首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
综合类   3篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
为研究不同污染水平下,O3浓度对气温升高的敏感程度,利用2018—2020年5—9月近地层O3日最大8 h平均浓度(O3-8 h浓度)和日最高地面气温(Tmax)数据,拟合O3-8 h浓度对Tmax变化的响应斜率(m O3-T),据此对比分析不同类型站点m O3-T的差异和O3污染特征.结果表明:(1)各站点O3-8 h浓度均随Tmax升高而增加,在24~36℃气温范围内该趋势最明显.(2)城区点m O3-T最高,高达10.6μg/(m3·℃);北部远郊区点和北部背景点m O3-T较低,低至5.2μg/(m3·℃);近郊区点与城区点的m O3-T相当.(3)总体看,北京市m O3-T较高,与O3污染高发地—美国加州南海岸地区20世纪90年代相当,说明目前北京市O...  相似文献   
2.
为评估京津冀及周边“2+26”城市农村居民面源污染控制成效,揭示其对北京市秋冬季重污染天气PM2.5污染的改善作用,及其对PM2.5组分硫酸盐形成机制的影响,采用空气质量模型对北京市2018—2019年秋冬季5次重污染事件进行了模拟. 结果表明:①在“2+26”城市平原地区民用散煤削减90%的控制情景下,区域PM2.5浓度最大值由324 μg/m3降至251 μg/m3,下降了23%. 北京市城区PM2.5浓度由139 μg/m3降至124 μg/m3,下降了11%;同时,北京市城区SO2、硫酸盐浓度分别降至6.2、14.9 μg/m3,分别下降了45%、24%. ②农村居民面源污染控制前北京市硫酸盐浓度的正贡献来源主要受水平平流输送过程影响,控制后水平平流输送过程仍起主导作用,但该过程在水平平流输送、垂直平流输送、水平扩散、垂直扩散这4个物理过程中的绝对重要性上升了2%;此外,农村居民面源污染控制后垂直扩散清除过程对硫酸盐浓度的贡献下降了33%,气溶胶二次转化过程的贡献下降了25%,但SO2向硫酸盐转化的速率加快,其小时转化率上升了1.44%. ③ISAM源解析方法结果表明,控制情景下区域工业过程是影响北京市SO2浓度的最主要行业源因素,平均贡献率为65%,硫酸盐工业过程源的平均贡献率为82%. 区域来源分析表明,北京市SO2来源主要为外地源输送,硫酸盐主要来源与SO2一致,其中河北省贡献较大,其对SO2、硫酸盐的平均贡献率分别达43%、40%. 研究显示,控制情景下污染期间北京市PM2.5污染改善,且污染物浓度、形成过程和来源贡献均发生明显变化.   相似文献   
3.
为了解北京市夏季臭氧(O3)污染的特征与来源,采用区域空气质量模型(CMAQ)的综合源解析功能(ISAM)对北京市2019年6月不同区域的近地面O3浓度及其来源贡献进行了数值模拟计算,量化了北京市、天津市、河北省、京津冀以外省份以及全球背景共14类NOx和VOCs排放源对北京市不同区域O3污染的贡献. 结果表明:①北京市不同地区O3及其前体物来源存在显著差异,城区及近郊区NOx和VOCs均主要来自于北京市本地排放,本地源排放对城区及近郊区的NOx贡献(39.7%~46.4%)显著大于对远郊区的贡献(19.9%~38.8%),本地源排放对城区及近郊区的VOCs贡献(51.1%~75.8%)大于对远郊区的贡献(19.5%~39.6%). ②远郊区NOx和VOCs浓度更易受非本地排放的输送影响. ③O3主要来源于包括模拟区域外以及全球背景的边界传输贡献,边界传输对北京市不同受体区域的贡献均大于52.6%. ④北京市本地源排放对城区及近郊区O3的贡献(6.8%~18.3%)大于对远郊区的贡献(2.4%~7.6%),京津冀以外源区的排放对北京市远郊区的贡献(5.2%~6.4%)大于对城区及近郊区的贡献(2.7%~4.4%),说明本地排放对远郊区影响相对较小,远郊区O3浓度易受北部燕山山脉和太行山的阻隔影响. 因地理位置及地形原因,河北省不同源区对北京市不同区域O3浓度的贡献存在一定差异. 研究显示,控制北京市夏季O3污染应综合考虑城区与郊区O3来源的差异性,做好周边区域的联防联控.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号