首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
LANDSCAPE DEVELOPMENT INTENSITY INDEX   总被引:12,自引:0,他引:12  
  相似文献   

2.
Considerable resources are being used to develop and implement bioassessment methods for wetlands to ensure that “biological integrity” is maintained under the United States Clean Water Act. Previous research has demonstrated that avian composition is susceptible to human impairments at multiple spatial scales. Using a site-specific disturbance gradient, we built avian wetland indices of biological integrity (AW-IBI) specific to two wetland classification schemes, one based on vegetative structure and the other based on the wetland’s position in the landscape and sources of water. The resulting class-specific AW-IBI was comprised of one to four metrics that varied in their sensitivity to the disturbance gradient. Some of these metrics were specific to only one of the classification schemes, whereas others could discriminate varying levels of disturbance regardless of classification scheme. Overall, all of the derived biological indices specific to the vegetative structure-based classes of wetlands had a significant relation with the disturbance gradient; however, the biological index derived for floodplain wetlands exhibited a more consistent response to a local disturbance gradient. We suspect that the consistency of this response is due to the inherent nature of the connectivity of available habitat in floodplain wetlands.  相似文献   

3.
The Landscape Development Intensity index (LDI), which is based on non-renewable energy use and integrates diverse land use activities, was compared to other measures of LU (e.g., %agriculture, %urban) to determine its ability for predicting benthic diatom composition in freshwater marshes of peninsular Florida. In this study, 70 small, isolated herbaceous marshes located along a human disturbance gradient (generally agricultural) throughout peninsular Florida were sampled for benthic diatoms and soil and water physical/chemical parameters (i.e., TP, TKN, pH, specific conductance, etc.). Landscape measures of percent agriculture, percent urban, percent natural, and LDI index values were calculated for a 100 m buffer around each site. The strongest relationships using Mantel's r statistic, which ranges from −1 to 1, were found between benthic diatom composition, the combined soil and water variables, and LDI scores (r=0.51, P<0.0001). Although similar, soil and water variables alone (r=0.45, P<0.0001) or with percent agriculture or percent natural were not as strongly correlated (both Mantel's r=0.46, P<0.0001). Little urban land use was found in the areas surrounding the study wetlands. Diatom data were clustered using flexible beta into 2 groups, and stepwise discriminant analysis identified specific conductance, followed by LDI score, soil pH, water total phosphorus, and ammonia, as cluster-separating variables. The LDI explained slightly more of the variation in species composition than either percent agriculture or percent natural, perhaps because the LDI can combine disparate land uses into a single quantitative value. However, the ecological significance of the difference between land use metrics and diatom composition is controvertible, and additional tests including more varied land uses appear warranted.  相似文献   

4.
Bioassessment methods for wetlands, and other bodies of water, have been developed worldwide to measure and quantify changes in “biological integrity.” These assessments are based on a classification system, meant to ensure appropriate comparisons between wetland types. Using a local site-specific disturbance gradient, we built vegetation indices of biological integrity (Veg-IBIs) based on two commonly used wetland classification systems in the USA: One based on vegetative structure and the other based on a wetland’s position in a landscape and sources of water. The resulting class-specific Veg-IBIs were comprised of 1–5 metrics that varied in their sensitivity to the disturbance gradient (R 2?=?0.14???0.65). Moreover, the sensitivity to the disturbance gradient increased as metrics from each of the two classification schemes were combined (added). Using this information to monitor natural and created wetlands will help natural resource managers track changes in biological integrity of wetlands in response to anthropogenic disturbance and allows the use of vegetative communities to set ecological performance standards for mitigation banks.  相似文献   

5.
Various measures of plants, soils, and invertebrates were described for a reference set of tidal coastal wetlands in Southern New England in order to provide a framework for assessing the condition of other similar wetlands in the region. The condition of the ten coastal wetlands with similar hydrology and geomorphology were ranked from least altered to highly altered using a combination of statistical methods and best professional judgment. Variables of plants, soils, and invertebrates were examined separately using principal component analysis to reduce the multidimensional variables to principal component scores. The first principal component scores of each set of variables (i.e., plants, soil, invertebrates) significantly (p?<?0.05) correlated with both residential land use and watershed nitrogen (N) loads. Using cumulative frequency diagrams, the first principal component scores of each plant, soil, and invertebrate data set were plotted, and natural breaks and best professional judgment were used to rank the first principal component scores among the sites. We weighted all three ranked components equally and calculated an overall salt marsh condition index by summing the three ranks and then transforming the index to a 0–1 scale. The overall salt marsh condition index for the reference coastal wetland set significantly correlated with the residential land use (R?=???0.87, p?=?0.001) and watershed N loads (R?=???0.86, p?=?0.001). Overall, condition deteriorated in salt marshes and their associated discharge streams when subjected to increasing watershed residential land use and N loads.  相似文献   

6.
The Environmental Protection Agency (EPA) and U.S. Geological Survey (USGS) initiated a two-year regional pilot survey in 2007 to develop, test, and validate tools and approaches to assess the condition of northern Gulf of Mexico (GOM) coastal wetlands. Sampling sites were selected from estuarine and palustrine wetland areas with herbaceous, forested, and shrub/scrub habitats delineated by the US Fish and Wildlife Service National Wetlands Inventory Status and Trends (NWI S&T) program and contained within northern GOM coastal watersheds. A multi-level, stepwise, iterative survey approach is being applied to multiple wetland classes at 100 probabilistically-selected coastal wetlands sites. Tier 1 provides information at the landscape scale about habitat inventory, land use, and environmental stressors associated with the watershed in which each wetland site is located. Tier 2, a rapid assessment conducted through a combination of office and field work, is based on best professional judgment and on-site evidence. Tier 3, an intensive site assessment, involves on-site collection of vegetation, water, and sediment samples to establish an integrated understanding of current wetland condition and validate methods and findings from Tiers 1 and 2. The results from this survey, along with other similar regional pilots from the Mid-Atlantic, West Coast, and Great Lakes Regions will contribute to a design and implementation approach for the National Wetlands Condition Assessment to be conducted by EPA’s Office of Water in 2011.  相似文献   

7.
We developed a series of tools to address three integrated tasks needed to effectively manage wetlands on a watershed basis: inventory, assessment, and restoration. Depending on the objectives of an assessment, availability of resources, and degree of confidence required in the results, there are three levels of effort available to address these three tasks. This paper describes the development and use of synoptic land-cover maps (Level 1) to assess wetland condition for a watershed. The other two levels are a rapid assessment using ground reconnaissance (Level 2) and intensive field assessment (Level 3). To illustrate the application of this method, seven watersheds in Pennsylvania were investigated representing a range of areas (89-777 km2), land uses, and ecoregions found in the Mid-Atlantic Region. Level 1 disturbance scores were based on land cover in 1-km radius circles centered on randomly-selected wetlands in each watershed. On a standardized, 100-point, human-disturbance scale, with 100 being severely degraded and 1 being the most ecologically intact, the range of scores for the seven watersheds was a relatively pristine score of 4 to a moderately degraded score of 66. This entire process can be conducted in a geographic information system (GIS)-capable office with readily available data and without engaging in extensive field investigations. We recommend that agencies and organizations begin the process of assessing wetlands by adopting this approach as a first step toward determining the condition of wetlands on a watershed basis.  相似文献   

8.
The unprecedented urban growth especially in developing countries has laid immense pressure on wetlands, finally threatening their existence altogether. A long-term monitoring of wetland ecosystems is the basis of planning conservation measures for a sustainable development. Deepor Beel, a Ramsar wetland and major storm water basin of the River Brahmaputra in the northeastern region of India, needs particular attention due to its constant degradation over the past decades. A rule-based classification algorithm was developed using Landsat (2011)-derived indices, namely Normalised Difference Water Index (NDWI), Modified Normalised Difference Water Index (MNDWI), Normalised Difference Pond Index (NDPI), Normalised Difference Vegetation Index (NDVI) and field data as ancillary information. Field data, ALOS AVNIR and Google Earth images were used for accuracy assessment. A fuzzy accuracy assessment of the classified data sets showed an overall accuracy of 82 % for MAX criteria and 90 % for RIGHT criteria. The rules were used to classify major wetland cover types during low water season (January) in 1989, 2001 and 2012. The statistical analysis of the classified wetland showed heavy manifestation in aquatic vegetation and other features indicating severe eutrophication over the past 23 years. This degradation was closely related to major contributing anthropogenic factors, such as a railway line construction, growing croplands, waste disposal and illegal human settlements in the wetland catchment. In addition, the landscape development index (LDI) indicated a rapid increase in the impact of the surrounding land use on the wetland from 1989 to 2012. The techniques and results from this study may prove useful for top-down landscape analyses of this and other freshwater wetlands.  相似文献   

9.
A multi-level coastal wetland assessment strategy was applied to wetlands in the northern Gulf of Mexico (GOM) to evaluate the feasibility of this approach for a broad national scale wetland condition assessment (US Environmental Protection Agency’s National Wetlands Condition Assessment). Landscape-scale assessment indicators (tier 1) were developed and applied at the sub-watershed (12-digit hydrologic unit code (HUC)) level within the GOM coastal wetland sample frame with scores calculated using land-use maps and geographic information system. Rapid assessment protocols (tier 2), using a combination of data analysis and field work, evaluated metrics associated with landscape context, hydrology, physical structure, and biological structure. Intensive site monitoring (tier 3) included measures of soil chemistry and composition, water column and pore-water chemistry, and dominant macrophyte community composition and tissue chemistry. Relationships within and among assessment levels were evaluated using multivariate analyses with few significant correlations found. More detailed measures of hydrology, soils, and macrophyte species composition from sites across a known condition gradient, in conjunction with validation of standardized rapid assessment method, may be necessary to fully characterize coastal wetlands across the region.  相似文献   

10.
Human activities produced great impacts on wetlands worldwide. Taking Jiangsu Province, China, as a representative wetland region subject to extensive human activities, the aim of this study is to understand the conversion trajectory and spatial differentiation in wetland change from a multi-scale perspective. Based on multi-temporal Landsat images, it was found that the natural wetlands decreased by 11.2% from 1990 to 2006 in Jiangsu Province. Transition matrices showed that the conversion of natural wetlands to human-made wetlands (mostly aquaculture ponds) was the major form of natural wetland reduction, accounting for over 60% of the reduction. Percentage reduction and area reduc tion of natural wetlands were respectively quantified within different wetland cover zones using a moving window analysis. Average percentage reduction showed a decreasing tendency with increasing wetland cover. The high-cover and mid-cover zone presented the largest area reduction at the scales of 1-2 km and 4-8 km, respectively. Local hotspots of natural wetland reduction were mapped using the equal-interval and quantile classification schemes. The hotspots were mostly concentrated in the Lixiahe marshes and the coastal wetland areas. For the area reduction hotspots, the quantile classification presented larger area and more patches than the equal-interval classification; while an opposite result was shown for the percentage reduction hotspots. With respect to the discontinuous distribution of the natural wetlands, area reduction could be more appropriate to represent reduction hotspots than percentage reduction in the study area. These findings could have useful implications to wetland conservation.  相似文献   

11.
Several theoretical, analytical, and institutional difficulties have impeded the development and application of the assessment of cumulative environmental impacts. Watershed development on coastal wetlands offers an ideal context for evaluating the land disturbance target approach to cumulative impact assessment. A model land use planning system involving a time series approach was developed for Elkhorn Slough in California. The approach included four major components: evaluation of erosion susceptibility, measurement of land disturbance, establishment of a land disturbance target, and a comparison of existing and target land disturbance values. Further research is needed to test the transferability of the approach in a wide range of coastal watersheds and to verify the applicability of the methods to other cumulative impact problems.  相似文献   

12.
Sedimentation rates and deposited sediment characteristics in twenty-five wetlands in central Pennsylvania were measured during the period Fall 1994 to Fall 1995. Wetlands were located primarily in five watersheds, and represented a variety of hydrogeomorphic (HGM) subclasses and surrounding land use. Sedimentation rates were measured via the placement of 135 Plexiglas disks. Annual organic and inorganic loadings were determined. Sedimentation rates ranged from 0 to 8 cm/year, with sedimentation rates significantly correlated with surrounding land use and HGM subclass. Overall mean mineral and organic accretion rates were 778 g m2 yr-1 (+/- 1417) and 550 g m2 yr-1 (+/- 589), respectively. Mean mineral and organic accretion rates were significantly different by HGM subclass. The highest mineral accretion rates were for headwater floodplains, followed by impoundments, riparian depressions, mainstem floodplains, and slopes. The highest organic accretion rates were for riparian depressions, followed by impoundments, slopes, headwater floodplains, and mainstem floodplains. The potential effects of landscape disturbance on these sedimentation rates was also investigated, in order to develop a conceptual model to predict sedimentation rates for a given wetland in a variety of landscape settings. Different HGM subclasses exhibited significantly different mineral and organic accumulation rates, and varied in their responses to landscape disturbance and spatial variability in sedimentation patterns. Characterization of wetland plant communities in these same wetlands showed clear associations between individual plant species and ability to tolerate sediment. Species were categorized as very tolerant, moderately tolerant, slightly tolerant, and intolerant based on their association with environments of varying sedimentation magnitude. In general, species that were categorized as very tolerant or moderately tolerant increased their percent cover (dominance) over the sedimentation gradient. These observations were supported by greenhouse germination trials of eight species of wetland plants under a variety of sediment depths, ranging from 0 to 2 cm.  相似文献   

13.
We developed and tested a plant-based index of biological integrity (IBI) and used it to evaluate the existing reclamation wetlands in Alberta’s oil sands mining region. Reclamation plans call for >15,000 ha of wetlands to be constructed, but currently, only about 25 wetlands are of suitable age for evaluation. Reclamation wetlands are typically of the shallow open water type and range from fresh to sub-saline. Tailings-contaminated wetlands in particular may have problems with hydrocarbon- and salt-related toxicity. From 60 initial candidate metrics in the submersed aquatic and floating vegetation communities, we selected five to quantify biological integrity. The IBI included two diversity-based metrics: the species richness of floating vegetation and the percent of total richness contributed by Potamogeton spp. It also included three relative abundance-based metrics: that of Ceratophyllum demersum, of floating leafed species and of alkali-tolerant species. We evaluated the contribution of nonlinear metrics to IBI performance but concluded that the correlation between IBI scores and wetland condition was not improved. The method used to score metrics had an influence on the IBI sensitivity. We conclude that continuous scoring relative to the distribution of values found in reference sites was superior. This scoring approach provided good sensitivity and resolution and was grounded in reference condition theory. Based on these IBI scores, both tailings-contaminated and tailings-free reclamation wetlands have significantly lower average biological integrity than reference wetlands (ANOVA: F 2,59 = 34.7, p = 0.000000000107).  相似文献   

14.
Constructed wetland has been widely adopted to deal with degraded natural wetlands and water bodies; thus, more attention should be focused on ecological–economic sustainability and ecological efficiency of these projects for long-term success. Emergy accounting was conducted to investigate the energy and resource flows in constructed wetlands during the restoration process. Emergy-based indexes were adopted to evaluate the sustainability of a pilot large-scale constructed wetland in a large wetland restoration project in North China, carried out to enhance the river water quality and offset the degradation of natural wetland. Emergy and emdollar values for ecosystem services and natural capital were also calculated. The results showed that when outflow was considered as the product, the studied large-scale constructed wetland was more self-supporting and could be operated with lesser financial investment, although the waste treatment efficiency and the sustainability index were lower than conventional small-scale treatment constructed wetlands. Compared with natural wetlands, more visits from tourists and lesser financial investment coming in as feedback into the wetland would reduce system environment loading and promote system self-support ability, ultimately generating sustainability. In addition, the studied large-scale constructed wetland can effectively simulate energy and resource flows of natural wetland ecosystem and contribute a roughly equal value of ecosystem services in term of gross primary production. The studied large-scale constructed wetland can successfully achieve ecosystem functions as replacement for natural wetland and hasten the restoration process, although the restoration effectiveness of ecosystem structures in terms of living biomass and water using emergy-value accounting is still inconclusive.  相似文献   

15.
Agricultural activities, especially reclamation, are considered major threats to the wetland ecosystems in Sanjiang Plain, the largest concentrated area of the freshwater wetlands in China. In the past decades, the area of the cultivated land and its grain production have been increased at the cost of wetlands shrinkage. The large-scale land reclamation severely affected the ecosystems in this region. However, such effects at the regional scale are seldom evaluated quantitatively. We used three datasets of LANDSAT MSS and/or TM imagery to estimate the area changes and the transition of land use types from 1980 to 2000. We also valued changes in ecosystem services delivered by each land category using value coefficients published by Costanza et al. [Nature 387, 1997, 253–260]. Sensitivity analysis suggested that these estimates were relatively robust. Finally, the contribution of various ecosystem functions was ranked to the overall value of the ecosystem services in this study. According to our estimates, the total annual ecosystem service values in Sanjiang Plain have declined by about 40% between 1980 and 2000 ($156284–182572.18 million in total over 20 years). This substantial decline is largely attributed to the 53.4% loss of wetlands. For individual ecosystem functions, waste treatment, water supply and disturbance regulation account for more than 60% to the total ecological values. During those two decades, the contribution of disturbance regulation, cultural and recreation decreased, while the contribution of water regulation, nutrient cycling, food production, raw materials and climate regulation increased during the same period. We also put forward a few proposals concerning the future land use policy formulation and sustainable ecosystems. They are adjusting the ‘food first’ agricultural policy, establishing more nature reserves for wetlands, creating systems for the rational use of water, harnessing the degraded cultivated land and encouraging eco-tourism.  相似文献   

16.
为了厘清改革开放以来忻州市各类生态系统及生态系统格局的时空特征,使用忻州全市1980、2000、2018年的土地利用和覆盖(LULC)二级分类数据,经过土地转移矩阵和景观格局指数计算,探讨分析了忻州市改革开放以来近40年的LULC及格局的长时间序列时空变化特征,以揭示忻州市的生态环境变化态势。研究区近40年来以城镇用地和其他建设用地增加为主,其他各类减少,城镇化和人口增长带来的土地和生态压力主要集中在草地、耕地以及湿地上;其中2000—2018年的变化更剧烈,人类活动对自然的干扰加剧,但同时在这一阶段已经开始了森林、湿地的保护,开展经济发展与生态文明同步建设。  相似文献   

17.
Socioeconomic forces are not only among the main drivers of landscape dynamics; they are also influenced by landscape patterns. Landscape structure and functions are closely related to natural and social factors. The objective of this study was to investigate the relationships among some human-related factors and landscape ecological metrics as landscape pattern indicators and to identify suitable metrics for modeling these relationships. To this goal, landscape ecological metrics were calculated for each of the 32 counties of Mazandaran and Guilan provinces located in the southern basin of the Caspian Sea using land use/cover maps in class level. Stream network metrics were calculated using a digital elevation model, road density metrics were calculated using map of main roads separately, and significant metrics were selected according to results of correlation tests and factor analysis. The correlations between these metrics and socioeconomic factors were tested, and their relationships were modeled with multiple linear regressions. Significant relationships were found among socioeconomic factors and landscape ecological metrics, and land use/cover data are applicable for modeling socioeconomic factors, especially demographic and employment structure factors. Among the landscape metrics applied in this study, road density, mean patch size, mean nearest neighbor distance, and percentage of a land use/cover class in landscape were important metrics for predicting socioeconomic factors. Our findings indicated that road density metric and percentages of urban class are useful for predicting urban socioeconomic factors and percentage of agriculture and forest classes in the landscape are suitable metrics for predicting rural socioeconomic factors.  相似文献   

18.
The transformation, composition, and distribution characteristics of nutrients in natural wetlands are significantly affected by human activities, such as large-scale water conservancy projects and agricultural activities. It is necessary to reveal the composing and distribution characteristics of nutrients for elucidating its complex removal and retention mechanisms in natural wetlands. In this study, the composition and the spatial distribution characteristics of nitrogen in a natural wetland in central China were illustrated and analyzed. The self-organizing map (SOM) model was used in this study to assess the water quality dataset of the wetland. The relationships between nitrogen and other water quality parameters were revealed by the visualization function of the SOM model with the pre-processed data; the modeling result was in agreement with the linear correlation analysis. The results indicated that the SOM model was suitable for the assessment of field-scale date of natural wetlands, and finally a potential approach for predicting the nutrients concentrations in natural wetlands was also found.  相似文献   

19.
Wetland loss has been the major environmental problem in Sanjiang Plain, NE China in recent years because of the dramatic agricultural development. We determined the spatial associations of the wetland loss rates in an 11,000-km2 study area for two intervals of period 1 (1975–1989) and period 2 (1989–2004) spanning 30 years by using geographic information systems. The landscape of this area was simple with five categories, composed of ten types, and including three natural wetland types—open water, marsh, and wet meadow. Extensive agriculture was the principal cultivation form in terms of large size farm units in the area. Agriculture has become the principal land use category replacing natural wetlands over the 30-year period. It has changed the whole landscape of the region and the landscape pattern, causing wetland loss and fragmentation. The wetland loss rate of the area was very different between the two intervals, while wetland loss was not uniform throughout the region and was influenced by the landscape characteristics, such as topography, geomorphology, and the location of the wetlands in the watershed. Despite the remarkable land use changes, the wetlands distribution in the landscapes was similar compared to their original pattern. These results indicated that agricultural development affected the areas more than the distribution pattern of the wetlands in this region.  相似文献   

20.
Zhalong National Nature Reserve in the northeast of China is a large wetland and a habitat of hundreds species of fauna and flora. The rare red-crowned crane is one kind of endangered birds in it. Recently, Zhalong wetland is shrinking and it encounters many problems including occasional fires, bad water quality, human activities, etc. In order to find out a proper way to protect and restore the wetland, this study, using a geographic information system, the global positioning system and remote sensing techniques, analyses the spatial characteristics of the changes in marsh landscape pattern and examines the driving factors for these changes. Data sources include 8 Landsat Thematic Mapper satellite images of Zhalong area in the period of 1986–2002 and the investigation information on site. Based on the analysis of changes of marsh area and annual precipitation during the 16 years, it is found that there is a close correlation between annual precipitation and marsh area. It means that climate is one of driving factors of marsh pattern changes. To understand influences of other kinds of land uses on marsh spatial distribution in Zhalong wetland, this paper analyses the relationship between marsh and different kinds of land uses, such as water surface, residential area, farmland, salina land and grass land, respectively. According to the patch analysis theory, a fragmental index and a fractal dimension of the marsh are calculated with perimeter-area method. The results indicate that the marsh pattern is affected by human activities significantly. In addition, the location alteration of marsh centroid point over the 16 years is studied. The movement trace of marsh centroid point is concerned with different hydrological situation in different areas of the wetland. In summary the characteristics of the marsh landscape pattern evolution during the 16 years are affected by multiple driving factors. The main driving factors are climate, human activities, distribution of other kinds of land uses and hydrological situation in different areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号