首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wetland loss has been the major environmental problem in Sanjiang Plain, NE China in recent years because of the dramatic agricultural development. We determined the spatial associations of the wetland loss rates in an 11,000-km2 study area for two intervals of period 1 (1975–1989) and period 2 (1989–2004) spanning 30 years by using geographic information systems. The landscape of this area was simple with five categories, composed of ten types, and including three natural wetland types—open water, marsh, and wet meadow. Extensive agriculture was the principal cultivation form in terms of large size farm units in the area. Agriculture has become the principal land use category replacing natural wetlands over the 30-year period. It has changed the whole landscape of the region and the landscape pattern, causing wetland loss and fragmentation. The wetland loss rate of the area was very different between the two intervals, while wetland loss was not uniform throughout the region and was influenced by the landscape characteristics, such as topography, geomorphology, and the location of the wetlands in the watershed. Despite the remarkable land use changes, the wetlands distribution in the landscapes was similar compared to their original pattern. These results indicated that agricultural development affected the areas more than the distribution pattern of the wetlands in this region.  相似文献   

2.
As human activities influence land cover changes, the environment on human life such as water quality, has been impacted. In particular, huge constructions or reclamation projects are responsible for dramatic land cover changes. The Saemangeum area in South Korea has been one of the largest reclamation projects to progress nearly in two decades. In this study, Landsat-5 Thematic Mapper and Landsat-7 Enhanced Thematic Mapper Plus images were used to classify land cover types in the Saemangeum area. A change detection method was utilized to determine the impacts of the reclamation project. While wetland, grassland, and urban areas were increased, forest, water, and agricultural areas were decreased during the reclamation progress. Water quality analysis related to the land cover changes was conducted to determine the influence of reclamation construction on the environment. Chemical oxygen demand and suspended sediment variability were significantly impacted by the sea current changes after the dyke construction. On the contrary, water temperature and dissolved oxygen were affected by the seasonal influences rather than the reclamation construction. Total nitrogen and total phosphorus were influenced by the fertilizers and pesticides as a result of agricultural activity. The trends of suspended sediment from Landsat images were similar with those from the ground observation sites and also impacted by the dyke construction.  相似文献   

3.
Ecosystems and their components provide a lot of benefits for the welfare of human beings. Coupled with increasing socioeconomic development, most of the rapidly developing and transitional countries and regions have been experiencing dramatic land use changes. This has resulted in a large amount of forestland, grassland, and wetland being occupied as residential and industrial land or reclaimed for arable land, which in turn results in a sharp deterioration of ecosystem services around the world. Shandong Province, an economically powerful province of China, was chosen as a case study in order to capture the impact of socioeconomic development on ecosystem services. By way of the study, land uses and their changes were categorized between 1980 and 2006, and the ecosystem services capital and changes of 111 counties of Shandong Province in different phases were evaluated, as well as the total ecosystem services capital, followed by the zoning of ecosystem services function region of Shandong Province. We found that the counties in mountainous areas and wetlands, where generally the prefectural-level cities are located with a rapid socioeconomic development, experienced a successive deterioration of ecosystem services especially during the 2000s. Finally, three conservation strategies for managing and improving ecosystem services were proposed and discussed with the aim of achieving coordinate and sustainable development of the socioeconomy, environment, and ecosystems not only in Shandong Province but also in other provinces of China, as well as in other developing and transitional countries and regions.  相似文献   

4.
The structure and function of the coastal wetland ecosystem in the southern Laizhou Bay have been changed greatly and influenced by regional hydrological changes. The coastal wetlands have degraded significantly during the latest 30 years due to successive drought, decreasing of runoff, pollution, underground saline water intrusion, and aggravating marine disasters such as storm tides and sea level rising. Most archaic lakes have vanished, while artificial wetlands have been extending since natural coastal wetlands replaced by salt areas and ponds of shrimps and crabs. The pollution of sediments in inter-tidal wetlands and the pollution of water quality in sub-tidal wetlands are getting worse and therefore “red tides” happen more often than before. The biodiversity in the study area has been decreased. Further studies are still needed to protect the degraded coastal wetlands in the area.  相似文献   

5.
We developed and tested a plant-based index of biological integrity (IBI) and used it to evaluate the existing reclamation wetlands in Alberta’s oil sands mining region. Reclamation plans call for >15,000 ha of wetlands to be constructed, but currently, only about 25 wetlands are of suitable age for evaluation. Reclamation wetlands are typically of the shallow open water type and range from fresh to sub-saline. Tailings-contaminated wetlands in particular may have problems with hydrocarbon- and salt-related toxicity. From 60 initial candidate metrics in the submersed aquatic and floating vegetation communities, we selected five to quantify biological integrity. The IBI included two diversity-based metrics: the species richness of floating vegetation and the percent of total richness contributed by Potamogeton spp. It also included three relative abundance-based metrics: that of Ceratophyllum demersum, of floating leafed species and of alkali-tolerant species. We evaluated the contribution of nonlinear metrics to IBI performance but concluded that the correlation between IBI scores and wetland condition was not improved. The method used to score metrics had an influence on the IBI sensitivity. We conclude that continuous scoring relative to the distribution of values found in reference sites was superior. This scoring approach provided good sensitivity and resolution and was grounded in reference condition theory. Based on these IBI scores, both tailings-contaminated and tailings-free reclamation wetlands have significantly lower average biological integrity than reference wetlands (ANOVA: F 2,59 = 34.7, p = 0.000000000107).  相似文献   

6.
Satellite data and the published coefficients about the world's and China's ecosystem were used to analyze the effects of land-use changes on the ecosystem service in the Yanqi Basin. Both economic developments and arid, fragile ecosystems have strongly affected the land use. A sensitivity analysis determined the effect of manipulating the coefficients on the estimated values. Results indicated that (1) the total value of ecosystem services in the Yanqi Basin were 9,374.66, 10,450.52, 9,964.20, and 9,8707.77 million Yuan in 1990, 2000, 2005, and 2011, respectively. The net increase in ecosystem service values were about 496.11 million Yuan within 1990–2011; (2) The aggregated ecosystem service values of water body, wetlands, grasslands, and croplands were about 99.25 % of the total value; (3) Waste treatment and soil formation were the top two ecological functions with high service values and contributing about 61.70 % of the total service values; and (4) Ecosystem service values estimated in this study were inelastic with respect to the value coefficients; therefore, the estimation was robust in spite of uncertainties on the value coefficients. A reasonable land-use plan should be based on rigorous environmental impact analyses for maintaining stability and sustainable development of the Yanqi Basin.  相似文献   

7.
Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.  相似文献   

8.
Human actions on landscapes are a principal threat to the ecological integrity of river ecosystems worldwide. Tropical landscapes have been poorly investigated in terms of the impact of catchment land cover alteration on water quality and biotic indices in comparison to temperate landscapes. Effects of land cover in the catchment at two spatial scales (catchment and site) on stream physical habitat quality, water quality, macroinvertebrate indices and community composition were evaluated for Uma Oya catchment in the upper Mahaweli watershed, Sri Lanka. The relationship between spatial arrangement of land cover in the catchment and water quality, macroinvertebrate indices and community composition was examined using univariate and multivariate approaches. Results indicate that chemical water quality variables such as conductivity and total dissolved solids are mostly governed by the land cover at broader spatial scales such as catchment scale. Shannon diversity index was also affected by catchment scale forest cover. In stream habitat features, nutrients such as N-NO3 ?, macroinvertebrate family richness, %shredders and macroinvertebrate community assemblages were predominantly influenced by the extent of land cover at 200 m site scale suggesting that local riparian forest cover is important in structuring macroinvertebrate communities. Thus, this study emphasizes the importance of services provided by forest cover at catchment and site scale in enhancing resilience of stream ecosystems to natural forces and human actions. Findings suggest that land cover disturbance effects on stream ecosystem health could be predicted when appropriate spatial arrangement of land cover is considered and has widespread application in the management of tropical river catchments.  相似文献   

9.
The Mid-eastern Inner Mongolia of China, a typical agro-pastoral transitional zone, has undergone rapid agricultural land use changes including land reclamation and cropland abandonment in past decades due to growing population and food demand, climatic variability, and land use policy such as the "Grain for Green" Project (GFG Project). It is significant to the regional ecology and sustainability to examine the pattern and its rationality of land use change. The processes of land reclamation and cropland abandonment were accessed by using land use change dataset for four periods of 1990, 1995, 2000, and 2005, derived from the interpretation of Landsat TM images. And then the rationality of land reclamation and cropland abandonment was analyzed based on the habitat suitability for cultivation. The results indicated that: (1) land reclamation was the dominant form of agricultural land use change from 1990 to 2005, the total cropland area increased from 64,954.64 km(2) in 1990 to 76,258.51 km(2) in 2005; However, the speed of land reclamation decreased while cropland abandonment increased around 2000. The Land Reclamation Degree decreased from 1995-2000 to 2000-2005, meanwhile, Cropland Abandonment Degree increased. (2) As for the habitat suitability levels, moderately and marginally suitable levels had largest areas where cropland was widespread. Pattern of agricultural land use trended to become more rational due to the decrease of land reclamation area in low suitable levels and the increase of cropland abandonment in unsuitable area after 2000. (3) The habitat suitability-based rationality analysis of agricultural land use implicated that the GFG Project should take cultivation habitat suitability assessment into account.  相似文献   

10.
利用1985、2000、2013年遥感影像提取的土地覆盖数据,通过景观格局指数、动态度计算、转移矩阵等,分析1985—2013年我国典型地区各类型生态系统景观格局及其动态变化特征、生态系统相互转化时空变化特征等,揭示1985—2013年生态环境格局变化的特点和规律:一级分类生态系统综合变化率,赣江、闽江、白龙江和岷江上游流域分别为4.7%、3.9%、3.3%和1.7%,生态系统变化强度1985—2000年较缓,2000—2013年更剧烈。1985—2013年典型区生态系统的主要转化方向具有持续性和双向性特征,岷江、白龙江和赣江上游流域退耕还林还草政策效果明显,出现较高比例的耕地转为森林和草地;面积占67.4%生态系统类型变化与耕地生态系统和人工表面生态系统变化有关;生态系统变化具有明显的区域差异,生态变化主要表现为沿主要河流谷地的线状延伸,主要城镇居民点附近生态系统类型变化较为突出,人类活动是典型地区生态系统类型格局变化的主要驱动力;典型区尤其是敏感区应加大退耕还林还草政策,减少人类经济活动,降低洪水泥石流灾害发生的概率和程度。  相似文献   

11.
The International Joint Commission has recently completed a five-year study (2000–2005) to review the operation of structures controlling the flows and levels of the Lake Ontario – St. Lawrence River system. In addition to addressing the multitude of stakeholder interests, the regulation plan review also considers environmental sustainability and integrity of wetlands and various ecosystem components. The present paper outlines the general approach, scientific methodology and applied management considerations of studies quantifying the relationships between hydrology and wetland plant assemblages (% occurrence, surface area) in Lake Ontario and the Upper and Lower St. Lawrence River. Although similar study designs were used across the study region, different methodologies were required that were specifically adapted to suit the important regional differences between the lake and river systems, range in water-level variations, and confounding factors (geomorphic types, exposure, sediment characteristics, downstream gradient of water quality, origin of water masses in the Lower River). Performance indicators (metrics), such as total area of wetland in meadow marsh vegetation type, that link wetland response to water levels will be used to assess the effects of different regulation plans under current and future (climate change) water-supply scenarios.The Canadian Crown reserves the right to retain a non-exclusive, royalty free licence in and to any copyright.  相似文献   

12.
Starting with the intensification of irrigation activities in the beginning of 1980s in Abaya and Chamo lakes area, the decreasing water inflow to the lakes caused denudation of the wetlands. The ecological situation in the lake region changed significantly during last four decades. The lakes and associated wetlands change have been studied using Landsat MSS (1973), Landsat TM (1986), and Ladsat ETM (2000) satellite imagery. Along with satellite imagery, other hydro-meteorological data were collected and hydro-meteorological data analyses were done to assess the variability of wetlands. From these data, lakes morphometric property estimation at different time series and water balance analysis for both lakes were done. Wetlands are mapped from the TCT image and these maps are subject to change detection to see the temporal and spatial variability of the wetlands. Moreover, the lake-morphometric area and volume variation have been studied. The result showed that between 1986 and 2000, a significant reduction has been observed but lesser than the previous decades (6.4 km(2)). The identified reason behind this change is that the free settlement and shoreline cultivation of the wetlands causing the soil erosion and eventually adds the sediment to the wetlands.  相似文献   

13.
In this study, the hydrochemical characteristics of shallow groundwater were analyzed to get insight into the factors affecting groundwater quality in a typical agricultural dominated area of the North China Plain. Forty-four shallow groundwater samples were collected for chemical analysis. The water type changes from Ca·Na-HCO3 type in grass land to Ca·Na-Cl (+NO3) type and Na (Ca)-Cl (+NO3+SO4) type in construction and facility agricultural land, indicating the influence of human activities. The factor analysis and geostatistical analysis revealed that the two major factors contributing to the groundwater hydrochemical compositions were the water-rock interaction and contamination from sewage discharge and agricultural fertilizers. The major ions (F, HCO3) and trace element (As) in the shallow groundwater represented the natural origin, while the nitrate and sulfate concentrations were related to the application of fertilizer and sewage discharge in the facility agricultural area, which was mainly affected by the human activities. The values of pH, total dissolved solids, electric conductivity, and conventional component (K, Ca, Na, Mg, Cl) in shallow groundwater increased from grass land and cultivated land, to construction land and to facility agriculture which were originated from the combination sources of natural processes (e.g., water-rock interaction) and human activities (e.g., domestic effluents). The study indicated that both natural processes and human activities had influences on the groundwater hydrochemical compositions in shallow groundwater, while anthropogenic processes had more contribution, especially in the reclaimed water irrigation area.  相似文献   

14.
The Yanqi Basin, one of the most productive agricultural areas, has a high population density in Xinjiang, Northwest China. Land use changes, mainly driven by oasis expansion, significantly impact ecosystem services and functions, but these effects are difficult to quantify. The valuation of ecosystem services is important to clarify the ecological and environmental changes caused by agriculturalization of oasis. This study aimed to investigate variations in ecosystem services in response to land use changes during oasis agricultural expansion activities in the Yanqi Basin from 1964 to 2009. The methods used were based on formula of ecosystem service value (ESV) and ESV coefficients. Satellite data were combined with the ESV coefficients to quantify land use changes and ecosystem service changes in the study area. Sensitivity analysis determined the effect of manipulating the coefficients on the estimated values. The results show that the total ESVs in the Yanqi Basin were $1,674, $1,692, $1,471, $1,732, and $1,603 million in 1964, 1973, 1989, 1999, and 2009, respectively. The net deline in ESV was $71 million in the past 46 years, but the ESVs of each types of landscape changed significantly. The aggregated ESVs of water areas and wetlands were approximately 80 % of the total ESV. Water supply and waste treatment were the two largest service functions and contributed approximately 65 % of the total ESV. The estimated ESVs in this study were elastic with respect to the value coefficients. Therefore, the estimations were robust in spite of uncertainties on the value coefficients. These significant changes in land use occur within the entire basin over the study period. These changes cause environmental problems, such as land degradation, vegetation degeneracy, and changes in aquatic environment.  相似文献   

15.
Changing the landscape has serious environmental impacts affecting the ecosystem services, particularly in the tropics. In this paper, we report changes in ecosystem services in relation to land use and land cover over an 18-year period (1988--2006) in the Menglun Township, Xishuangbanna, Southwest China. We used Landsat TM/ETM and Quickbird data sets to estimate changes in ten land use and land cover categories, and generalized value coefficients to estimate changes in the ecosystem services provided by each land category. The results showed that over the 18-year period, the land use and land cover in the study area experienced significant changes. Rubber plantations increased from 12.10% of total land cover to 45.63%, while forested area and swidden field decreased from 48.73 and 13.14 to 27.57 and 0.46%, respectively. During this period, the estimated value of ecosystem services dropped by US $11.427 million (approximately 27.73%). Further analysis showed that there were significant changes in ecological functions such as nutrient cycling, erosion control, climate regulation and water treatment as well as recreation; the obvious increase in the ecological function is provision of raw material (natural rubber). Our findings conclude that an abrupt shift in land use from ecologically important tropical forests and traditionally managed swidden fields to large-scale rubber plantations result in a great loss of ecosystem services in this area. Further, the study suggests that provision of alternative economic opportunities would help in maintaining ecosystem services and for an appropriate compensation mechanisms need to be established based on rigorous valuation.  相似文献   

16.
RecentAbstract. Recent approaches to wetland assessment have advocated a multilevel approach which incorporates assessments based on landscape (remote sensing) data, on-site but “rapid” methods, and intensive methods where quantitative data is collected. Brown and Vivas (2004) recently pro- posed an assessment method that uses remote sensing information (Landscape Development Index or LDI) and propose that it may also be usable as a quantified human disturbance gradient. The LDI was evaluated using a large reference wetland data set from Ohio using land use percentages within a 1 km radius circle of the wetlands. The LDI had interpretable and significant relationships with another human disturbance gradient (the Ohio Rapid Assessment Method for Wetlands or ORAM) and with most metrics and scores from the Vegetation Index of Biotic Integrity (VIBI) developed for use in the State of Ohio. Metrics from emergent wetlands had the most significant correlations with the LDI (10 of 10 metrics), followed by forested wetlands (8 of 10 metrics) and shrub wetlands (4 of 10). Poor correlation for VIBI scores and metrics of shrub wetlands was due to differences in attainable LDI scores based on ecoregion and natural buffers shielding the wetland from otherwise intensive land uses. The ORAM and VIBI were developed for use in wetlands in Ohio completely independent of the LDI. It is an important test of the LDI concept that so many interpretable and significant relationships occurred between the VIBI scores, VIBI metric values, and the ORAM scores. For the purposes of VIBI development, the LDI is an independent, quantified disturbance gradient that has provided an additional test of the VIBI. Given its theoretical underpinnings and the fact that it uses quantified land use percentages, the LDI has many advantages over more qualita- tive human disturbance gradients. Using land use percentages from increasingly smaller distances from the wetland edge (100-200 m) may improve the resolution of the LDI to detect on-site dis-turbances to a wetland which degrade its ecological condition. The LDI should be evaluated with other large reference data sets in other regions to evaluate its validity and usefulness as an assessment tool.  相似文献   

17.
为了厘清改革开放以来忻州市各类生态系统及生态系统格局的时空特征,使用忻州全市1980、2000、2018年的土地利用和覆盖(LULC)二级分类数据,经过土地转移矩阵和景观格局指数计算,探讨分析了忻州市改革开放以来近40年的LULC及格局的长时间序列时空变化特征,以揭示忻州市的生态环境变化态势。研究区近40年来以城镇用地和其他建设用地增加为主,其他各类减少,城镇化和人口增长带来的土地和生态压力主要集中在草地、耕地以及湿地上;其中2000—2018年的变化更剧烈,人类活动对自然的干扰加剧,但同时在这一阶段已经开始了森林、湿地的保护,开展经济发展与生态文明同步建设。  相似文献   

18.
基于改进PSR模型的长株潭地区土地生态系统健康评价研究   总被引:1,自引:0,他引:1  
基于改进的PSR模型构建土地生态系统健康评价指标体系,运用组合赋权法确定指标权重,对长株潭地区及其各县(市、区)的土地生态系统健康进行定量分析和评价。研究表明:2002—2014年,长株潭地区土地生态系统健康综合指数由5002下降至4132,呈波动下降趋势,主要影响因素为单位耕地农药施用量、单位耕地化肥施用量、水土流失比率、森林覆盖率、环保投资额占GDP比例、封山育林及当年造林面积。该地区15个县(市、区)的土地生态系统健康状况呈现明显的时空差异,1个属于综合指数快速上升区,6个属于基本稳定区,7个属于慢速下降区,1个属于快速下降区。  相似文献   

19.
We develop the conceptual and empirical basis for a multi-level ecosystem indicator for lakes. The ratio of total N to total P in lake water is influenced or regulated by a variety of ecosystem processes operating at several organizational levels and spatial scales: atmospheric, terrestrial watershed, lake water, and aquatic community. The character of the pelagic zooplankton assemblage is shown to be well correlated with lake water N:P ratio, with species assemblages arrayed along the N:P gradient in accordance with resource supply theory. Features of specific zooplankton assemblages or deviations from expected assemblages can provide information useful for lake managers, such as the efficiency of pollutant transfer and biomagnification of toxins, loss of cool-water refuge areas, degree of zooplanktivory and food web simplification related to changes in fisheries, and assemblage changes due to anthropogenic acidification. Evaluation of the influence of watershed land use, forest cover and vegetation type, atmospheric deposition, and basin hydrology on the supply of N and P to lake ecosystems provides a means to couple changes in the terrestrial environment to potential changes in aquatic ecosystems. Deviations of lake water N:P values from expected values based on analysis of watershed and lake basin characteristics, including values inferred from appropriate diatom microfossil deposits, can provide an independent validation and baseline reference for assessing the extent and type of disturbance. Therefore, the N:P ratio of lake water can serve as a potentially useful and inexpensively obtained proxy measure for assessing changes or shifts in the biological and nutrient status of lakes.  相似文献   

20.
The assessment of water vulnerability and pollution hazard traditionally places particular emphasis on the study on groundwaters more than on surface waters. Consequently, a GIS-based Lake Pollution Hazard Index (LPHI) was proposed for assessing and mapping the potential pollution hazard for shallow lakes due to the interaction between the Potential Pollutant Load and the Lake Vulnerability. It includes easily measurable and commonly used parameters: land cover, terrain slope and direction, and soil media. Three shallow lake ecosystems of the southeastern Pampa Plain (Argentina) were chosen to test the usefulness and applicability of this suggested index. Moreover, anthropogenic and natural medium influence on biophysical parameters in these three ecosystems was examined. The evaluation of the LPHI map shows for La Brava and Los Padres lakes the highest pollution hazard (≈30 % with high to very high category) while Nahuel Rucá Lake seems to be the less hazardous water body (just 9.33 % with high LPHI). The increase in LPHI value is attributed to a different loading of pollutants governed by land cover category and/or the exposure to high slopes and influence of slope direction. Dissolved oxygen and biochemical oxygen demand values indicate a moderately polluted and eutrophized condition of shallow lake waters, mainly related to moderate agricultural activities and/or cattle production. Obtained information by means of LPHI calculation result useful to perform a local diagnosis of the potential pollution hazard to a freshwater ecosystem in order to implement basic guidelines to improve lake sustainability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号