shallow reef flats. The ability to survive for weeks at HT while bleached also may allow corallimorpharians to repopulate shallow reef areas where scleractinians have been killed by thermal stress. B. Kuguru and G. Winters contributed equally to this work.  相似文献   

15.
Aerobic and anaerobic microbial key processes were quantified and compared to microbial numbers and morphological structure in Mediterranean sponges. Direct counts on histological sections stained with DAPI showed that sponges with high microbial abundances (HMA sponges) have a denser morphological structure with a reduced aquiferous system compared to low microbial abundance (LMA) sponges. In Dysidea avara, the LMA sponge, rates of nitrification and denitrification were higher than in the HMA sponge Chondrosia reniformis, while anaerobic ammonium oxidation and sulfate reduction were below detection in both species. This study shows that LMA sponges may host physiologically similar microbes with comparable or even higher metabolic rates than HMA sponges, and that anaerobic processes such as denitrification can be found both in HMA and LMA sponges. A higher concentration of microorganisms in the mesohyl of HMA compared to LMA sponges may indicate a stronger retention of and, hence, a possible benefit from associated microbes.  相似文献   

16.
The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba specimens with Clark-type oxygen microelectrodes (tip diameters 18–30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges, which allows total oxygen consumption rates of 6–12 μmol cm−3 sponge day−1. Sponges of different sizes had similar diffusional uptake rates, which is explained by their similar surface/volume ratios. In pumping sponges, oxygen consumption rates were between 22 and 37 μmol cm−3 sponge day−1, and the entire tissue was oxygenated. Combining different approaches of direct oxygen measurement in living sponges with a dynamic model, we can show that tissue anoxia is a direct function of the pumping behavior. The sponge-microbe system of A. aerophoba thus has the possibility to switch actively between aerobic and anaerobic metabolism by stopping the water flow for more than 15 min. These periods of anoxia will greatly influence physiological variety and activity of the sponge microbes. Detailed knowledge about the varying chemical microenvironments in sponges will help to develop protocols to cultivate sponge-associated microbial lineages and improve our understanding of the sponge-microbe-system.  相似文献   

17.
A community ecology approach to the study of the most common group of zooxanthellae, dinoflagellates in the genus Symbiodinium, was applied to symbiotic invertebrate assemblages on coral reefs in the western Caribbean, off the Yucatan peninsula (Puerto Morelos, Mexico) and over 1000 km away in the northeastern Caribbean, at Lee Stocking Island, Bahamas. Sequence differences and intragenomic variation, as determined by denaturing gradient gel electrophoresis and sequencing of the internal transcribed spacer 2 (ITS 2) region, were used to classify these symbionts. Twenty-eight genetically distinct Symbiodinium types were identified, eleven of which were found in hosts from both Caribbean locations. A single symbiont population was detected in 72% of hosts from the Yucatan and 92% of hosts from the Bahamas. The reef-wide community distribution of these symbionts is dominated by a few types found in many different host taxa, while numerous rare types appear to have high specificity for a particular host species or genus. Clade or lineage A Symbiodinium spp. was restricted to compatible hosts located within 3-4 m of the surface, while Symbiodinium spp. types from other lineages displayed differences in vertical zonation correlated with ITS type but were independent of clade designation. A comparison of the symbiont types found in field-collected hosts with types previously cultured from these hosts indicates the existence of low density or "background"-symbiont populations and cryptic, potentially non-mutualistic types in some hosts.  相似文献   

18.
Studies were carried out to determine optimum conditions for the investigation of symbiotic zooxanthellae in vitro and to gain insight into factors influencing release of photosynthate by the symbionts. Zooxanthellae isolated from the reef coral Agaricia agaricites and incubated with an homogenate of host tissue release twice as much photosynthate as controls in seawater. The animal homogenate retained its stimulatory activity for 3 h at room temperature (ca. 26°C). Release of photosynthate was markedly influenced by time after isolation of algae from the host, variation in homogenate concentration, and prolonged exposure to homogenate. Release was not influenced by cell concentration, light intensity, or glycerol in the incubation medium. If zooxanthellae are labelled in vitro with glucose 14C, the principle product released is alanine 14C. The mechanism of action of homogenate on zooxanthellae in vitro is discussed in terms of its effect on algal cell membrane permeability. A preliminary fractionation of host homogenate is described.  相似文献   

19.
There is a relationship between host feeding, nitrogen status and mitotic activity of zooxanthellae symbiotic with the marine hydroid Myrionema amboinense. Decreases in the mitotic index of zooxanthellae in starved M. amboinense, and in internal pool sizes of glutamine and glutamate, amino acids involved in ammonium assimilation via the glutamine synthetase-glutamate synthase (GS/GOGAT) pathway, were partially restored by addition of ammonium chloride to seawater in which hydroids were incubated. Levels of glutamine were more sensitive to host starvation than levels of glutamate, resulting in a decrease in the glutamine: glutamate molar ratio to that found in zooxanthellae cultured on nitrate. Hydroids starved for 5 d and then incubated in different concentrations of ammonium chloride showed a positive correlation between ammonium concentration and mitotic index of their symbiotic zooxanthellae. Host starvation caused a decrease in perturbation of levels of glutamine and glutamate during ammonium assimilation, as well as decreases in rates of assimilation of [14C]-leucine into TCA-insoluble protein, and in photosynthetic incorporation of [14C]-bicarbonate. These observations suggest that host starvation reduces nitrogen supply to the zooxanthellae, causing nitrogen stress to the symbionts and reduction in metabolic processes associated with nitrogen assimilation and photosynthesis as well as with cell division.  相似文献   

20.
Many sponge species contain large and diverse communities of microorganisms. Some of these microbes are suggested to be in a mutualistic interaction with their host sponges, but there is little evidence to support these hypotheses. Stable nitrogen isotope ratios of sponges in the Key Largo, Florida (USA) area grouped sponges into species with relatively low δ15N ratios and species with relatively high δ15N ratios. Using samples collected in June 2002 from Three Sisters Reef and Conch Reef in the Key Largo, Florida area, transmission electron microscopy (TEM) and denaturing gradient gel electrophoresis were performed on tissues of the sponges Ircinia felix and Aplysina cauliformis, which are in the low δ15N group, and on tissue of the sponge Niphates erecta, which is in the high δ15N group. Results showed that I. felix and A. cauliformis have large and diverse microbial communities, while N. erecta has a low biomass of one bacterial strain. As the low δ15N ratios indicated a microbial input of nitrogen, these results suggested that I. felix and A. cauliformis were receiving nitrogen from their associated microbial community, while N. erecta was obtaining nitrogen solely from external sources. Sequence analysis of the microbial communities showed a diversity of metabolic capabilities among the microbes of the low δ15N group, which are lacking in the high δ15N group, further supporting metabolic differences between the two groups. This research provides support for hypotheses of mutualisms between sponges and their associated microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号