首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface treated macro and nanoparticle TiO2 samples have been prepared, characterised and their efficiency as UV blockers evaluated in clear coatings and paints. The particle size of the ‘base’ TiO2 has been optimised to block UV radiation and the surface treatment developed to deactivate the photocatalytic activity of the surface of the TiO2 particles. The resultant UV blockers have been evaluated in both solvent and water-based clear coatings. Nanoparticle TiO2 has been prepared from ‘seed’ and the particle size was controlled by calcination. It was found that the choice of particle size is a compromise between UVA absorption, UVB absorption, visible transmission and photoactivity. It has been demonstrated that TiO2 with a crystallite size of 25 nm yields a product with the optimum properties. A range of dispersants was successfully used to disperse and mill the TiO2. Both organic and inorganic dispersants were used; 2-amino-2-methyl-1-propanol and 1-amino-2-propanol (MIPA) and P2O5 and Na2SiO3 respectively. The surface of the nano-TiO2 was coated with mixed oxides of silicon, aluminium, zirconium and phosphorous. Addition of the resultant coated nano-rutiles to an Isocyanate Acrylic clear coating prolonged the lifetime of that coating compared to the blank. Generally, a surface treatment based on SiO2, Al2O3 and P2O5 was more successful than one based on ZrO2, Al2O3 and P2O5. Higher addition levels of the surface treatment were beneficial for protecting the polymeric coating. The UV blocker products were also evaluated in a water-based acrylic, first a water-based dispersion of the UV blocker was prepared before addition to the acrylic. The dispersions and resultant acrylic thin films were evaluated using UV/Vis spectroscopy and durability assessed. The ratio of absorbance at 300:500 nm for the water-based dispersion was shown to be a good predictor of both the transparency of the resultant acrylic thin film and the durability of that film, in terms of weight loss. Macro grade titanium dioxide pigments were also prepared and coated with treatments of silica, alumina and siloxane and their photo-stabilising activity in alkyd paint film assessed and found to be directly related to the electron–hole pair mobility and trapping as determined by micro-wave spectroscopy.  相似文献   

2.
In this study, slurry photocatalytic oxidation process was investigated for natural organic matter removal from aqueous humic acid solutions by using different titanium dioxide (TiO2) under UV-A irradiation. Bench scale experimental studies were conducted at different humic acid concentration at the range of 10–50 mg/L and different pH. Anatase and mixed-phase anatase–rutile TiO2 nano particles used in the photocatalytic reactor. The results were evaluated in terms of the parameters that are specific to organic matter content such as dissolved organic carbon concentration, ultraviolet absorbance at 254 nm (UV254), specific ultaviolet absorbance at 254 nm, and color (VIS400). It was observed that increasing humic acid concentration decreases photocatalytic degradation efficiency. The reactivity of the mixed-phase anatase–rutile (Degussa P-25) TiO2 was greater than individual anatase particles and the highest efficiency was observed at pH 3 for anatase TiO2.  相似文献   

3.
Sisal fibers bleached with sodium-hydroxide followed by hydrogen peroxide treatment were incorporated in a thermoplastic starch/ε-polycaprolactone (TPS/PCL) blend via extrusion processing. These samples with smooth and homogenous surfaces were examined for their property, biodegradability and water absorption. Scanning electron microscopy revealed that the fibers were well dispersed in the matrix. In addition, it was found that the fibers and matrices interacted strongly. Blends with 20 % (dry weight-basis) fiber content showed some fiber agglomeration. Whereas blends with 10 % fibers showed increased crystallinity and lower water absorption capacity. The CO2 evolution study showed that the thermoplastic starch samples without any additives had the highest rate and extent of degradation whereas the neat PCL samples had the lowest degradation rate. Addition of fiber to the TPS/PCL blend exhibited the degradation rates and extents that were somewhere in between the pure TPS and neat PCL. This work demonstrates that TPS/PCL composites reinforced with bleached sisal has superior structural characteristics and water resistance and thus, can be used as polymeric engineering composites for different applications.  相似文献   

4.
In order to assess the potential impacts posed by products containing engineered nanoparticles, it is essential to generate more data about the release of these particles from products’ life cycle. Although first studies were performed to investigate the release of nanoparticles from use phase, very few data are available on the potential release from recycling or disposal of nano-enhanced products.In this work, we investigated the behavior of TiO2 nanoparticles from incineration of solid paint waste containing these particles. Solid paint debris with and without TiO2 nanoparticles were treated in a lab scale incineration plant at 950 °C (combustion temperature) and in oxidizing atmosphere. The obtained ashes were also vitrified with additives and the release of Ti was finally evaluated by leaching test. From our incineration lab-scale experiment, we did not observe a release of TiO2 nanoparticles into the atmosphere, and Ti was attached to the surface of obtained solid residues (i.e. ashes). The characterization of ashes showed that TiO2 nanoparticles reacted during the incineration to give calcium titanate. Finally, a very low release of Ti was measured, less 1 mg/kg, during the leaching test of ashes vitrified with glass cullet and feldspathic inert. Our work suggests that TiO2 nanoparticles added in paints may undergo to physicochemical transformation during the incineration, and that Ti found in ashes may be strongly immobilized in glass matrix. Since this conclusion is based on lab-scale experiment, further research is required to identify which nanoparticles will be emitted to the environment from a real-word-incineration system of household hazardous waste.  相似文献   

5.
In this research Fenton reagent (Fe2+/H2O2) was investigated as oxidants to degrade poly (vinyl alcohol) (PVA). The role of nano-TiO2 photocatalyst was discussed as an additive in Fenton reagent (Fe2+/H2O2). Pt/TiO2 composites were also synthesized by photo-reaction to be used as additive in Fenton reagent. The rapid degradation of PVA was obtained when Pt/TiO2 composites served as photocatalyst. The different photocatalytic efficiency of Pt/TiO2- Fenton reagent (Fe2+/H2O2) was studied compared with TiO2- Fenton reagent (Fe2+/H2O2) during the degradation of PVA.  相似文献   

6.
For an effective decomposition and removal of organic halogenated compounds, a packed-bed non-thermal plasma reactor with in situ absorption of the resulting halogenated products by alkaline sorbent incorporated was proposed. In the plasma reactor, α-Al2O3 particles of 1 and 3 mm (mean particle diameter) were packed as solid dielectric medium to enhance the plasma power density in the reactor. Further, alkaline sorbent of Ca(OH)2 was doped onto the surface of α-Al2O3 particles, in order to remove halogenated products by in situ absorption with Ca(OH)2. A high-voltage and high-frequency pulsed power of −15 to 15 kV and 1 kHz was applied to the wire electrode of the plasma reactor by means of a DC power source. In the present study, as the sample of an organic halogenated compound that is most popularly used, we selected dichloromethane (CH2Cl2), and 500 ppm of the initial concentration of CH2Cl2 was fed into the reactor accompanied by air at a fixed flow rate of 500 × 10−6 m3 min−1 at room temperature. As a result, it was recognized that the amount of CH2Cl2 decomposed by non-thermal plasma in an α-Al2O3 particle bed increased with an increase in plasma input power. The ratio of decomposition of CH2Cl2 was almost 100% at 13 kV of electric power and 1 kHz frequency, and CO2, CH3Cl, COCl2, HCl, and Cl2 were observed as the major reaction products. On the other hand, when CH2Cl2 was introduced into the plasma reactor where α-Al2O3 particles doped with Ca(OH)2 were packed, the ratio of decomposition of CH2Cl2 became higher, compared to the case that α-Al2O3 particles were not doped with Ca(OH)2. Moreover, there were no halogenated by-product gases detected in the outlet gas from the reactor. As the solid reaction products, CaClOH and Ca(ClO)2·4H2O were detected on Ca(OH)2 by X-ray diffraction. From these findings, it was recognized that CH2Cl2 was decomposed more effectively without producing unwanted harmful halogenated by-products in the proposed non-thermal plasma reactor where α-Al2O3 particles doped with Ca(OH)2 sorbent were packed.  相似文献   

7.
Degradation of Cellulose Acetate-Based Materials: A Review   总被引:1,自引:0,他引:1  
Cellulose acetate polymer is used to make a variety of consumer products including textiles, plastic films, and cigarette filters. A review of degradation mechanisms, and the possible approaches to diminish the environmental persistence of these materials, will clarify the current and potential degradation rates of these products after disposal. Various studies have been conducted on the biodegradability of cellulose acetate, but no review has been compiled which includes biological, chemical, and photo chemical degradation mechanisms. Cellulose acetate is prepared by acetylating cellulose, the most abundant natural polymer. Cellulose is readily biodegraded by organisms that utilize cellulase enzymes, but due to the additional acetyl groups cellulose acetate requires the presence of esterases for the first step in biodegradation. Once partial deacetylation has been accomplished either by enzymes, or by partial chemical hydrolysis, the polymer’s cellulose backbone is readily biodegraded. Cellulose acetate is photo chemically degraded by UV wavelengths shorter than 280 nm, but has limited photo degradability in sunlight due to the lack of chromophores for absorbing ultraviolet light. Photo degradability can be significantly enhanced by the addition of titanium dioxide, which is used as a whitening agent in many consumer products. Photo degradation with TiO2 causes surface pitting, thus increasing a material’s surface area which enhances biodegradation. The combination of both photo and biodegradation allows a synergy that enhances the overall degradation rate. The physical design of a consumer product can also facilitate enhanced degradation rate, since rates are highly influenced by the exposure to environmental conditions. The patent literature contains an abundance of ideas for designing consumer products that are less persistent in the outdoors environment, and this review will include insights into enhanced degradability designs.  相似文献   

8.
Present work deals with the surface modification of Cannabis indica fiber through benzoylation and graft copolymerization of acrylonitrile (AN) onto C. indica fibers under the influence of microwave radiations. The Benzoylation of C. indica fiber was carried out by treating raw fiber with varying concentrations of benzoyl chloride solution. Different reaction parameters for graft copolymerization, such as reaction time, initiator concentration, nitric acid concentration, pH and monomer concentration were optimized to get the maximum percentage of grafting (25.54%). A suitable mechanism to explain benzoylation and graft copolymerization has been also proposed. Raw C. indica fiber, graft copolymerized and benzoylated fibers were subjected to evaluation of some of their properties like swelling behavior, moisture absorbance and resistance towards chemicals. Cannabis indica fibers treated with 5% benzoyl chloride solution and AN graft copolymerized fibers have been found to show more resistant towards moisture, water and chemicals when compared with that of untreated fibers. Morphological, structural changes, thermal stability and crystallanity of raw, graft copolymerized and benzoylated fibers have also been studied by SEM, FTIR, TGA and XRD techniques. It has been observed that the crystallinity of fiber decreases but thermal stability increases on surface modification.  相似文献   

9.
10.
This paper discusses the results of biodegradability tests of natural fibers used by the automotive industry, namely: coir, coir with latex, and sisal. The biodegradation of coir, coir with latex, and of sisal fibers was determined by monitoring the production of carbon dioxide (CO2) (IBAMA—E.1.1.2, 1988) and fungal growth (DIN 53739, 1984). The contents of total extractives, lignin, holocellulose, ashes, carbon, nitrogen and hydrogen of the fibers under study were determined in order to ascertain their actual content and to understand the results of the biodegradation tests. The production of CO2 indicated low biodegradation, i.e., about 10% in mass, for all the materials after 45 days of testing; in other words, no material inhibited glucose degradation. However, the percentage of sisal fiber degradation was fourfold higher than that of coir with latex in the same period of aging. The fungal growth test showed a higher growth rate on sisal fibers, followed by coir without latex. In the case of coir with latex, we believe the fungal growth was not intense, because natural latex produces a bactericide or fungicide for its preservation during bleeding [1]. An evaluation of the materials after 90 days of aging tests revealed breaking of the fibers, particularly sisal and coir without latex, indicating fungal attack and biodegradation processes.  相似文献   

11.
A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) in pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6–5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2–5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO3–N and NH4–N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers’ surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.  相似文献   

12.
In the present study, Phormium Tenax fiber reinforced PLA composites were processed by injection molding and twin screw compounding with a fiber content ranging from 10 to 30 wt%. Three surface treatment methods have been used to improve the Phormium Tenax fiber-matrix interfacial bonding that are as follows: (1) aqueous alkaline solution, (2) silane coupling agent, and (3) a combination of alkaline and silane treatment. The mechanical, thermal and morphological properties of the resulting composites were investigated. The results have shown that the moduli of surface treated fiber reinforced composites are lower than the ones obtained for untreated composites (as a consequence of the decrease in fiber modulus caused by the chemical treatments) and no significant increase in strength was observed for any of the composites compared to neat PLA. SEM micrographs of composite fractured surfaces confirmed an improvement in the interfacial strength, which was insufficient nonetheless to significantly enhance the mechanical behavior of the resulting composites. Results from thermogravimetric analysis and differential scanning calorimetry suggest that surface treatment of Phormium affects the ability of PLA to cold crystallize, and the thermal stability of the composites at the different fiber contents was reduced with introduction of alkali and silane treated Phormium fibers.  相似文献   

13.
To control the emission of halides into the environment, an experiment on the nonthermal plasma decomposition of the halides CF4, CHF3, C2HCl3, and CHClF2 was conducted in a wire-in-tube corona reactor. It was found that the decomposition of C2HCl3 and CHClF2 was easy compared with the decomposition of CF4 and CHF3. With the addition of H2 in N2 gas, the decomposition ratio of CF4, C2HCl3, and CHClF2 increased. In contrast, the decomposition ratio of CHF3 in a hydrogen-rich atmosphere was lower than that in an N2 atmosphere. It was demonstrated that the yields of HF and/or HCl formed during halide decomposition clearly increased in the presence of H2 in N2 gas. Furthermore, in order to prevent the production of unwanted products from halide decomposition, a combination of plasma decomposition and in situ alkaline absorption was devised by coating a layer of Ca(OH)2 onto the surface of the grounding electrode. It was demonstrated that the Ca(OH)2 sorbent played an effective role as a scavenger, participating in halide decomposition by capturing reaction products such as HCl and HF, therefore resulting in increased halide decomposition.  相似文献   

14.
Photocatalytically-oxidized cross-linked chitosan-glutaraldehyde (CS-GLA) was obtained via irradiation of a simple assemblage of an immobilized layer-by-layer TiO2/CS-GLA system on a glass plate with a 45-W fluorescent lamp. The oxidation process was observed to occur only in the presence of oxygen and TiO2 within 5 cycles (10 h) of irradiation. Characterizations studies of the oxidized cross-linked polymer involving swelling index, pH-potentiometric titration and ionic conductivity measurements, as well as CHN, FTIR, 13C solid-state NMR,UV–Vis DRS and photoluminescence spectroscopy analyses generally indicated that the oxidation led to the formation of carbonyl groups, partial elimination of some un-reacted amino groups and change of visual color to be more brown without altering much of the whole molecular structure of the CS-GLA. This study also indicated that the photocatalytic performance of TiO2/oxidized CS-GLA system was higher than both TiO2/CS-GLA system and TiO2 single layer for the removal of phenol. Moreover, the adsorption effect was extremely negligible and the photodegradation of phenol was mainly due to the photocatalytic process.  相似文献   

15.
Biodegradable composites can be produced by the combination of biodegradable polymers (BP) as matrix and vegetal fibers as reinforcement. Composites of a commercial biodegradable polymer blend and curauá fibers (loaded at 5, 15 and 20 wt%) were prepared by melt mixing in a twin-screw extruder. Chemical treatments such as alkali treatment of the fiber and addition of maleic anhydride grafted polypropylene (MA-g-PP) as coupling agent were performed to promote polymer/fiber interfacial adhesion so that mechanical performance can be improved. The resulting composites were evaluated through hardness, melt flow index and tensile, flexural and impact strengths as well as water absorption. Thermal analysis and Fourier transform infrared spectroscopy were also employed to characterize the composites. The polymer/fiber interface was investigated through scanning electron microscopy analysis. The biodegradability of composites was evaluated by compost-soil burial test. The addition of curauá fiber promoted an increase in the mechanical strengths and composites treated with 2 wt% MA-g-PP with 20 wt% curauá fiber showed an increase of nearly 75% in tensile and 56% in flexural strengths besides an improvement in impact strength with respect to neat polymer blend. Nevertheless, treated composites showed an increase in water absorption and biodegradation tests showed that the addition of fiber retards degradation time. The retained mass of BP/20 wt% fiber composite with MA-g-PP and neat BP was 68 and 26%, respectively, after 210 days of degradation test.  相似文献   

16.
Natural cellulosic fibers are one of the smartest materials for use as reinforcement in polymers possessing a number of applications. Keeping in mind the immense advantages of the natural fibers, in present work synthesis of natural cellulosic fibers reinforced polymer composites through compression molding technique have been reported. Scanning Electron microscopy (SEM), Thermo gravimetric/Differential thermal/Derivative Thermogravimetry (TGA/DTA/DTG), absorption in different solvents, moisture absorbance, water uptake and chemical resistance measurements were used as characterization techniques for evaluating the different behaviour of cellulosic natural fibers reinforced polymer composites. Effect of fiber loading on mechanical properties like tensile strength, flexural strength, compressive strength and wear resistances has also been determined. Reinforcing of the polymer matrix with natural fibers was done in the form of short fiber. Present work indicates that green composites can be successfully fabricated with useful mechanical properties. These composites may be used in secondary structural applications in automotive, housing etc.  相似文献   

17.
The disposal of waste plastics is a major environmental issue all over the world. As an alternative to disposal that also adds value to the waste product, polycarbonate particles were used as model waste plastic material, mixed with sodium hydroxide and then pyrolyzed at 773 K to produce activated carbon. Activated carbon has numerous industrial applications, including use as adsorbents in adsorption heat pumps and several environmental applications. Activated carbon obtained upon pyrolysis was characterized by determining its adsorption capacity for liquid nitrogen and water vapor. The effects of the key process variables, i.e., chemical ratio and activation time, on micropore development and water adsorptivity were evaluated by response surface methodology. The quadratic models were found to be satisfactory in describing their performance. Based on the contour plots, activated carbon with a maxima of surface area and micropore volumes can be produced at an optimal level of chemical ratio along with longer activation time. The water adsorptivity generally has less difference at low relative pressures, but inflexion of water adsorptivity occurs at a relative pressure of P/P 0 ≈ 0.4. The optimized water adsorptivity in the operating pressure range of adsorption heat pumps (P/P 0 = 0.11–0.38) can exceed 0.24 kg/kg.  相似文献   

18.
A novel solventless delignification of a defatted Picea glehnii wood flour sample was performed using a TiO2/polyethylene oxide (PEO) photocatalyst system. A cell wall structure of the wood flour was directly observed, showing that its lignin fraction was removed by the photodegradation. The total lignin amount was slightly decreased as compared with that of the pristine sample, and the vanillin formation was confirmed by the 1H-NMR measurement. The TiO2 worked as a radical initiator, and simultaneously acid and aldehyde compounds produced by the PEO photolysis did as an accelerator for the solventless delignification. Although the photocatalyst system showed high delignification activity even for a low molecular lignin model, the delignification of the wood flour sample was confined to the surface. It was found that the suppressed delignification behavior was due to crosslinked structure of lignin.  相似文献   

19.
In a composite, fast degradable fibers determine the degradation of the slowly degradable matrix. Such biodegradable composites consisting of degummed hemp fibers and a polyester amide matrix were produced with fiber mass fractions between 0 and 0.48. The hot-pressed plates, 1-mm thick, were incubated in a standard soil. The degradation kinetics was quantified by the measurement of CO2 production. Furthermore, after termination of experiment, the carbon balance was uncovered. The results were fitted to an exponential law taking into account the degradation of fibers. The increased amount of pores realized by high fiber contents induces pronounced degradation. The degradation is fully characterized by the time constant , which is correlated to the fiber mass fraction. The model allows to predict the degradation kinetics of composites with a few well-defined experiments.  相似文献   

20.
Performance and efficiency of old newspaper (ONP) deinking by combining cellulase/hemicellulase with laccase-violuric acid system (LVS) were investigated in this study. Brightness, effective residual ink concentration (ERIC) and physical properties were evaluated for the deinked pulp. Fiber length, coarseness, specific surface area and specific volume were also tested. The changes of dissolved lignin during the deinking processes were measured with UV spectroscopy. The fiber morphology was observed with environmental scanning electronic microscopy (ESEM). Experimental results showed that, compared to the pulp deinked with each individual enzyme, ERIC was lower for the cellulase/hemicellulase-LVS-deinked pulp. This indicated that a synergy existed in ONP deinking using a combination of enzymes. After being bleached by H2O2, enzyme-combining deinked pulp gave higher brightness and better strength properties. Compared with individual enzyme deinked pulp, average fiber length and coarseness decreased a little for the enzyme-combining deinked pulps. A higher specific surface area and specific volume of the pulp fibers were achieved. UV analysis proved that more lignin was released during the enzyme-combining deinking process. ESEM images showed that more fibrillation was observed on the fiber surface due to synergistic treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号