首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this study, we interpreted coastal wetland types from an ASTER satellite image in 2002, and then compared the results with the land-use status of coastal wetlands in 1952 to determine the wetland loss and degradation around Jiaozhou Bay. Seven types of wetland landscape were classified, namely: shallow open water, inter-tidal flats, estuarine water, brackish marshes, salt ponds, fishery ponds and ports. Several landscape pattern indices were analysed: the results indicate that the coastal wetlands have been seriously degraded. More and more natural wetlands have been transformed into artificial wetlands, which covered about 33.7% of the total wetlands in 2002. In addition, we used a defined model to assess the impacts of human activities on coastal wetlands. The results obtained show that the coastal wetlands of Jiaozhou Bay have suffered severe human disturbance. Effective coastal management and control is therefore needed to solve the issues of the coastal wetland loss and degradation existing in this area.  相似文献   

2.
为全面了解北京城市湿地的现状及近年来的动态变化情况,利用高分辨率卫星遥感数据,综合运用GIS技术与景观生态学方法,定量分析了北京市6环内的湿地空间格局。结果表明,北京6环内城市湿地以河流湿地和湖库湿地为主;2016—2018年间湿地面积有所下降,2年间减少了126.58 hm2,主要转化为草地,少量转化为建设用地和林地;由于城市外围的开发建设强度较大,5-6环湿地被侵占面积相对较大,而4环内湿地面积的波动较小;2016—2018年,北京城市湿地的斑块密度增加,平均斑块面积有所减小,表明湿地斑块随时间变化呈破碎化的趋势,且从城市中心向城市边缘,湿地斑块的破碎化程度增强。  相似文献   

3.
为了厘清改革开放以来忻州市各类生态系统及生态系统格局的时空特征,使用忻州全市1980、2000、2018年的土地利用和覆盖(LULC)二级分类数据,经过土地转移矩阵和景观格局指数计算,探讨分析了忻州市改革开放以来近40年的LULC及格局的长时间序列时空变化特征,以揭示忻州市的生态环境变化态势。研究区近40年来以城镇用地和其他建设用地增加为主,其他各类减少,城镇化和人口增长带来的土地和生态压力主要集中在草地、耕地以及湿地上;其中2000—2018年的变化更剧烈,人类活动对自然的干扰加剧,但同时在这一阶段已经开始了森林、湿地的保护,开展经济发展与生态文明同步建设。  相似文献   

4.
Agricultural activities, especially reclamation, are considered major threats to the wetland ecosystems in Sanjiang Plain, the largest concentrated area of the freshwater wetlands in China. In the past decades, the area of the cultivated land and its grain production have been increased at the cost of wetlands shrinkage. The large-scale land reclamation severely affected the ecosystems in this region. However, such effects at the regional scale are seldom evaluated quantitatively. We used three datasets of LANDSAT MSS and/or TM imagery to estimate the area changes and the transition of land use types from 1980 to 2000. We also valued changes in ecosystem services delivered by each land category using value coefficients published by Costanza et al. [Nature 387, 1997, 253–260]. Sensitivity analysis suggested that these estimates were relatively robust. Finally, the contribution of various ecosystem functions was ranked to the overall value of the ecosystem services in this study. According to our estimates, the total annual ecosystem service values in Sanjiang Plain have declined by about 40% between 1980 and 2000 ($156284–182572.18 million in total over 20 years). This substantial decline is largely attributed to the 53.4% loss of wetlands. For individual ecosystem functions, waste treatment, water supply and disturbance regulation account for more than 60% to the total ecological values. During those two decades, the contribution of disturbance regulation, cultural and recreation decreased, while the contribution of water regulation, nutrient cycling, food production, raw materials and climate regulation increased during the same period. We also put forward a few proposals concerning the future land use policy formulation and sustainable ecosystems. They are adjusting the ‘food first’ agricultural policy, establishing more nature reserves for wetlands, creating systems for the rational use of water, harnessing the degraded cultivated land and encouraging eco-tourism.  相似文献   

5.
The unprecedented urban growth especially in developing countries has laid immense pressure on wetlands, finally threatening their existence altogether. A long-term monitoring of wetland ecosystems is the basis of planning conservation measures for a sustainable development. Deepor Beel, a Ramsar wetland and major storm water basin of the River Brahmaputra in the northeastern region of India, needs particular attention due to its constant degradation over the past decades. A rule-based classification algorithm was developed using Landsat (2011)-derived indices, namely Normalised Difference Water Index (NDWI), Modified Normalised Difference Water Index (MNDWI), Normalised Difference Pond Index (NDPI), Normalised Difference Vegetation Index (NDVI) and field data as ancillary information. Field data, ALOS AVNIR and Google Earth images were used for accuracy assessment. A fuzzy accuracy assessment of the classified data sets showed an overall accuracy of 82 % for MAX criteria and 90 % for RIGHT criteria. The rules were used to classify major wetland cover types during low water season (January) in 1989, 2001 and 2012. The statistical analysis of the classified wetland showed heavy manifestation in aquatic vegetation and other features indicating severe eutrophication over the past 23 years. This degradation was closely related to major contributing anthropogenic factors, such as a railway line construction, growing croplands, waste disposal and illegal human settlements in the wetland catchment. In addition, the landscape development index (LDI) indicated a rapid increase in the impact of the surrounding land use on the wetland from 1989 to 2012. The techniques and results from this study may prove useful for top-down landscape analyses of this and other freshwater wetlands.  相似文献   

6.
This study was aimed at analyzing and interpreting changes in landscape pattern and connectivity in the Urla district, Turkey using core landscape metrics based on a 42-year data derived from 1963 CORONA and 2005 ASTER satellite images and ten 1/25,000 topographical maps (1963–2005). The district represents a distinctive example of re-emerged suburbanization in the Izmir metropolitan area. In order to explore landscape characteristics of the study area, nine landscape composition and configuration metrics were chosen as follows: class area, percentage of landscape, number of patches, patch density, largest patch index, landscape shape index, mean patch size, perimeter area fractal dimension, and connectance index. The landscape configurations in the Urla district changed significantly by 2005 in that the process of (sub-)urbanization in the study area evolved from a rural, monocentric urban typology to a more suburban, polycentric morphology. Agricultural, maquis-phrygana, and forest areas decreased, while the built-up, olive plantation and phrygana areas increased. There was nearly a fivefold increase in the built-up areas during the study period, and the connectivity of the natural landscape declined. To prevent further fragmentation, it is important to keep the existing natural land cover types and agricultural areas intact. More importantly, a sustainable development scenario is required that contains a green infrastructure, or an ecological network planning for conservation and rehabilitation of the vital natural resources in the study area.  相似文献   

7.
Human activities produced great impacts on wetlands worldwide. Taking Jiangsu Province, China, as a representative wetland region subject to extensive human activities, the aim of this study is to understand the conversion trajectory and spatial differentiation in wetland change from a multi-scale perspective. Based on multi-temporal Landsat images, it was found that the natural wetlands decreased by 11.2% from 1990 to 2006 in Jiangsu Province. Transition matrices showed that the conversion of natural wetlands to human-made wetlands (mostly aquaculture ponds) was the major form of natural wetland reduction, accounting for over 60% of the reduction. Percentage reduction and area reduc tion of natural wetlands were respectively quantified within different wetland cover zones using a moving window analysis. Average percentage reduction showed a decreasing tendency with increasing wetland cover. The high-cover and mid-cover zone presented the largest area reduction at the scales of 1-2 km and 4-8 km, respectively. Local hotspots of natural wetland reduction were mapped using the equal-interval and quantile classification schemes. The hotspots were mostly concentrated in the Lixiahe marshes and the coastal wetland areas. For the area reduction hotspots, the quantile classification presented larger area and more patches than the equal-interval classification; while an opposite result was shown for the percentage reduction hotspots. With respect to the discontinuous distribution of the natural wetlands, area reduction could be more appropriate to represent reduction hotspots than percentage reduction in the study area. These findings could have useful implications to wetland conservation.  相似文献   

8.
Recognition and understanding of landscape dynamics as a historical legacy of disturbances are necessary for sustainable management of forest ecosystems. This study analyzed spatial and temporal changes in land use and land cover patterns in a typical mountain watershed in the Gumushane district along the Northeastern part of Turkey. The area is investigated by comparing LANDSAT images from 1987 to 2000 and evaluated the temporal changes of spatial structure of forest conditions through spatial analysis of forest cover type maps from 1971 and 1987 using GIS and FRAGSTATS™. The results show a general decreasing trend in area of natural land cover types including broadleaf and conifer forests as well as coppice between 1971 and 1987 (0.54%, respectively). In contrast, between 1987 and 2000 this natural land cover types show increasing trend (1.6%). In parallel with forest dynamics, the area of managed land including lowland and upland agricultural areas, rangelands and grasslands increased during the first period and decreased during second period. In terms of spatial configuration, Gümüşhane forests aren’t generally fragmented by intensive forest utilization in the latter periods. This is partially due to out-migration of rural population in Gümüşhane. Nevertheless, land use pattern significantly changed over time depending on a few factors such as unregulated management actions, social pressure and demographic movements. The study revealed that demographic movements have a major effect on landscape dynamics.  相似文献   

9.
以我国干旱区典型内陆湖泊流域——新疆艾比湖流域为研究区,对其平原区1990--2005年的景观格局动态变化特征进行了研究。结果表明,1990--2005年,研究区农田、湿地及人居地景观的面积增加,其中以农田景观的面积增加量最大;而林地、草地、沙地、戈壁和盐碱地景观的面积呈减少趋势,其中草地、盐碱地和林地景观面积减少较多;各景观类型中以盐碱地、林地、草地和戈壁的转出率较高,而以农田、人居地的转入率较高;研究区景观组份构成没有大的变化,戈壁依然是研究区景观的基质。景观格局变化对区域生态环境的影响主要表现为:农田斑块数量和面积的增加,加大了区域水资源利用压力;林地、草地斑块面积减少,使得平原区绿洲遭受风沙的危害性增大;沙地、戈壁和盐碱地面积减少,使绿洲不同区域生态环境呈现不同变化特征;湿地斑块面积略有增加,对减少艾比湖流域沙尘危害较为有利。  相似文献   

10.
RecentAbstract. Recent approaches to wetland assessment have advocated a multilevel approach which incorporates assessments based on landscape (remote sensing) data, on-site but “rapid” methods, and intensive methods where quantitative data is collected. Brown and Vivas (2004) recently pro- posed an assessment method that uses remote sensing information (Landscape Development Index or LDI) and propose that it may also be usable as a quantified human disturbance gradient. The LDI was evaluated using a large reference wetland data set from Ohio using land use percentages within a 1 km radius circle of the wetlands. The LDI had interpretable and significant relationships with another human disturbance gradient (the Ohio Rapid Assessment Method for Wetlands or ORAM) and with most metrics and scores from the Vegetation Index of Biotic Integrity (VIBI) developed for use in the State of Ohio. Metrics from emergent wetlands had the most significant correlations with the LDI (10 of 10 metrics), followed by forested wetlands (8 of 10 metrics) and shrub wetlands (4 of 10). Poor correlation for VIBI scores and metrics of shrub wetlands was due to differences in attainable LDI scores based on ecoregion and natural buffers shielding the wetland from otherwise intensive land uses. The ORAM and VIBI were developed for use in wetlands in Ohio completely independent of the LDI. It is an important test of the LDI concept that so many interpretable and significant relationships occurred between the VIBI scores, VIBI metric values, and the ORAM scores. For the purposes of VIBI development, the LDI is an independent, quantified disturbance gradient that has provided an additional test of the VIBI. Given its theoretical underpinnings and the fact that it uses quantified land use percentages, the LDI has many advantages over more qualita- tive human disturbance gradients. Using land use percentages from increasingly smaller distances from the wetland edge (100-200 m) may improve the resolution of the LDI to detect on-site dis-turbances to a wetland which degrade its ecological condition. The LDI should be evaluated with other large reference data sets in other regions to evaluate its validity and usefulness as an assessment tool.  相似文献   

11.
Bioassessment methods for wetlands, and other bodies of water, have been developed worldwide to measure and quantify changes in “biological integrity.” These assessments are based on a classification system, meant to ensure appropriate comparisons between wetland types. Using a local site-specific disturbance gradient, we built vegetation indices of biological integrity (Veg-IBIs) based on two commonly used wetland classification systems in the USA: One based on vegetative structure and the other based on a wetland’s position in a landscape and sources of water. The resulting class-specific Veg-IBIs were comprised of 1–5 metrics that varied in their sensitivity to the disturbance gradient (R 2?=?0.14???0.65). Moreover, the sensitivity to the disturbance gradient increased as metrics from each of the two classification schemes were combined (added). Using this information to monitor natural and created wetlands will help natural resource managers track changes in biological integrity of wetlands in response to anthropogenic disturbance and allows the use of vegetative communities to set ecological performance standards for mitigation banks.  相似文献   

12.
Various measures of plants, soils, and invertebrates were described for a reference set of tidal coastal wetlands in Southern New England in order to provide a framework for assessing the condition of other similar wetlands in the region. The condition of the ten coastal wetlands with similar hydrology and geomorphology were ranked from least altered to highly altered using a combination of statistical methods and best professional judgment. Variables of plants, soils, and invertebrates were examined separately using principal component analysis to reduce the multidimensional variables to principal component scores. The first principal component scores of each set of variables (i.e., plants, soil, invertebrates) significantly (p?<?0.05) correlated with both residential land use and watershed nitrogen (N) loads. Using cumulative frequency diagrams, the first principal component scores of each plant, soil, and invertebrate data set were plotted, and natural breaks and best professional judgment were used to rank the first principal component scores among the sites. We weighted all three ranked components equally and calculated an overall salt marsh condition index by summing the three ranks and then transforming the index to a 0–1 scale. The overall salt marsh condition index for the reference coastal wetland set significantly correlated with the residential land use (R?=???0.87, p?=?0.001) and watershed N loads (R?=???0.86, p?=?0.001). Overall, condition deteriorated in salt marshes and their associated discharge streams when subjected to increasing watershed residential land use and N loads.  相似文献   

13.
The Yanqi Basin, one of the most productive agricultural areas, has a high population density in Xinjiang, Northwest China. Land use changes, mainly driven by oasis expansion, significantly impact ecosystem services and functions, but these effects are difficult to quantify. The valuation of ecosystem services is important to clarify the ecological and environmental changes caused by agriculturalization of oasis. This study aimed to investigate variations in ecosystem services in response to land use changes during oasis agricultural expansion activities in the Yanqi Basin from 1964 to 2009. The methods used were based on formula of ecosystem service value (ESV) and ESV coefficients. Satellite data were combined with the ESV coefficients to quantify land use changes and ecosystem service changes in the study area. Sensitivity analysis determined the effect of manipulating the coefficients on the estimated values. The results show that the total ESVs in the Yanqi Basin were $1,674, $1,692, $1,471, $1,732, and $1,603 million in 1964, 1973, 1989, 1999, and 2009, respectively. The net deline in ESV was $71 million in the past 46 years, but the ESVs of each types of landscape changed significantly. The aggregated ESVs of water areas and wetlands were approximately 80 % of the total ESV. Water supply and waste treatment were the two largest service functions and contributed approximately 65 % of the total ESV. The estimated ESVs in this study were elastic with respect to the value coefficients. Therefore, the estimations were robust in spite of uncertainties on the value coefficients. These significant changes in land use occur within the entire basin over the study period. These changes cause environmental problems, such as land degradation, vegetation degeneracy, and changes in aquatic environment.  相似文献   

14.
This paper quantifies the allocation of ecosystem services value (ESV) associated with land use pattern and qualitatively examined impacts of land use changes and socio-economic factors on spatiotemporal variation of ESV in the Natural Wetland Distribution Area (NWDA), Fuzhou city, China. The results showed that total ESV of the study area decreased from 4,332.16?×?106 RMB Yuan in 1989 to 3,697.42?×?106 RMB Yuan in 2009, mainly due to the remarkable decreases in cropland (decreased by 55.3 %) and wetland (decreased by 74.2 %). Forest, water, and wetland played major roles in providing ecosystem services, accounting for over 90 % of the total ESV. Based on time series Landsat TM/ETM+ imagery, geographic information system, and historical data, analysis of the spatiotemporal variation of ESV from 1989 to 2009 was performed. It indicated that rapid expansion of urban areas along the Minjiang River resulted in significant changes in land use types, leading to a dramatic decline in ecosystem services. Meanwhile, because of land scarcity and unique ecosystem functions, the emergency of wetland and cropland protection in built-up area has become an urgent task of local authorities to the local government. Furthermore, there was still a significant negative correlation between ESV of cropland and wetland and the GDP. The results suggest that future planning of land use pattern should control encroachment of urban areas into cropland and wetland in addition to scientific and rational policies towards minimizing the adverse effects of urbanization.  相似文献   

15.
This article analyzes landscape pattern in the WesternGhats mountain ranges in south-western India at two scales,comparing small-scale, detailed studies of landscapepattern, with broader, regional-scale assessments of theWestern Ghats. Due in large part to their inaccessibility,relatively little is known about the landscapes of thisbiodiverse region, which also supports some of the highestpopulation densities in the world. A broad-scale NDVI-basedIRS 1B satellite image classification is used to analyzenorth-south and east-west trends across the entire WesternGhats and western coast of India, an area over 170 000 km2. Northern and eastern landscapes are morefragmented compared to the southern and western slopes.Western slopes also have greater landscape diversity withland cover types more interspersed compared to the easternslopes. These differences can be related to north-south andeast-west variations in rainfall and plant distribution. Data from thirteen landscapes 10–50 km2 in area, arefurther utilized to analyze trends in landscape pattern, anddescribe the geographical distribution of major natural andmanaged ecotope types. At this scale, very high levels ofintra-ecotope type variability in landscape pattern areencountered for all land cover types. Results at these twoscales are integrated to suggest a hierarchical stratifiedapproach for monitoring land cover and biodiversity in the region.  相似文献   

16.
通过对兵团土地利用空间格局变化分析,选择合适的土地利用政策保护生态环境。运用RS和GIS技术对兵团近10年土地利用/覆被变化及景观格局空间变化进行分析,并在此基础上运用Markov模型对未来30年土地利用变化进行预测。2000—2010年,新疆生产建设兵团景观多样性升高,连通性增强,形状愈来愈简单,景观格局整体变化不大;草地、灌丛、湿地、荒漠和冰川/永久积雪面积减少,耕地和城镇面积增加,森林保持稳定;人为干扰对土地利用结构的变化具有重要作用,土地利用强度受人为活动影响的同时受土地利用政策影响;在未来30年间耕地和城镇面积继续增加,除森林基本保持不变外其他土地利用类型均减小。兵团城镇用地与草地和耕地之间的矛盾逐渐显现,势必引起兵团生态格局的变化。因此,必须实行合适的土地利用政策保护环境。  相似文献   

17.
Zhalong National Nature Reserve in the northeast of China is a large wetland and a habitat of hundreds species of fauna and flora. The rare red-crowned crane is one kind of endangered birds in it. Recently, Zhalong wetland is shrinking and it encounters many problems including occasional fires, bad water quality, human activities, etc. In order to find out a proper way to protect and restore the wetland, this study, using a geographic information system, the global positioning system and remote sensing techniques, analyses the spatial characteristics of the changes in marsh landscape pattern and examines the driving factors for these changes. Data sources include 8 Landsat Thematic Mapper satellite images of Zhalong area in the period of 1986–2002 and the investigation information on site. Based on the analysis of changes of marsh area and annual precipitation during the 16 years, it is found that there is a close correlation between annual precipitation and marsh area. It means that climate is one of driving factors of marsh pattern changes. To understand influences of other kinds of land uses on marsh spatial distribution in Zhalong wetland, this paper analyses the relationship between marsh and different kinds of land uses, such as water surface, residential area, farmland, salina land and grass land, respectively. According to the patch analysis theory, a fragmental index and a fractal dimension of the marsh are calculated with perimeter-area method. The results indicate that the marsh pattern is affected by human activities significantly. In addition, the location alteration of marsh centroid point over the 16 years is studied. The movement trace of marsh centroid point is concerned with different hydrological situation in different areas of the wetland. In summary the characteristics of the marsh landscape pattern evolution during the 16 years are affected by multiple driving factors. The main driving factors are climate, human activities, distribution of other kinds of land uses and hydrological situation in different areas.  相似文献   

18.
Constructed wetland has been widely adopted to deal with degraded natural wetlands and water bodies; thus, more attention should be focused on ecological–economic sustainability and ecological efficiency of these projects for long-term success. Emergy accounting was conducted to investigate the energy and resource flows in constructed wetlands during the restoration process. Emergy-based indexes were adopted to evaluate the sustainability of a pilot large-scale constructed wetland in a large wetland restoration project in North China, carried out to enhance the river water quality and offset the degradation of natural wetland. Emergy and emdollar values for ecosystem services and natural capital were also calculated. The results showed that when outflow was considered as the product, the studied large-scale constructed wetland was more self-supporting and could be operated with lesser financial investment, although the waste treatment efficiency and the sustainability index were lower than conventional small-scale treatment constructed wetlands. Compared with natural wetlands, more visits from tourists and lesser financial investment coming in as feedback into the wetland would reduce system environment loading and promote system self-support ability, ultimately generating sustainability. In addition, the studied large-scale constructed wetland can effectively simulate energy and resource flows of natural wetland ecosystem and contribute a roughly equal value of ecosystem services in term of gross primary production. The studied large-scale constructed wetland can successfully achieve ecosystem functions as replacement for natural wetland and hasten the restoration process, although the restoration effectiveness of ecosystem structures in terms of living biomass and water using emergy-value accounting is still inconclusive.  相似文献   

19.
The transformation, composition, and distribution characteristics of nutrients in natural wetlands are significantly affected by human activities, such as large-scale water conservancy projects and agricultural activities. It is necessary to reveal the composing and distribution characteristics of nutrients for elucidating its complex removal and retention mechanisms in natural wetlands. In this study, the composition and the spatial distribution characteristics of nitrogen in a natural wetland in central China were illustrated and analyzed. The self-organizing map (SOM) model was used in this study to assess the water quality dataset of the wetland. The relationships between nitrogen and other water quality parameters were revealed by the visualization function of the SOM model with the pre-processed data; the modeling result was in agreement with the linear correlation analysis. The results indicated that the SOM model was suitable for the assessment of field-scale date of natural wetlands, and finally a potential approach for predicting the nutrients concentrations in natural wetlands was also found.  相似文献   

20.
The availability of Landsat data allows improving the monitoring and assessment of large-scale areas with land cover changes in rapid developing regions. Thus, we pretend to show a combined methodology to assess land cover changes (LCCs) in the Hamoun Wetland region (Iran) over a period of 30-year (1987–2016) and to quantify seasonal and decadal landscape and land use variabilities. Using the pixel-based change detection (PBCD) and the post-classification comparison (PCC), four land cover classes were compared among spring, summer, and fall seasons. Our findings showed for the water class a higher correlation between spring and summer (R2?=?0.94) than fall and spring (R2?=?0.58) seasons. Before 2000, ~?50% of the total area was covered by bare soil and 40% by water. However, after 2000, more than 70% of wetland was transformed into bare soils. The results of the long-term monitoring period showed that fall season was the most representative time to show the inter-annual variability of LCCs monitoring and the least affected by seasonal-scale climatic variations. In the Hamoun Wetland region, land cover was highly controlled by changes in surface water, which in turn responded to both climatic and anthropogenic impacts. We were able to divide the water budget monitoring into three different ecological regimes: (1) a period of high water level, which sustained healthy extensive plant life, and approximately 40% of the total surface water was retained until the end of the hydrological year; (2) a period of drought during high evaporation rates was observed, and a mean wetland surface of about 85% was characterized by bare land; and (3) a recovery period in which water levels were overall rising, but they are not maintained from year to year. After a spring flood, in 2006 and 2013, grassland reached the highest extensions, covering till more than 20% of the region, and the dynamics of the ecosystem were affected by the differences in moisture. The Hamoun wetland region served as an important example and demonstration of the feedbacks between land cover and land uses, particularly as pertaining to water resources available to a rapidly expanding population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号