首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The spatial distributions of sulphur dioxide (SO2) and nitrogen oxides (NOx) emissions are essential inputs to models of atmospheric transport and deposition. Information of this type is required for international negotiations on emission reduction through the critical load approach. High-resolution emission maps for the Republic of Ireland have been created using emission totals and a geographical information system, supported by surrogate statistics and landcover information. Data have been subsequently allocated to the EMEP 50 x 50-km grid, used in long-range transport models for the investigation of transboundary air pollution. Approximately two-thirds of SO2 emissions in Ireland emanate from two grid-squares. Over 50% of total SO2 emissions originate from one grid-square in the west of Ireland, where the largest point sources of SO2 are located. Approximately 15% of the total SO2 emissions originate from the grid-square containing Dublin. SO2 emission densities for the remaining areas are very low, < 1 t km-2 year-1 for most grid-squares. NOx emissions show a very similar distribution pattern. However, NOx emissions are more evenly spread over the country, as about 40% of total NOx emissions originate from road transport.  相似文献   

2.
This paper develops a simple model and suggests a plausible chemico-physical mechanism for a non-linear response between atmospheric sulphur and sulphur emissions. It contains simplified representations of transport, deposition and conversion processes and uses a proxy in-cloud oxidant-limited reaction along a pathway connecting an emission source with a receptor site. Individual pathway responses to emissions show linear behaviour above a threshold. However, by averaging the values of SO2 at the receptor site from different pathways a continuous non-linear relationship is obtained. As emissions reduce, distant emission sources become less significant contributors of sulphur dioxide at a receptor site but their emissions are still counted in an emission inventory, leading to an apparent non-linearity. Sulphate is always found to contribute a signal to the receptor site total. This model goes someway to explaining a proposed 'crossover' between observed proportions of wet and dry deposited sulphur in the UK as emissions have been reduced.  相似文献   

3.
This study presents an assessment of the possible consequences of reducing the emission of sulphur dioxide in Poland according to international sulphur agreement. A computable general equilibrium model was used for this purpose. The model, calibrated for 1995, provides results for year 2010 which suggest that future emission reductions may have positive effects on Polish economic indicators. We should not fear an economic slump in the emitting sectors. Some sectors may increase their sulphur dioxide emissions initially and abate them later, rather than decrease their emissions at once. Poor households may gain, because the welfare effect on them will be positive.  相似文献   

4.
A statistical Lagrangian atmospheric transport model was used to generate annual maps of deposition of sulphur and oxidised and reduced nitrogen for the UK at a 5×5 km2 resolution. The model was run using emissions for the year 2002. The model was compared with measurements of gas concentrations (SO2, NOx, HNO3 and NH3) and of wet deposition and aerosol concentrations of SO42−, NO3 and NH4+ from national monitoring networks. Good correlation was obtained, demonstrating that the model is capable of accurately estimating the mass balance and spatial distribution of sulphur and nitrogen compounds in the atmosphere. A future emissions scenario for the year 2020 was used to test the influence of shipping emissions on sulphur deposition in the UK. The results show that, if shipping emissions are assumed to increase at a rate of 2.5% per year, their relative contribution to sulphur deposition is expected to increase from 9% to 28% between 2002 and 2020. The model was compared to both a European scale and a global scale chemical transport model and found to give broad agreement with the magnitude and location of sulphur deposition associated with shipping emissions. Enforcement of the MARPOL convention to reduce the sulphur content in marine fuel to 1% was estimated to result in a 6% reduction in total sulphur deposition to the UK for the year 2020. The percentage area of sensitive habitats with exceedance of critical loads for acidity in the UK was predicted to decrease by 1% with the implementation of the MARPOL convention.  相似文献   

5.
Emissions of a precursor of acidity in precipitation, sulphur dioxide (SO2), declined in the UK and the EU (15) by 71% and 72%, respectively, between 1986 and 2001, while nitrous oxide emissions declined by about 40%. Acidity in UK precipitation and the deposition of sulphate in precipitation halved during this period, but reductions were larger in the English Midlands than at the west coast and in high rainfall areas (>2000 mm). There is evidence that the smaller reductions in sulphur deposition in the west and south are due in part to shipping sources of SO2. Reductions in sulphur dry deposition (74%) are larger than in wet deposition (45%), due to changes in the canopy resistance to dry deposition. For reduced nitrogen, there has been a small (10%) reduction in emissions and deposition, while for oxidized nitrogen, a substantial reduction in emissions (40%) occurred but wet deposition of nitrate changed by less than 10%.  相似文献   

6.
Quantifying the contribution of emission sources responsible for mercury deposition in specific receptor regions helps develop emission control strategies that alleviate the impact on ecosystem and human health. In light of the maximum available control technology (MACT) rules proposed by U.S. Environmental Protection Agency (EPA) and the ongoing intergovernmental negotiation coordinated by United Nations Environmental Programme (UNEP) for mercury, the Community Multiscale Air Quality Modeling System (CMAQ-Hg) was applied to estimate the source contribution in six subregions of the contiguous United States (CONUS). The considered source categories include electric generating units (EGU), iron and steel industry (IRST), other industrial point sources excluding EGU and IRST (OIPM), the remaining anthropogenic sources (RA), natural processes (NAT), and out-of-boundary transport (BC). It is found that, on an annual basis, dry deposition accounts for two-thirds of total annual deposition in CONUS (474 Mg yr(-1)), mainly contributed by reactive gaseous mercury (about 60% of total deposition). The contribution from large point sources can be as high as 75% near the emission sources (< 100 km), indicating that emission reduction may result in direct deposition decrease near the source locations. Out-of-boundary transport contributes from 68% (Northeast) to 91% (West Central) of total deposition. Excluding the contribution from out-of boundary transport, EGU contributes to about 50% of deposition in the Northeast, Southeast, and East Central regions, whereas emissions from natural processes are more important in the Pacific and West Central regions (contributing up to 40% of deposition). This suggests that the implementation of the new EPA MACT standards will significantly benefit only these three regions. Emission speciation is a key factor for local deposition. The source contribution exhibits strong seasonal variation. Deposition is greater in warm seasons due to stronger Hg0 oxidation. However, the contribution from anthropogenic sources is smaller in warm seasons because of larger emissions from natural processes and stronger vertical mixing that facilitates transport.  相似文献   

7.
This paper reports the results of total sulphur content, photosynthetic pigments, ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) analysed in current-year needles of Norway spruce (Picea abies (L.) Karst.) in the area influenced by sulphur emissions from the Sostanj Thermal Power Plant (STPP), Slovenia, in the period 1991-2004. Ten differently polluted sampling sites in the emission area of STPP were selected. After desulphurization of emission gases from STPP total sulphur content in needles decreased and vitality parameters of needles increased. Moreover, a strong correlation between the average annual emissions of SO(2) from STPP and average annual sulphur content (increase) or average annual chlorophyll content (decrease) in current-year needles was found. The results showed that spruce needles may be an useful bioindicator for detecting changes in the emission rates of SO(2).  相似文献   

8.
This paper describes a methodology for estimating the effect of local source emissions on dry deposition of sulfur dioxide in regions of complex terrain. Airflow in complex terrain is simulated by a time-dependent dynamical model for the meteorological fields. The results of the dynamical model are used to drive a semi-stochastic Lagrangian dispersion model in order to evaluate concentrations resulting from local source emissions. The Lagrangian dispersion model is coupled with a dry deposition treatment which includes the effects of both surface properties and micrometeoroiogical factors on deposition.

A sample application is discussed for a source in the Shenandoah Valley. The largest concentrations and deposition rates were obtained shortly after sunrise, during the transition from the nocturnal to the daytime flow regime. These results suggest that dry deposition may be episodic.  相似文献   

9.
As a consequence of the global distribution of manufacturing sites and the increasing international division of labour, ship traffic is steadily increasing and is becoming more and more important as an origin of air pollution.This study investigates the impact of ship emissions in coastal areas of the North Sea under conditions of the year 2000 by means of a regional chemistry transport model which runs on a sufficiently high resolution to study air pollution in coastal regions. It was found that northern Germany and Denmark in summer suffer from more than 50% higher sulphate, nitrate and ammonium aerosol concentrations due to contributions from ships. The implementation of a sulphur emission control area (SECA) in the North Sea, as it was implemented at the end of 2007, directly results in reduced sulphur dioxide and sulphate aerosol concentrations while nitrate aerosol concentrations are slightly increased.  相似文献   

10.
We have used a global version of the Regional Air Pollution Information and Simulation (RAINS) model to estimate anthropogenic emissions of the air pollution precursors sulphur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), primary carbonaceous particles of black carbon (BC), organic carbon (OC) and methane (CH4). We developed two scenarios to constrain the possible range of future emissions. As a baseline, we investigated the future emission levels that would result from the implementation of the already adopted emission control legislation in each country, based on the current national expectations of economic development. Alternatively, we explored the lowest emission levels that could be achieved with the most advanced emission control technologies that are on the market today. This paper describes data sources and our assumptions on activity data, emission factors and the penetration of pollution control measures. We estimate that, with current expectations on future economic development and with the present air quality legislation, global anthropogenic emissions of SO2 and NOx would slightly decrease between 2000 and 2030. For carbonaceous particles and CO, reductions between 20% and 35% are computed, while for CH4 an increase of about 50% is calculated. Full application of currently available emission control technologies, however, could achieve substantially lower emissions levels, with decreases up to 30% for CH4, 40% for CO and BC, and nearly 80% for SO2.  相似文献   

11.
Methane emissions from the peat bogs in Connemara, Ireland have been inferred from the trace gas observations at the Mace Head Atmospheric Research Station using the nocturnal box method. A total of 237 local events, during April to September, over a 12-year period have been studied. Simultaneous emissions of methane, carbon dioxide and chloroform are routinely observed under nocturnal inversions with low wind speeds from the peat bogs proximal to Mace Head. Night-time deposition of ozone and hydrogen occurs concurrently with these emissions. Using the temporally correlated methane and ozone data we estimate methane emissions from each event. Simultaneous methane and chloroform emissions, together with ozone and hydrogen deposition have been characterised, leading to the estimation of methane emission rates for each event. The mean methane emission flux was found to be 400 ± 90 ng m?2 s?1. A strong seasonal cycle was found in the methane emission fluxes but there was little evidence of a long-term trend in the emissions from the peat bogs in the vicinity of the Mace Head station.  相似文献   

12.
Recent trends in nitrogen and sulphur compounds in air and precipitation from a range of Arctic monitoring stations are presented, with seasonal data from the late 70s to 2004 or 2005. Earlier findings of declining sulphur concentrations are confirmed for most stations, while the pattern is less clear for reduced and oxidized nitrogen. In fact there are positive trends for nitrogen compounds in air at several stations. Acidity is generally reduced at many stations while the precipitation amount is either increasing or stable. Variability of sulphate concentrations in air for the period 1991–2000 is reasonably well reproduced at most stations using an Eulerian, hemispherical model. Results for nitrogen compounds are weaker. Scenario studies show that even if large sulphur emission reductions take place in important source regions in South-East Asia in the coming decades, only small changes in Arctic deposition can be expected. This is because South-East Asian emissions have small influence north of the Arctic circle.  相似文献   

13.
The objective of this study was to characterize exhaust emissions from a series of handheld, 2-stroke small engines. A total of 23 new and used engines from model years 1981–2003 were studied; these engines spanned three phases of emission control (pre-control, phase-1, phase-2). Measured emissions included carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), hydrocarbons (HC), fine particulate matter (PM2.5), and sulfur dioxide (SO2). Emissions reductions in CO (78%) and HC (52%) were significant between pre-control and phase-2 engines. These reductions can be attributed to improvements in engine design, reduced scavenging losses, and implementation of catalytic exhaust control. Total hydrocarbon emissions were strongly correlated with fuel consumption rates, indicating varying degrees of scavenging losses during the intake/exhaust stroke. The use of a reformulated gasoline containing 10% ethanol resulted in a 15% decrease in HC and a 29% decrease in CO emissions, on average. Increasing oil content of 2-stroke engine fuels results in a substantial increase of PM2.5 emissions as well as smaller increases in HC and CO emissions. Results from this study enhance existing emission inventories and appear to validate predicted improvements to ambient air quality through implementation of new phase-2 handheld emission standards.  相似文献   

14.
Two mathematical models of the atmospheric fate and transport of mercury (Hg), an Eulerian grid-based model and a Gaussian plume model, are used to calculate the atmospheric deposition of Hg in the vicinity (i.e., within 50 km) of five coal-fired power plants. The former is applied using two different horizontal resolutions: coarse (84 km) and fine (16.7 km). More than 96% of the power plant Hg emissions are calculated with the plume model to be transported beyond 50 km from the plants. The grid-based model predicts a lower fraction to be transported beyond 50 km: >91% with a coarse resolution and >95% with a fine resolution. The contribution of the power plant emissions to total Hg deposition within a radius of 50 km from the plants is calculated to be <8% with the plume model, <14% with the Eulerian model with a coarse resolution, and <10% with the Eulerian model with a fine resolution. The Eulerian grid-based model predicts greater local impacts than the plume model because of artificially enhanced vertical dispersion; the former predicts about twice as much Hg deposition as the latter when the area considered is commensurate with the resolution of the grid-based model. If one compares the local impacts for an area that is significantly less than the grid-based model resolution, then the grid-based model may predict lower local deposition than the plume model, because two compensating errors affect the results obtained with the grid-based model: initial dilution of the power plant emissions within one or more grid cells and enhanced vertical mixing to the ground.  相似文献   

15.
This paper presents a sensitivity analysis of a microscale emission factor model (MicroFacCO) for predicting real-time site-specific motor vehicle CO emissions to input variables, as well as a limited field study evaluation of the model. The sensitivity analysis has shown that MicroFacCO emission estimates are very sensitive to vehicle fleet composition, speed, and ambient temperature. For the present U.S. traffic fleet, the CO emission rate (g/mi) is increased by more than 500% at 5 mph in comparison with a speed greater than 40 mph and by approximately 67% at ambient temperatures of 45 degrees F and > or = 95 degrees F in comparison with an ambient temperature of 75 degrees F. The input variable "emission failure standard rate" is more sensitive to estimating emission rates in the 1990s than in the 2000s. The estimation of emission rates is not very sensitive to relative humidity. MicroFacCO can also be applied to examine the contribution of emission rates per vehicle class and model year. The model evaluation is presented for tunnel studies at five locations. In general, this evaluation study found good agreement between the measured and the modeled emissions. These analyses and evaluations have identified the need for additional studies to update the high-speed (>35 mph) air conditioning (A/C) correction factor and to add effects due to road grades. MicroFacCO emission estimates are very sensitive to the emission standard failure rate. Therefore, the model performance can be greatly improved by using a local emission standard failure rate.  相似文献   

16.
Emissions of sulphur and nitrogen compounds from power stations represent a significant fraction of the total emissions of these elements to the atmosphere. Understanding their subsequent chemical reactions in the atmosphere is of fundamental importance as without it, a quantitative assessment of their contribution to local and regional scale air pollution is not possible. Here the atmospheric chemistry of sulphur dioxide and the oxides of nitrogen, and their resultant likely behaviour in the plumes of power stations are reviewed.  相似文献   

17.
This paper describes a study of local biogenic volatile organic compounds (BVOC) emissions from the Hong Kong Special Administrative Region (HKSAR). An improved land cover and emission factor database was developed to estimate Hong Kong emissions using MEGAN, a BVOC emission model developed by Guenther et al. (2006). Field surveys of plant species composition and laboratory measurements of emission factors were combined with other data to improve existing land cover and emission factor data. The BVOC emissions from Hong Kong were calculated for 12 consecutive years from 1995 to 2006. For the year 2006, the total annual BVOC emissions were determined to be 12,400 metric tons or 9.82 × 109 g C (BVOC carbon). Isoprene emission accounts for 72%, monoterpene emissions account for 8%, and other VOCs emissions account for the remaining 20%. As expected, seasonal variation results in a higher emission in the summer and a lower emission in the winter, with emission predominantly in day time. A high emission of isoprene occurs for regions, such as Lowest Forest-NT North, dominated by broadleaf trees. The spatial variation of total BVOC is similar to the isoprene spatial variation due to its high contribution. The year to year variability in emissions due to weather was small over the twelve-year period (?1.4%, 2006 to 1995 trendline), but an increasing trend in the annual variation due to an increase in forest land cover can be observed (+7%, 2006 to 1995 trendline). The results of this study demonstrate the importance of accurate land cover inputs for biogenic emission models and indicate that land cover change should be considered for these models.  相似文献   

18.
Abstract

Two mathematical models of the atmospheric fate and transport of mercury (Hg), an Eulerian grid–based model and a Gaussian plume model, are used to calculate the atmospheric deposition of Hg in the vicinity (i.e., within 50 km) of five coal–fired power plants. The former is applied using two different horizontal resolutions: coarse (84 km) and fine (16.7 km). More than 96% of the power plant Hg emissions are calculated with the plume model to be transported beyond 50 km from the plants. The grid–based model predicts a lower fraction to be transported beyond 50 km: >91% with a coarse resolution and >95% with a fine resolution. The contribution of the power plant emissions to total Hg deposition within a radius of 50 km from the plants is calculated to be <8% with the plume model, <14% with the Eulerian model with a coarse resolution, and <10% with the Eulerian model with a fine resolution. The Eulerian grid–based model predicts greater local impacts than the plume model because of artificially enhanced vertical dispersion; the former predicts about twice as much Hg deposition as the latter when the area considered is commensurate with the resolution of the grid–based model. If one compares the local impacts for an area that is significantly less than the grid–based model resolution, then the grid–based model may predict lower local deposition than the plume model, because two compensating errors affect the results obtained with the grid–based model: initial dilution of the power plant emissions within one or more grid cells and enhanced vertical mixing to the ground.  相似文献   

19.
The aim of the present study was to determine the long-time trends in concentrations and depositions of major ions in wet precipitation samples collected at 11 sampling sites from the Austrian precipitation chemistry network in the period 1984-1999. The analytical results were treated by the use of least square linear regression method. It is shown that a serious decrease of sulfate (between 30% and 60% for the period) and hydrogen ion (between 60% and 102% for the period) concentrations and depositions is achieved at almost all sampling sites and in most of these cases the linear trend proves to be statistically significant. Nitrogen containing ions and base cations do not reveal a distinct trend of changing and in the majority of the sites the linear models are not adequate. In principle, an overall slight concentration and deposition decrease for these major ions is observed (up to 30% for the period of observation) but some substantial exceptions are also found (site Haunsberg or site Lobau). The changes in chloride concentration and deposition, too, do not indicate significant linear trend and, in general, are decreasing for the period of monitoring. In order to give some explanation of the exceptional behaviour of some of the major ions in several sites, an additional comparison with Austrian emission data (sulfur dioxide, nitrogen oxides, ammonium) and with data from five EMEP sites from neighbouring countries is performed. A significant West-East trend of acidity increase is found as well as a good correlation with the emission trends. Therefore, both transboundary and specific local factors could be substantial factors in the wet precipitation chemistry in the region.  相似文献   

20.

Over the last few decades, the atmospheric carbon dioxide emission has been amplified to a great extent in Pakistan. This amplification may cause global warming, climate change, and environmental degradation in Pakistan. Consequently, ecological condition and human life may suffer in the near future from these indicated threats. Therefore, an attempt was made to test the relationship between globalization and carbon dioxide emissions in case of Pakistan. The study covers the time series data over the period of 1975–2014. We employed modern econometric techniques such as Johansen co-integration, ARDL bound testing approach, and variance decomposition analysis. Results of the Johansen co-integration test show that there is a significant long-run relationship between carbon dioxide emissions and globalization. The long-run elasticities of the ARDL model show that a 1% increase in economic globalization, political globalization, and social globalization will increase carbon dioxide emissions by 0.38, 0.19, and 0.11%, respectively. Further, our findings reveal that the environmental Kuznets curve (EKC) hypothesis prevails an inverted U-shaped relationship between carbon dioxide emission and economic growth. Therefore, the EKC hypothesis is valid in the presence of globalization. The diagnostic test results show that the parameters of the ARDL model are credible, stable, and reliable in the current form. Finally, variance decomposition analysis displays that economic, political, and social globalization are contributing significantly to carbon dioxide emissions in Pakistan.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号