首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
本研究结合大气环境观测数据,应用潜在源分析法(PSCF)和浓度权重轨迹分析法(CWT),以及基于WRF-CMAQ模式的传输矩阵和传输通量计算方法,研究分析了2019年秋冬季京津冀典型城市的大气污染特征与成因,量化评估了京津冀地区与周边省份之间的PM2.5传输贡献.结果表明,京津冀地区冬季较秋季污染严重,且重污染时段PM2.5浓度均与相对湿度呈显著的正相关,和风速呈显著的负相关;京津冀典型城市北京、天津和石家庄的潜在源区主要分布在京津冀本地、山西、内蒙古中部地区和山东地区,这与CWT结果基本吻合.京津冀各省域的PM2.5以本地排放贡献为主,北京、天津和河北的本地贡献率范围为54.33%~66.01%,京津冀受区域外传输的贡献率范围为0.11%~26.54%.传输通量结果表明,冬季PM2.5的传输主要受高空西北气流的作用,尤其清洁天气,高风速驱动清洁气团流入;秋季则主要受低空东南气流作用;传输通量呈现出显著的垂直分布特征,高空区域传输作用更为活跃,传输通量的流入/流出以及垂直分布与污染级别和RH呈现非线性响应关系,主导风向变化导致重污染前的传输效应明显大于重污染期间,高湿环境的传输效应明显小于低湿环境.  相似文献   

2.
运用潜在源贡献分析(PSCF)方法,识别了2018年秋冬季京津冀地区典型城市北京,唐山和石家庄PM2.5的潜在污染源区;基于气象-空气质量模式(WRF-CAMx)和传输通量计算方法定量评估了与其周边省市之间PM2.5的传输贡献,识别了三个典型城市PM2.5的传输路径,揭示了PM2.5传输净通量的垂直分布特征.结果表明,三个城市秋冬季PSCF高值主要集中在河北南部,河南东北部和山西中东部地区;秋冬季PM2.5均以本地贡献影响为主(51.78%~68.40%),外来贡献为辅(31.60%~48.22%),不同季节贡献率有所波动.整个观测期间,近地面主要表现为毗邻城市向北京和石家庄输送PM2.5,而唐山主要表现为向外输送PM2.5,净通量最大值出现在海拔0~50m,其净通量为-99.47t/d.同时鉴别出了一条主要的传输路径,即西南-东北方向.  相似文献   

3.
京津冀及周边地区秋冬季大气重污染过程频发,而在一些污染过程中PM2.5会呈现爆发式增长特征,受到社会、公众的广泛关注,但现阶段针对PM2.5爆发式增长的成因仍缺乏系统性的认知.对京津冀及周边地区在2015-2019年秋冬季(10月-翌年3月)大气重污染过程进行整理分析,并以2016年12月16-22日和2019年1月10-14日两次典型重污染过程中的PM2.5爆发式增长为典型案例进行成因解析,归纳得出PM2.5爆发式增长的主要原因为本地积累、区域传输和二次转化.对于北京市,PM2.5爆发式增长通常不是上述某一原因独立导致,而是三者综合作用的结果.对于主要由本地积累引起的PM2.5爆发式增长,应提前采取预警应急措施,降低ρ(PM2.5)峰值;对于主要由区域传输引起的PM2.5爆发式增长,应开展区域应急联动,降低传输通道沿线城市对ρ(PM2.5)累积的贡献;对于主要由二次转化引起的PM2.5爆发式增长,应通过一次颗粒物和SO2、NOx、VOCs等气态污染物的协同减排,降低高湿条件下污染物二次转化的影响.在2016年12月16-22日的大气重污染过程期间,京津冀及周边地区通过采取上述应急管控对策,减少了主要污染物排放量,有效降低了ρ(PM2.5)峰值.建议可根据各地PM2.5爆发式增长的具体成因,通过提前采取重污染天气预警应急措施、区域应急联动和多污染物(一次颗粒物、SO2、NOx、挥发性有机物等)协同减排等应急管控对策,有效减少PM2.5爆发式增长的次数、降低PM2.5爆发式增长的速率,减缓大气重污染的发生和发展.   相似文献   

4.
北京市冬季典型重污染时段PM2.5污染来源模式解析   总被引:5,自引:0,他引:5       下载免费PDF全文
为了探究近年来北京市PM2.5污染区域来源规律和重污染累积过程中PM2.5的生成途径,利用第三代三维空气质量模型CAMx的颗粒物源示踪(PSAT)和过程分析(PA)技术,模拟计算了北京市2013年和2014两次冬季典型重污染时段PM2.5的源-受体关系和物理、化学过程对PM2.5的生成贡献. 结果表明:在区域来源贡献中,随着空气污染等级由优升至严重污染,外地PM2.5贡献率从42.9%升至67.4%,本地贡献率由57.1%降至32.6%,其中外地二次PM2.5贡献率从20.2%升至39.8%,为北京市重污染时段的主要贡献因子;在外地贡献中,廊坊市、山东省、天津市、唐山市的贡献率较大,分别为3.2%~4.7%、3.8%~7.5%、3.6%~5.8%、2.2%~3.2%. PA分析结果表明:在不利气象条件(持续性的逆温层结)下,南边界的输送在重污染过程中起到了重要作用,对ρ(PM2.5)增长的贡献速率可达10 μg/(m3·h). 此外,本地化学转化在重污染时段对ρ(PM2.5)爆发性增长的贡献率也可以达到40.0%,其中特殊天气条件下二次PM2.5生成贡献的显著增加是造成ρ(PM2.5)出现峰值的主要原因. 研究显示,随着污染程度的加重,北京市受区域性污染的影响逐渐加大;在重污染过程中,不利气象条件下的本地化学转化与水平输送对近地层ρ(PM2.5)峰值的出现与维持发挥了重要作用.   相似文献   

5.
采用天气学分析和GRAPES-CUACE气溶胶伴随模式相结合的方式,探讨了北京市2016年2月29日~3月6日一次PM2.5重污染过程的大气环流特征、污染形成和消散原因,并利用伴随模式追踪了造成此次重污染过程的关键排放源区及敏感排放时段.结果表明:此次重污染过程北京市PM2.5浓度存在明显日变化,在3月4日20:00达到污染峰值,观测数据显示海淀站PM2.5浓度达到506.4μg/m3.形成此次重污染过程的主要天气学原因是北京站地面处于低压中心,且无冷空气影响,风速较弱,逆温较强,大气层结稳定,混合层高度较低,500hPa西风急流较弱,污染物水平和垂直扩散条件差,大气污染物易堆积;此次过程中,500hPa短波槽过境、边界层偏南风急流和冷空气不完全渗透导致了本次严重污染PM2.5浓度的短暂下降.伴随模式模拟结果表明,此次污染过程目标时刻的污染浓度受到来自河北东北部和南部、天津、山西东部、以及山东西北部污染物的共同影响,目标时刻PM2.5峰值浓度对北京本地源响应最为迅速,山西响应速度最慢;北京、天津、河北及山西排放源对目标时刻前72h内的累积贡献比例分别为31.1%、11.7%、52.6%和4.7%.北京本地排放源占总累积贡献的1/3左右,河北排放源累积贡献占一半以上,天津和山西分别占1/10和1/20,河北源贡献占主导地位,天津和山西贡献较小;目标时刻前3h内,北京本地源贡献占主导地位,贡献比例为49.3%,目标时刻前4~50h内,河北源贡献占主导地位,贡献比例为48.6%,目标时刻前50~80h,山西源贡献占主导地位,贡献比例在50%以上.  相似文献   

6.
曾景海  王灿 《环境科学》2022,43(5):2436-2447
为提高重污染天气应对的科学性和精准度,2019年7月生态环境部制定重污染天气应对“绩效分级、差异化管控”措施.为应对9月底至10月初的重污染过程,京津冀及周边共68个城市启动重污染预警,该措施得以首次实践.通过时间序列断点回归方法对该措施效果进行评估发现,空气质量改善存在滞后的现象,SO2、 NO2和CO这3个气态污染物改善速度较快,对涉及二次生成的O3和PM2.5两个污染物见效速度相对较慢. 10月1日恰逢在北京举办庆祝中华人民共和国成立70周年阅兵式,对10月1日当天进行评估,发现与假如不采取措施的情形相比,重污染应急措施使北京市PM2.5、 NO2和CO日均浓度显著下降,下降幅度分别为54.1%、 62.4%和25.8%.如果不采取重污染应急措施,北京10月1日上午可能出现中重度污染,但实际上空气质量保持在良的水平.区域启动预警的68城市PM2.5、 PM10、 NO2、 SO  相似文献   

7.
2018年11月23日-12月4日,京津冀及周边地区"2+26"城市出现了一次长时间、大范围、高强度的复合型大气重污染过程,为揭示区域性重污染过程中多因素的综合作用,利用气象资料、空气质量监测等多源数据以及区域污染特征雷达图,对京津冀及周边地区"2+26"城市此次重污染特征和成因进行分析.结果表明:根据PM2.5/PM10[ρ(PM2.5)/ρ(PM10),下同]可将此次重污染过程划分为4个阶段.第一阶段(2018年11月23-26日)PM2.5/PM10在0.5~1.0内波动,"2+26"城市大气扩散条件转差,一次污染物局地积累及SO2、NOx、NH3等气态污染物在高湿条件下二次转化是污染形成并发展的主要原因;第二阶段(11月27日)PM2.5/PM10突降至0.2左右,"2+26"城市北部受形成于蒙古国的沙尘影响,短时ρ(PM10)快速升高(峰值为818 μg/m3),中南部受形成于内蒙古自治区阿拉善盟的沙尘及上风向PM2.5污染的传输影响,ρ(PM2.5)和ρ(PM10)均较高,维持日均重度污染水平(参照GB 3095-2012《环境空气质量标准》和HJ 633-2012《环境空气质量指数(AQI)技术规定(试行)》);第三阶段(11月28日-12月2日)PM2.5/PM10由0.3逐渐升至0.8,在静稳、高湿的不利气象条件下,一次污染物积累并二次转化,第二阶段残留沙尘中的矿物质对硫酸盐起到催化作用,导致ρ(PM2.5)快速上升,"2+26"城市大部分达日均重度及以上污染;第四阶段(12月3-4日)与第二阶段类似,PM2.5/PM10突降至0.2,"2+26"城市再次受到沙尘天气和区域传输的共同影响,因冷空气持续时间较长,污染被有效清除.研究显示,此次污染过程是气象条件、污染物一次排放和二次转化、区域传输、沙尘天气等多因素综合作用的结果.当静稳、高湿等不利气象条件或沙尘天气出现时,区域应加强对各类污染物排放的管控力度,以降低污染物的一次排放、二次转化以及沙尘和区域传输的共同影响,进而削弱污染严重程度.   相似文献   

8.
为评估京津冀及周边“2+26”城市农村居民面源污染控制成效,揭示其对北京市秋冬季重污染天气PM2.5污染的改善作用,及其对PM2.5组分硫酸盐形成机制的影响,采用空气质量模型对北京市2018—2019年秋冬季5次重污染事件进行了模拟. 结果表明:①在“2+26”城市平原地区民用散煤削减90%的控制情景下,区域PM2.5浓度最大值由324 μg/m3降至251 μg/m3,下降了23%. 北京市城区PM2.5浓度由139 μg/m3降至124 μg/m3,下降了11%;同时,北京市城区SO2、硫酸盐浓度分别降至6.2、14.9 μg/m3,分别下降了45%、24%. ②农村居民面源污染控制前北京市硫酸盐浓度的正贡献来源主要受水平平流输送过程影响,控制后水平平流输送过程仍起主导作用,但该过程在水平平流输送、垂直平流输送、水平扩散、垂直扩散这4个物理过程中的绝对重要性上升了2%;此外,农村居民面源污染控制后垂直扩散清除过程对硫酸盐浓度的贡献下降了33%,气溶胶二次转化过程的贡献下降了25%,但SO2向硫酸盐转化的速率加快,其小时转化率上升了1.44%. ③ISAM源解析方法结果表明,控制情景下区域工业过程是影响北京市SO2浓度的最主要行业源因素,平均贡献率为65%,硫酸盐工业过程源的平均贡献率为82%. 区域来源分析表明,北京市SO2来源主要为外地源输送,硫酸盐主要来源与SO2一致,其中河北省贡献较大,其对SO2、硫酸盐的平均贡献率分别达43%、40%. 研究显示,控制情景下污染期间北京市PM2.5污染改善,且污染物浓度、形成过程和来源贡献均发生明显变化.   相似文献   

9.
关中地区是我国大气污染的重点监测区域,为探究偏东风输送对关中地区冬季PM2.5重污染的影响,重点分析了2018年1月12-18日在偏东风输送影响下关中地区ρ(PM2.5)日均值的变化过程;利用WRF和CAMx模式对PM2.5重污染过程进行模拟并讨论其消长原因.结果表明:①冬季关中地区在高压脊和西南槽的控制下,偏东风将污染物输送至关中地区,加之关中地区地形阻滞,致使关中地区的ρ(PM2.5)上升.②研究期间,关中地区ρ(PM2.5)日均值范围为103~240 μg/m3,偏东风输送是导致此次重污染过程的重要原因.重污染的发生还与气象要素的变化有关,其中ρ(PM2.5)日均值与气温、相对湿度均呈滞后相关性.在ρ(PM2.5)日均值相等的情况下,相对湿度越大,能见度越低;随着ρ(PM2.5)日均值和相对湿度的升高,能见度下降的速率逐渐变慢.③根据WRF-CAMx的模拟结果,此次重污染过程中关中地区PM2.5污染输送关系不均衡,宝鸡市和咸阳市均以本地贡献为主,其本地贡献率超过45.00%,而渭南市接收关中地区其他城市及关中地区以外区域污染输送占比为69.82%;位于盆地中东部的咸阳市、西安市和渭南市的ρ(PM2.5)月均值均大于关中地区ρ(PM2.5)平均值;渭南市、西安市、运城市以及关中地区以外城市是此次关中地区跨市PM2.5污染输送的主要来源.研究显示,偏东风输送是关中地区此次大气重污染过程的重要原因.   相似文献   

10.
2020年1月宁夏回族自治区典型工业城市石嘴山市出现了长时间、高强度PM2.5污染天气.为揭示多因素综合作用对重污染天气的影响,在分析逐日空气质量指数(AQI)和常规污染物浓度变化特征的基础上,选取重点污染时段(2020年1月1—17日)为研究对象,基于环境空气质量数据、加密自动气象观测数据及NCEP再分析资料,采用统计分析、污染特征雷达图、气流后向轨迹聚类及天气诊断相结合的方法对重污染过程特征和成因进行分析.结果表明:①2020年1月1日、3日石嘴山市重污染天气主要受燃煤、工业(钢铁、焦化)和机动车等高强度污染排放影响,PM2.5主要来自一次源;9日重污染天气PM2.5受二次颗粒物生成影响显著,本地扬尘也有贡献,ρ(PM2.5)和AQI均达峰值,分别为216 μg/m3和266;其他时段重污染天气由污染物累积和混合造成.②乌海市及其周边污染气团跨区域传输是促使石嘴山市出现高强度PM2.5污染天气的另一重要因素,当巴彦淖尔市—乌海市—石嘴山市为一致偏北气流、风速小于2 m/s时,易使乌海市及其周边污染气团向南扩散,石嘴山市ρ(PM2.5)出现短时间爆发增长.③持续高湿静稳气象条件使污染天气长时间维持并加重,当欧亚大陆中高纬度500 hPa盛行纬向弱西风气流、近地面石嘴山市处在蒙古弱高压底部均压场、风向为弱偏北风或偏东风时,易形成持续性PM2.5污染天气;当风速减至0.7 m/s、相对湿度增至78%时,污染加重.研究显示,此次持续PM2.5重污染过程是本地高强度污染排放、二次颗粒物生成、区域传输与不利气象条件等因素综合影响和相互叠加的结果;当出现静稳、高湿等不利气象条件时,应加强对各类污染物排放的管控力度,同时充分利用石嘴山市及其周边加密自动气象观测资料,研判污染发展趋势和传输特征,及时开展与乌海市及其周边地区的大气污染联防联控.   相似文献   

11.
京津冀及周边地区大气污染问题突出,秋、冬季重污染天气频发。为探讨该地区PM2.5污染来源,分析其污染状况和气象因素的关系,利用2017年京津冀地区空气质量监测站的气象资料如气压、风速、相对湿度、温度、降水量等,结合ArcGIS软件空间插值法、SPSS 21.0的Pearson相关性分析等方法,采用拉格朗日混合型的扩散模型HYSPLIT后向轨迹聚类分析方法,探讨北京地区主要气团传输轨迹,结合GDAS气象资料计算潜在源贡献因子。结果表明:1)2017年京津冀地区ρ(PM2.5)年均为64.4μg/m3,比2016年下降11.5%,全年达标天数占比为74.2%。2)京津冀地区PM2.5与气压、相对湿度呈正相关,其中气压与PM2.5相关性最高;与风速、日照时长、温度、降水量呈负相关,其中日照时长与PM2.5相关性最高。冬季比其他季节影响更为显著。3)从时间尺度看,冬季污染最严重,秋、春季稍好,夏季PM2.5优、良级占92.4%;其中,1月平均ρ(PM2.5)最高。4)从空间范围看,整体上京津冀地区呈现南高北低,南北差异相对明显,其中其北部承德、张家口、秦皇岛地区ρ(PM2.5)最低,石家庄、邯郸PM2.5污染较严重。5)源解析结果表明,冬季北京地区主要受本地污染源影响,在春、秋季节受周边区域源贡献因子PSCF值>0.4,河北、山东、河南等地对北京PM2.5的污染有一定的源贡献。  相似文献   

12.
为了分析京津冀地区2015年11月27日~12月1日和12月19日~25日这2次重污染过程,从环流形势、大气稳定度条件、动力条件、水汽条件、近地层风场输送等几个方面对重污染天气的形成机制展开分析,结果表明:这2次重污染天气过程均属于静稳型,津京冀各地重度以上污染时长均超过50%.在大范围静稳形势存在时,过程一期间边界层内的垂直扩散条件较过程二偏弱,过程一期间地面辐合线位置偏北且维持不动,过程二期间辐合线位置偏南且略微南北摆动,导致了2次过程重污染区域和污染增长速率的不同.对北京而言,过程一前期降雪融化提供了有利水汽条件,弱偏南风有利于污染物和水汽的输送,混合层高度持续异常偏低(京津冀平均混合层高度339m)、过程期间伴随弱下沉运动(0~2Pa/s)、多层逆温(且厚度大)造成日变化不明显,地面辐合线在北京中部维持等多重因素,使得污染浓度极高,北京地区PM2.5峰值浓度达593mg/m3.过程二前期采取了减排措施,能见度和PM2.5日变化大、污染发展较过程一前期平缓;后期不利气象条件叠加污染排放,导致了PM2.5爆发式增长,其中邢台PM2.5峰值浓度达70mg/m3,增长率超过7.2mg/(m3·h).  相似文献   

13.
2013~2014年北京大气重污染特征研究   总被引:30,自引:0,他引:30  
从污染物浓度的时间变化、空间分布以及大气污染类型等方面,对2013~2014年北京大气重污染过程进行了分析,并初步探讨其影响因素.结果表明:2013~2014年北京共出现大气重污染105d,重污染频率为14.4%.其中,首要污染物为PM2.5的天数为103d,首要污染物为PM10和O3各有1d;冬半年重污染天数占全年的76.2%.重污染气象要素特征主要表现为风速小、湿度高、能见度低.重污染日PM2.5/PM10浓度比值为91.3%,明显高于全年平均水平,表明重污染时颗粒物以细颗粒物为主.北京大气重污染区域分布表现为南高北低,平原高、山区低的总体特征,交通站重污染天数普遍高于市区其它站点.北京大气重污染主要表现为积累型、光化学型、沙尘型以及复合型等类别;其中积累型大气重污染往往伴有区域污染水平的整体升高,PM2.5组分中NO3-、SO42-、NH4+等水溶性二次离子的浓度增幅最为明显;O3污染在近两年有加重的趋势.  相似文献   

14.
利用Models-3/CMAQ模式系统对北京市2013~2018年秋冬季(即当年11、12月和次年1、2月份)细颗粒物(PM2.5)进行模拟,计算北京周边4个截面的PM2.5传输通量,结合流场、浓度的分析,总结11种大气环流型下北京市的PM2.5传输特征.污染严重的西南(SW)和西(W)环流型下,北京地区受强烈的PM2.5传输作用,0.6km以下南部平原的输入产生了非常强的输入累积作用,加重了北京地区PM2.5的污染程度.污染严重的南(S)环流型下,0.6km以下东部平原和0.6km以上南部平原的输入都产生了较强的输入累积作用,京津冀东部和南部地区的污染物通过不同高度范围传输影响北京地区的PM2.5水平.污染同样严重的均压(UM)和气旋(C)环流型下,各方向的传输都没有产生明显的输入累积作用,本地排放的削减对于污染的控制尤为重要.污染中等的东(E)、东南(SE)环流型下,北京地区在近地层(0.2km以下)通过南部平原截面对保定等城市有较大的输出通量,对北京污染具有较强的输出消散作用.污染轻的北(N)、东北(NE)和西北(NW)环流型下,北京地区在1km以下通过东部平原截面对廊坊、天津等城市有很大的输出通量,对北京污染具有很强的输出消散作用.污染轻的A环流型下,北京地区没有明显的PM2.5输入输出现象.  相似文献   

15.
散煤燃烧等低矮面源的排放对京津冀等地区采暖季ρ(PM2.5)贡献较大,是重污染天气形成的重要原因之一.针对京津冀地区居民采暖“煤改电”治理工程,以2025年为目标年,以不做任何散煤治理工作为基准情景,同时设计2种不同的控制情景(控制情景1、控制情景2),评估不同控制情景下“煤改电”带来的健康效益.通过综合考量民用散煤占燃煤消费量的比例、散煤PM2.5排放强度,结合京津冀地区各城市PM2.5源解析结果,确定民用散煤对大气环境ρ(PM2.5)的贡献系数,计算空气质量改善情况.在此基础上,综合流行病学相关研究成果,运用环境健康风险评估方法,预测不同控制情景中京津冀地区居民采暖“煤改电”带来的健康效益.结果表明:①京津冀地区在控制情景1中ρ(PM2.5)年均值分别下降4.9、4.9和1.1 μg/m3,在控制情景2中分别下降5.4、5.6和2.0 μg/m3;②在控制情景1、控制情景2中京津冀地区居民采暖“煤改电”带来的健康效益分别为266.55×108和352.34×108元,分别约占京津冀地区2015年GDP的0.38%和0.51%.研究显示,通过实施”煤改电”,京津冀地区可实现的健康效益相当可观,其中,北京市获得的健康效益最大,其次是河北省和天津市.   相似文献   

16.
采用垂直观测、地面观测、PM2.5化学组分观测和气团轨迹分析等手段,对2015年10月份北京市一次大气重污染过程进行了分析.结果表明,重污染时近地面层气溶胶消光系数升高,污染物主要积聚在600m以下.重污染期间气象要素特征为:风场弱,湿度大,地面受弱气压场控制,边界层高度极低.重污染期间不同站点PM2.5浓度变化趋势和峰值出现时间较为一致;大部分时段PM2.5中NO3-浓度明显高于其他组分;周边区域受重污染的影响面积相对较小,高浓度区主要集中在北京市及近周边地区.多手段的观测结果以及PM2.5浓度与气象要素和各化学组分的相关性分析的结果均表明:区域传输,包括秸秆焚烧,对本次北京市重污染天气过程具有一定的影响,但本地机动车排放在不利气象条件下的积累、二次转化以及垂直方向空间的极端压缩是导致重污染的主要原因.  相似文献   

17.
中国大陆城市PM_(2.5)污染时空分布规律   总被引:2,自引:0,他引:2  
为分析中国大陆城市PM_(2.5)污染的时空分布规律,运用统计学方法和GIS技术对2014年开展PM_(2.5)常规监测的161个城市进行分析,结果发现:仅8.1%的城市年评价结果达标,日均质量浓度超标天数占26.6%.夏季及春末、秋初PM_(2.5)污染相对较轻,冬季污染较重.PM_(2.5)的日变化曲线呈现不太明显的双峰分布,最低值出现在16:00前后,最高值出现在10:00前后,而凌晨至清晨保持相对较高的污染水平.京津冀及周边地区,中部地区的湖北、湖南、安徽PM_(2.5)污染较重,东南沿海和云南、西藏污染相对较轻.PM_(2.5)的空间分布与风速、相对湿度、土地利用等因素的空间分布具有较强的相关性.PM_(2.5)与PM10质量浓度比值的平均值为0.591,空间上呈由西北向东南逐渐升高、南方高于北方的格局,时间上除1、2月份较高、5月份较低外,其余月份基本稳定在0.55~0.6.研究结果有利于从宏观上认识中国城市PM_(2.5)污染的时空格局,从而针对性地开展环境污染防控.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号