首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Implementation of stricter environmental laws and economic reasons has forced all the metallurgical industries to go for eco-friendly technologies to produce metal and other related products. However, generation of wastes is an integral part of metallurgical industries. If the wastes/residues are hazardous in nature, they generally have to be treated or/and disposed of in safe and designated dumping sites. If these wastes/residues are non-hazardous in nature, then they may be suitable for use as secondary raw material to recover metals such as lead, copper etc., which are in growing demand all over the world. The processing of lead secondaries is important because of their relative high metal content, as well as the low energy and cost involved in recovering the metal. This paper mainly focuses on the current practices and recent trends in the secondary processing of lead. Various processes, particularly hydrometallurgical ones, already developed or in the development stages, are discussed. Attempts made by various Council of Scientific and Industrial Research (CSIR) Laboratories including the National Metallurgical Laboratory (NML) and industries such as Binani Zinc to develop eco-friendly processes for the recovery of lead from secondary raw materials are also described.  相似文献   

2.
Thermal power plants (TPPs) that burn fossil fuels emit several pollutants linked to the environmental problems of acid rain, urban ozone, and the possibility of global climate change. As coal is burned in a power plant, its noncombustible mineral content is partitioned into bottom ash, which remains in the furnace, and fly ash, which rises with flue gases. Two other by-products of coal combustion air-pollution control technologies are flue gas desulfurization (FGD) wastes and fluidized-bed combustion (FBC) wastes. This paper analyzed and summarized the generation, characteristics and application of TPP solid wastes and discussed the potential effects of such solid wastes on the environment. On this basis, a review of a number of methods for recovery of metals from TPP solid wastes was made. They usually contain a quantity of valuable metals and they are actually a secondary resource of metals. By applying mineral processing technologies and hydrometallurgical and biohydrometallurgical processes, it is possible to recover metals such as Al, Ga, Ge, Ca, Cd, Fe, Hg, Mg, Na, Ni, Pb, Ra, Th, V, Zn, etc., from TPP solid wastes. Recovery of metals from such wastes and its utilization are important not only for saving metal resources, but also for protecting the environment.  相似文献   

3.
Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.  相似文献   

4.
Material stocks in economic society are considered to represent a reserve for wastes and secondary resources. From the viewpoints of proper disposal and reutilization of stocked materials, accurate estimation of the amount of materials that will emerge as wastes or secondary resources in the future is important. We defined materials that have a high probability of emerging as wastes or secondary resources as “potential wastes and secondary resources” and estimated that amount for construction minerals in Japan as a case study. The following conclusions were drawn. (1) We classified materials that are input into economic society into four categories: potential wastes and secondary resources, potential dissipated materials, dissipatively used materials, and permanent structures. By clarifying the latter three non-potential wastes and secondary resources, we performed a more accurate assessment of the wastes and secondary resources that will emerge in the future. (2) The share of potential wastes and secondary resources was estimated to be about 30% of all construction minerals that have been input into and accumulated in Japanese economic society. (3) Information related to potential dissipated materials and dissipatively used materials will provide fundamental knowledge to support analyses of the environmental impacts and resource losses which these materials might generate.  相似文献   

5.
In order to obtain 85% recycling, several procedures on Automotive Shredder Residue (ASR) could be implemented, such as advanced metal and polymer recovery, mechanical recycling, pyrolysis, the direct use of ASR in the cement industry, and/or the direct use of ASR as a secondary raw material. However, many of these recovery options appear to be limited, due to the possible low acceptability of ASR based products on the market. The recovery of bottom ash and slag after an ASR thermal treatment is an option that is not usually considered in most countries (e.g. Italy) due to the excessive amount of contaminants, especially metals. The purpose of this paper is to provide information on the characteristics of ASR and its full-scale incineration residues. Experiments have been carried out, in two different experimental campaigns, in a full-scale tyre incineration plant specifically modified to treat ASR waste.Detailed analysis of ASR samples and combustion residues were carried out and compared with literature data. On the basis of the analytical results, the slag and bottom ash from the combustion process have been classified as non-hazardous wastes, according to the EU waste acceptance criteria (WAC), and therefore after further tests could be used in future in the construction industry. It has also been concluded that ASR bottom ash (EWC – European Waste Catalogue – code 19 01 12) could be landfilled in SNRHW (stabilized non-reactive hazardous waste) cells or used as raw material for road construction, with or without further treatment for the removal of heavy metals. In the case of fly ash from boiler or Air Pollution Control (APC) residues, it has been found that the Cd, Pb and Zn concentrations exceeded regulatory leaching test limits therefore their removal, or a stabilization process, would be essential prior to landfilling the use of these residues as construction material.  相似文献   

6.
Solid wastes can be processed for material and energy recovery using a number of unit operations and system approaches. The selection and configuration of unit operations and systems depends upon the characteristics of the wastes to be processed and the uses for recovered secondary materials and for recovered energy forms. The discussion focuses on the types of materials and forms of energy potentially recoverable from solid wastes, waste processing and conversion systems, and design considerations.  相似文献   

7.
To prepare for the international mercury convention, the characteristics of mercury emissions from a zinc smelting facility in South Korea have been reviewed and a material flow analysis (MFA) has been conducted in this research. As inputs into the mercury MFA study, zinc ores and sulfuric acid were examined, whereas wastewater sludge, effluence water, spent catalyst, and emissions from the casting and roasting processes were examined as outputs. Mercury concentrations extracted from end products like zinc ingots, cadmium ingots, and sulfuric acid were then analyzed. Our results showed that the wastewater sludge discharged from the zinc smelting process had a relatively higher concentration of mercury, indicating that the concentration of mercury was further enriched in the wastewater sludge. The wastes discharged through the zinc smelting process should be thoroughly controlled, as results of the MFA showed that approximately 89 % of the mercury contained in the original input was later found in the waste. According to this study, the higher the concentration of mercury within zinc ores at the input stage, the higher is the mercury concentration found in the wastewater sludge at the output stage.  相似文献   

8.
An overview of recovery of metals from slags   总被引:17,自引:0,他引:17  
Various slags are produced as by-products in metallurgical processes or as residues in incineration processes. According to the origins and the characteristics, the main slags can be classified into three categories, namely ferrous slag, non-ferrous slag and incineration slag. This paper analysed and summarised the generation, characteristics and application of various slags, and discussed the potential effects of the slags on the environment. On this basis, a review of a number of methods for recovery of metals from the slags was made. It can be seen that a large amount of slags is produced each year. They usually contain a quantity of valuable metals except for blast furnace slag and they are actually a secondary resource of metals. By applying mineral processing technologies, such as crushing, grinding, magnetic separation, eddy current separation, flotation and so on, leaching or roasting, it is possible to recover metals such as Fe, Cr, Cu, Al, Pb, Zn, Co, Ni, Nb, Ta, Au, and Ag etc. from the slags. Recovery of metals from the slags and utilisation of the slags are important not only for saving metal resources, but also for protecting the environment.  相似文献   

9.
Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.  相似文献   

10.
Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority.The present review summarized the main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources.Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.  相似文献   

11.
郭双祯  张璠  李现龙 《化工环保》2016,36(6):585-591
综述了电化学法、沉淀法、吸附法、离子交换法、浮选法和液膜分离法等在分离回收湿法冶锌废渣中有价金属及相关领域的研究进展,阐述了吸附法和液膜分离法的原理,指出了湿法冶锌废渣中有价金属回收的研究方向:吸附法拥有巨大的潜力,是今后的研究重点;离子交换法的研究热点是开发新型树脂基体;液膜分离法的研究方向一是提升液膜稳定性,二是研发能够高效单一分离有价金属的载体。  相似文献   

12.
Waste creation in some sectors of the food industry is substantial, and while much of the used material is non-hazardous and biodegradable, it is often poorly dealt with and simply sent to landfill mixed with other types of waste. In this context, overproduction wastes were found in a number of cases to account for 20–40% of the material wastes generated by convenience food manufacturers (such as ready-meals and sandwiches), often simply just to meet the challenging demands placed on the manufacturer due to the short order reaction time provided by the supermarkets. Identifying specific classes of waste helps to minimise their creation, through consideration of what the materials constitute and why they were generated. This paper aims to provide means by which food industry wastes can be identified, and demonstrate these mechanisms through a practical example. The research reported in this paper investigated the various categories of waste and generated three analytical methods for the support of waste minimisation activities by food manufacturers. The waste classifications and analyses are intended to complement existing waste minimisation approaches and are described through consideration of a case study convenience food manufacturer that realised significant financial savings through waste measurement, analysis and reduction.  相似文献   

13.
The land disposal restriction regulations have necessitated development of technologies for the treatment of wastes and soils containing mercury. Of all the treatment methods, thermal technologies are the most advanced and proven for a variety of mercury-contaminated waste materials. During the past few years, a number of thermal treatment processes have been developed both for listed and characteristic waste. A review of the technologies identified six that are in either commercial or pilot plant stages. The biggest volumes of waste currently occur in the gas processing and caustic-chlorine industries, so most of the technologies being used appear to have been developed around the characteristics of these two wastes. This article discusses the characteristics of each of the six available thermal treatment processes, and describes the types of mercury-contaminated wastes these technologies have been designed to handle.  相似文献   

14.
The aim of this paper is the recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, containing 40.9% of Mn and 30.1% of Zn, after preliminary physical treatment followed by removal of mercury. Separation of the metals has been carried out on the basis of their different boiling points, being 357°C and 906°C the boiling point of mercury and zinc and 1564°C the melting point of Mn(2)O(3). Characterization by chemical analysis, TGA/DTA and X-ray powder diffraction of the mixture has been carried out after comminution sieving and shaking table treatment to remove the anodic collectors and most of chlorides contained in the mixture. The mixture has been roasted at various temperatures and resident times in a flow of air to set the best conditions to remove mercury that were 400°C and 10min. After that, the flow of air has been turned into a nitrogen one (inert atmosphere) and the temperatures raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture and recovered after volatilization as a high grade concentrate, while manganese was left in the residue. The recovery and the grade of the two metals, at 1000°C and 30min residence time, were 84% and 100% for zinc and 85% and 63% for manganese, respectively. The recovery of zinc increased to 99% with a grade of 97% at 1200°C and 30min residence time, while the recovery and grade of manganese were 86% and 87%, respectively, at that temperature. Moreover, the chlorinated compounds that could form by the combustion of the plastics contained in the spent batteries, are destroyed at the temperature required by the process.  相似文献   

15.
Automotive Shredder Residue (ASR) is a special waste that can be classified as either hazardous or non hazardous depending on the amount of hazardous substances and on the features of leachate gathered from EN12457/2 test. However both the strict regulation concerning landfills and the EU targets related to End-of-Life Vehicles (ELVs) recovery and recycling rate to achieve by 2015 (Directive 2000/53/EC), will limit current landfilling practice and will impose an increased efficiency of ELVs valorization. The present paper considers ELVs context in Italy, taking into account ASRs physical–chemical features and current processing practice, focusing on the enhancement of secondary materials recovery. The application in waste-to-energy plants, cement kilns or metallurgical processes is also analyzed, with a particular attention to the possible connected environmental impacts. Pyrolysis and gasification are considered as emerging technologies although the only use of ASR is debatable; its mixing with other waste streams is gradually being applied in commercial processes. The environmental impacts of the processes are acceptable, but more supporting data are needed and the advantage over (co-)incineration remains to be proven.  相似文献   

16.

Phosphorus (P) recovery and recycling play a crucial role in improving resource efficiency, sustainable nutrient management and moving toward circular economy. Increasing demand for fertilizers, signs of geopolitical constraints, and high discharge of P to waterbodies are the other reasons to pursue the circularity of P. Various research have been carrying out and several processes have been developed for P-recovery from different resources. However, there is still a huge unexplored potential for P-recovery specially in the regional framework from the four main P-rich waste resources: food waste, manure, mining waste, and sewage sludge. This study reviews recovery methods of P from these secondary resources comprehensively. Additionally, it analyzes the Nordic viewpoint of P-cycle by evaluating Nordic reserves, demands, and secondary resources to gain a systematic assessment of how Nordic countries could move toward circular economy of P. Results of this study show that secondary resources of P in Nordic countries have the potential of replacing mineral fertilizer in these countries to a considerable extent. However, to overcome the challenges of P-recovery from studied resources, policymakers and researchers need to take decisions and make innovation along each other to open the new possibilities for Nordic economy.

  相似文献   

17.
An end-of-life vehicle (ELV) is dismantled to recover and recycle any re-usable parts, then shipped to the shredding facility for further recovery of iron with any remaining Automobile Shredder Residue (ASR) to be considered as wastes and to be disposed of by either thermal treatment or landfill. Overall ELVs management status in Korea, including recycling resulting from the dismantling processes, was surveyed using some questionnaires given to dismantlers and other available information to provide some feasible means for future treatment. The averaged recycle rate in the dismantling stage showed a value of 44% and the rest of an ELV was then compressed and transported to shredding companies to recover mainly the iron content which averaged 38.7% of the mass of a new vehicle. The non-ferrous metals such as copper, antimony, zinc and aluminum accounted for only 1.5%. The Shredder dusts (SDs) were found to be composed of light and heavy fluffs and soil/dust and amounted to 15.8% based on the mass of a new vehicle. Dumping of fluff and inorganic residues into a landfill site, however, will be restricted when new regulations are implemented to reduce the disposal amount to less than 5% of a new car as done in European countries and Japan. The detailed characteristics of SDs were investigated to provide an idea of how to treat them in order to meet a future expected enforcement.  相似文献   

18.
19.
The results of model calculations carried out to identify and quantify the input pathways of trace elements into cement and concrete and to estimate the extent to which trace element concentrations in cement may change due to waste utilization are presented. As expected, primary raw materials represented the most important input pathway for trace elements into cement, but the contribution from wastes was not negligible. The use of waste led to a slight increase of the concentrations of cadmium, antimony and zinc in cement. For cobalt, lead and vanadium, this increase was less distinct and for all other trace elements considered, the effect of the use of wastes on trace element concentrations in cement could not be demonstrated clearly. The trace element content of concrete was governed by the aggregates for most elements considered. However, for arsenic, cadmium, lead and zinc, both cement and the additive coal fly ash contributed noticeably to the total trace element concentration in the concrete.  相似文献   

20.
有机固体废物生物法制氢的研究进展   总被引:1,自引:0,他引:1  
综述了利用有机固体废物生物法制氢的原理和研究现状。城市有机固体废物、农业有机废物、工业有机废物是生物法制氢的主要原料。暗发酵制氢是利用有机废物厌氧消化的产酸阶段而产氢,pH、温度、水力停留时间、氢气分压、原料性质、微量元素含量、产甲烷微生物抑制剂等均影响氢气产率。光发酵制氢是利用光合厌氧细菌将挥发性有机酸转化为氢气和二氧化碳。暗发酵和光发酵制氢时,生物固定化有利于高速连续产氢。在有机废物处理和生物法制氢方面,暗发酵一光发酵、暗发酵一微生物燃料电池的组合工艺是具有前景的技术。今后的研究方向是原料的预处理技术、选育高效产氢菌株、发明高效反应器、优化处理工艺和处理条件等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号