首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) in coastal surface sediments from Rizhao offshore area were analyzed by gas chromatography–mass spectrometry. A chemical mass balance (CMB) model developed by the U.S. Environmental Protection Agency (EPA), CMB8.2, was used to apportion sources of PAHs. Seven possible sources, including coal residential, coal power plant, diesel engines exhaust, gasoline engines exhaust, coke oven, diesel oil leaks, and wood burning, were chosen as the major contributors for PAHs in coastal surface sediments. To establish the fingerprints of the seven sources, source profiles were collected from literatures. After including degradation factors, the modified model results indicate that diesel oil leaks, diesel engines exhaust, and coal burning were the three major sources of PAHs. The source contributions estimated by the EPA’s CMB8.2 model were 9.25%, 15.05%, and 75.70% for diesel oil leaks, diesel engines exhaust, and coal burning, respectively.  相似文献   

2.
Source contribution estimates (SCE) of school community personal Respirable Particulate Matter (RPM) have been investigated. Reported relationships of personal RPM with Ambient-outdoors and indoor RPM levels have given the concept of defining the sources of personal exposure. Ambient-outdoors, indoors, soils and local road- traffic dusts were identified as main routes and principal sources of fine particulates at personal exposure levels. Fifteen subjects (05 from each of three schools) were selected from previous conducted study of interrelationships among classified atmospheric receptors in theses schools located in Bhilai-Durg, District Durg, India. Samples of RPM collected from identified receptors and sources were analyzed for selected chemical constituents and the chemical data has been utilized in preparation of source-receptor profiles. Chemical mass balance (CMB8) model has been used for source apportionment study. Major dominating source is ambient-outdoors in case of school located near to steel plant downwind. Indoors and road-traffic dusts have also played dominating role in case of school located near to National Highways. Indoor ventilation properties have played an important role in source contribution estimates.  相似文献   

3.
简述了土壤污染物源解析技术的发展历程及土壤污染物的主要类型与来源。指出,定性源识别技术主要包括特征比值法、多元统计法、空间分析法等;定量源解析技术主要包括源清单法、扩散模型法、化学质量平衡模型法、正定矩阵因子分解法、UNMIX模型法、同位素法等。重点总结了这些技术方法的原理及其在应用上的优势与局限。从解析对象、解析方法和软件开发角度,提出了土壤污染物源解析技术的未来发展方向。  相似文献   

4.
大气颗粒物中多环芳烃的源解析方法   总被引:10,自引:0,他引:10       下载免费PDF全文
综述了用于大气颗粒物中多环芳烃(PAHs)源解析的主要定性、定量方法、并对其优缺点作了总结。比值法多用于定性解析,化学质量平衡法(CMB)要求源的成分谱较全面,而多元统计法则要求输入的数据较多。由于缺乏各污染源较完整的PAHs成分谱,且PAHs易发生化学反应,所以CMB法难以广泛推广,而多元统计法对源成分谱,且PAHs易发生化学反应,所以CMB法难以广泛推广,而多元统计不对源成分谱要求低,且不需要考虑PAHs的降解,因而具有推广价值。  相似文献   

5.
辽宁省三城市大气颗粒物来源解析研究   总被引:2,自引:2,他引:2  
针对辽宁省的沈阳、抚顺、葫芦岛三个城市的大气颗粒物来源,应用CMB化学质量平衡模型和二重源解析技术进行了定性和定量解析。识别各源类及其成分谱的特征,分析、比较大气颗粒物的时空分布特征,并计算三城市各源类在不同季节对城市大气颗粒物污染的贡献率,得到辽宁省城市大气颗粒物来源和季节分布特征的一般规律,说明城市扬尘、土壤风沙尘和煤烟尘是城市颗粒物的主要来源,应作为颗粒物污染治理的重点,而抚顺市特有的钢铁尘,葫芦岛市特有的锌尘等源类的污染也不容忽视。  相似文献   

6.
通过2015年在沈阳市采集PM2.5样品及源类样品,分析样品的质量浓度和化学组成,用化学质量平衡(CMB)模型对该市PM2.5来源进行解析。结果表明:沈阳市大气中PM2.5浓度时空变化特征明显;各主要源类对沈阳市PM2.5的分担率依次为煤烟尘(28.03%)、二次无机离子(22.63%)、机动车尾气尘(17.27%)、城市扬尘(13.28%)、建筑尘(5.94%)、土壤风沙尘(5.82%)、道路尘(3.04%)、生物质燃烧尘(2.74%)和冶金尘(1.25%)。燃煤和机动车的有效控制既能降低本类源的贡献,也能降低二次无机离子,体现了多源类综合治理原则。  相似文献   

7.
杭州市大气PM2.5和PM10污染特征及来源解析   总被引:36,自引:12,他引:24  
2006年在杭州市两个环境受体点位采集不同季节大气中PM2.5和PM10样品,同时采集了多种颗粒物源类样品,分析了其质量浓度和多种化学成分,包括21种无机元素、5种无机水溶性离子以及有机碳和元素碳等,并据此构建了杭州市PM2.5和PM10的源与受体化学成分谱;用化学质量平衡(CMB)受体模型解析其来源。结果表明,杭州市PM2.5和PM10污染较严重,其年均浓度分别为77.5μg/m3和111.0μg/m3;各主要源类对PM2.5的贡献率依次为机动车尾气尘21.6%、硫酸盐18.8%、煤烟尘16.7%、燃油尘10.2%、硝酸盐9.9%、土壤尘8.2%、建筑水泥尘4.0%、海盐粒子1.5%。各主要源类对PM10贡献率依次为土壤尘17.0%、机动车尾气尘16.9%、硫酸盐14.3%、煤烟尘13.9%、硝酸盐粒8.2%、建筑水泥尘8.0%、燃油尘5.5%、海盐粒子3.4%、冶金尘3.2%。  相似文献   

8.
北京市大气PM10源解析研究   总被引:10,自引:5,他引:10  
于2004年在北京市定陵、车公庄、古城、亦庄、房山和奥体中心6个采样点采集大气PM10环境样品,针对北京市颗粒物主要排放源采集土壤尘、建筑水泥尘、燃煤等污染源PM10样品,分别对其中的无机元素、离子、有机碳(OC)和元素碳(EC)进行测定。采用代表北京市颗粒物主要排放源PM10组分特征的成分谱,利用CMB受体模型对PM10来源进行解析。结果表明,PM10的最大来源为土壤尘,其它贡献源类依次为燃煤排放、机动车/燃油排放、二次粒子(SO42-、NO3-和NH4 )、建筑水泥尘。污染源贡献具有明显的季节变化,并存在一定的地域变化。  相似文献   

9.
为了建立臭氧污染快速来源解析方法,提高解析结果的时空分辨率,以2017、2018年青岛市环境空气质量精细化管理实践为契机,利用CAMx-OSAT模型的污染源识别与追踪技术,预测解析未来时段特别是污染期间不同区域、行业的排放源对目标站点O3浓度的贡献量和贡献率。结果显示:模拟的春、夏季2个时段青岛市的O3来源主要为工业、电厂、交通、生活源,2个时段的模拟结果本地和外来源中工业源的贡献分别占62. 0%和65. 0%,交通源分别占24. 5%和16. 0%,生活源分别占8. 4%和8. 0%,电厂源分别占5. 0%和11. 0%,O3高浓度污染时,工业源的贡献上升明显,青岛市的O3浓度外来源的贡献约占40%~80%。该数值模型O3来源解析及预测方法已成功用于青岛市的空气质量精细化管理及应急管控。  相似文献   

10.
A source apportionment study was carried out to estimate the contribution of motor vehicles to ambient particulate matter (PM) in selected urban areas in the USA. Measurements were performed at seven locations during the period September 7, 2000 through March 9, 2001. Measurements included integrated PM2.5 and PM10 concentrations and polycyclic aromatic hydrocarbons (PAHs). Ambient PM2.5 and PM10 were apportioned to their local sources using the chemical mass balance (CMB) receptor model and compared with results obtained using scanning electron microscopy (SEM). Results indicate that PM2.5 components were mainly from combustion sources, including motor vehicles, and secondary species (nitrates and sulfates). PM10 consisted mainly of geological material, in addition to emissions from combustion sources. The fractional contributions of motor vehicles to ambient PM were estimated to be in the range from 20 to 76% and from 35 to 92% for PM2.5 and PM10, respectively.  相似文献   

11.
A large study has been undertaken to assess the exposure to diesel exhaust within diesel trucking terminals. A critical component of this assessment is an analysis of the variation in carbonaceous particulate matter (PM) across trucking terminal locations; consistency in the primary sources can be effectively tracked by analyzing trends in elemental carbon (EC) and organic molecular marker concentrations. Ambient samples were collected at yard, dock and repair shop work stations in 7 terminals in the USA and 1 in Mexico. Concentrations of EC ranged from 0.2 to 12 microg m(-3) among the terminals, which corresponds to the range seen in the concentration of summed hopanes (0.5 to 20.5 ng m(-3)). However, when chemical mass balance (CMB) source apportionment results were presented as percent contribution to organic carbon (OC) concentrations, the contribution of mobile sources to OC are similar among the terminals in different cities. The average mobile source percent contribution to OC was 75.3 +/- 17.1% for truck repair shops, 65.4 +/- 20.4% for the docks and 38.4 +/- 9.5% for the terminal yard samples. A relatively consistent mobile source impact was present at all the terminals only when considering percentage of total OC concentrations, not in terms of absolute concentrations.  相似文献   

12.
结合2018年10月15—20日国控站点监测数据、气象资料及激光雷达走航观测结果,对江淮地区一次重度污染过程进行了分析。利用拉格朗日粒子扩散模型和拉格朗日混合单粒子轨迹模型定性分析了区域污染来源,分别基于激光雷达和空气站实测数据提出了外来源占比的估算方法,结合嵌套网格空气质量预报模式(NAQPMS)的源解析结果,对比分析了外来源占比。以淮北市为例,结合NAQPMS和单颗粒气溶胶质谱的PM2.5在线源解析结果,对比分析此次污染过程的行业来源。结果表明,本地污染累积时段,主要以燃煤和机动车尾气混合源为主(占比>70%);受北方污染输送时段,机动尾气占比显著升高,从19.4%(16日00:00)升至66.7%(17日11:00),淮北市、蚌埠市、合肥市3个城市污染物外来输送占比分别为52.2%~70.6%、48.8%~58.8%、41.5%~59.0%。  相似文献   

13.
广州市春季一次沙尘天气过程综合观测   总被引:6,自引:3,他引:3  
2017年4月21—23日广州市经历了一次远距离传输的沙尘天气过程,为了解沙尘过程对广州市空气质量的影响,基于广州市大气超级站,利用单颗粒气溶胶质谱(SPAMS)、气溶胶激光雷达观测数据并结合HYSPLIT后向轨迹模型分析了沙尘过程细颗粒物组分及污染来源贡献变化和沙尘气溶胶的来源及路径。结果表明:受沙尘过境影响,PM_(10)浓度大幅升高,PM_(2.5)/PM_(10)最小值仅为12.1%;沙尘过境期间影响近地面颗粒物的沙尘高度主要分布在1 km以下区域,近地面颗粒物消光系数均值为100.11 Mm~(-1),探测到最大退偏振比为0.28。SPAMS研究发现沙尘过境期间含硅酸盐颗粒物(SI)的细颗粒物数浓度比例达25.9%,是沙尘过境前的1.4倍;PM_(2.5)中扬尘贡献率明显增大,达到了17.3%,是沙尘过境前的1.9倍。后向轨迹模型HYSPLIT显示此次沙尘为典型的北方沙尘传输,沙尘源自中国西北地区,传输方向为自西北输送至华东地区后,转为东南方向影响广州市。  相似文献   

14.
Airborne particulate matter, suspected to induce adverse effects on human health, have been one of the most important concerns regarding recent air pollution issues in Japan. To characterize regional and seasonal variations in emission sources of fine airborne particulate matter (d < 2 microm), monthly samples (n = 36 for each site) were collected at urban (Tokyo), suburban (Maebashi), and mountainous (Akagi) sites in Japan from April 2003 to March 2006. Multielement analysis of chemical species (Na, Al, K, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Sb, and Pb) was performed by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry. The combined source receptor model, which consists of positive matrix factorization and chemical mass balance, determined the contributions of nine emission sources (local and continental soils, road dust, coal and oil combustion, waste incineration, steel industry, brake wear, and diesel exhaust) to the observed elemental concentrations. Large regional differences were identified in the source contributions among the observational sites. Diesel exhaust was identified as the most significant source (70% of identified contributions) at the urban site. Local and continental soils, coal combustion, and diesel exhaust were intricately assigned (20-30% each) to the suburban site. Continental soil was the predominant source (65%) at the mountainous site. Respective significant source contributions dominated the seasonal variations of total elemental concentrations at each site. These results suggest that a better understanding of the regional and seasonal characteristics of impacting emission sources will be important for improving regional environments.  相似文献   

15.
BP网络应用于大气颗粒物的源解析   总被引:3,自引:0,他引:3  
应用BP网络对大气颗粒物进行源解析,将大气采集样本中的元素含量和大气颗粒物源成分谱构成训练样本集,用BP网络进行训练,由训练好的网络的权值可以计算出大气颗粒物的污染排放源的权重贡献率.将BP源解析法的计算结果与其它源解析法得到的结果比较,表明BP网络应用于大气颗粒物的源解析是可行的.  相似文献   

16.
对深圳、无锡、济南和美国EPA建立的机动车排放颗粒物成分谱进行对比研究,建立的成分谱中各组分含量存在较大差别原因为使用了不同的采样方法。  相似文献   

17.
Total suspended particles mass concentrations (TSP) and bulk depositions of particulate matter (PM depositions) were measured around a cement plant located in the multi-impacted area to assess the affect of the plant on the ambient air in the vicinity in Izmir, Turkey. TSP samples were collected five times a month whereas PM depositions were sampled monthly at four sites between August 2003 and January 2004. The concentrations of Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, and Zn in TSP and PM depositions (except Cu) were reported. Chemical mass balance (CMB) receptor model with local source profiles was run in order to calculate the source contributions of the PM sources to the concentrations of TSP, PM depositions, and trace elements. Traffic was found to be the major contributor to TSP whereas PM depositions dominantly result from area sources including several stone quarries, concrete plants, lime kilns, and asphalt plants in the region. CMB model results indicate that the cement plant is a significant contributor to TSP, PM depositions, and trace elements, particularly Cd.  相似文献   

18.
In this study a large dataset on the polycyclic aromatic hydrocarbon (PAH) content of Swiss soils was analysed to evaluate two source apportionment tools, i.e., characteristic PAH ratios/molecular markers and a linear mixing model. Population density and total organic carbon (TOC) content were identified by a multiple regression model as independently and positively influencing the PAH concentrations in Swiss background soil. Specifically, TOC was more strongly positively correlated with the sum of light PAH (naphthalene to phenanthrene) than with the sum of heavy PAH (anthracene to benzo[ghj]perylene), whereas population density was more strongly positively correlated with the sum of heavy PAH than with light PAH. In addition, the sum of the heavy PAH as well as the total sum correlated negatively with sample site altitude. It is therefore hypothesised that heavy PAH are less mobile, whereas light PAH were closer to equilibrium with TOC in the soil. Similar results were found for polychlorinated biphenyls (PCB). The characteristic ratios and molecular markers pointed to pyrogenic origin of PAH in Swiss background soil but did not allow for further differentiation of individual fuel contributions, even though attempts to take environmental fractionation processes into account were made. The comparison of three soil profiles identified with a linear mixing model from the pattern of 16 PAH with >300 PAH emission profiles from the literature suggested urban dust, wood combustion and binders from asphalt as PAH sources. However, also here, environmental fractionation processes probably obscured source characteristic PAH ratios and fingerprints, which thus need to be interpreted with caution.  相似文献   

19.
The Great Lakes may be viewed as a coastal environment, affected by the same meteorological and physical forces as the coastal ocean. The U.S. EPA, Great Lakes National Program Office (GLNPO) has monitored the open waters of the lakes, annually, since 1983. As part of the U.S. EPA Environmental Monitoring and Assessment Program (EMAP), a pilot study was performed in Lake Michigan to compare the existing GLNPO deterministic sampling grid with the EMAP probabilistic grid. Results of chemical analyses of trophic status indicators (total phosphorus and chlorophyll a) as well as nutrients and conventional limnological measurements, from spring and summer surveys in 1992 indicate little difference between the grids in the offshore region of the lake. The few statistically significant differences may be due to station distribution throughout the lake, or simple chance. This might be expected due to the well mixed nature of the open waters of Lake Michigan. The detection of a long-term trend for total phosphorus in Lake Michigan benefits from an annual program: viewing cumulative frequency distributions based on a four year EMAP interval does not convey information on the decrease in phosphorus in the lake. If the EMAP sampling grid were to be used in the Great Lakes, pilots in each of the lakes would be necessary for utilization of the existing long-term record as a basis for trend detection.  相似文献   

20.
Ecological health in a temperate stream impacted by acid mine drainage (AMD) was evaluated by using a multimetric approach of the Index of Biological Integrity (IBI) based on natural fish assemblage. Recently, this approach has been widely used in many developed countries as a tool for ecological risk assessments of water environments. We used 10 metric systems, instead of 12 metrics suggested by Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, benthic Macroinvertebrates and Fish, 2nd edn. EPA 841-B-99-002. Washington, DC: U.S. Environmental Protection Agency, Office of Water, for a development of the regional IBI model, and used trophic guilds, habitat guilds, and richness variables for the calculation of IBI values. In the model, the attributes of four of 11 metrics were modified for the regional application. IBI values in the stream averaged 20.6 (n = 5), indicating a “poor condition” in terms of ecological health according to the modified criteria of U.S. EPA (1993). Fish Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters. EPA 600-R-92-111. Environmental Monitoring systems Laboratory – Cincinnati office of Modeling, Monitoring systems, and quality assurance Office of Research Development, U.S. EPA, Cincinnati, Ohio, 45268. In particular, mean IBI values in the impacted areas of sites 2 and 3 were 13, and this health condition was categorized as “very poor condition.” IBI values in the impacted sites were significantly lower than the values found in the control. Also, we found that fishes in site sites 2 and 3 were not present during the study, and morphological deformity of Rhynchocypris oxycephalus was observed in site 4, influenced directly by sites 2 and 3, indicating a chemical impact in the sites. From the results of experiments in which AMD was treated with marine shells at stagnant condition, pH increased up to 6.0 from 3.1, and Fe and Al were removed up to 99% within 6 h. In the reactor experiment considering field application, pH of effluent maintained around 7.0. In addition, concentrations of Fe, Al, and heavy metals decreased remarkably in the effluents, and bottom-opened screen between neutralizer basins showed high effectiveness in the treatment of AMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号