首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The performance of the designed tilted wick solar water distillation-cum-drying unit has been tested at water flow rates of 50 and 65 ml/min in the distillation unit. Effect of water flow rates on the heat transfer coefficients of distillation and drying unit for drying ginger has been evaluated. The energy and exergy efficiency of the distillation system have also been evaluated. Average distillates of 2.36 and 2.2 l/m2 were collected from the tilted wick solar still at flow rates of 50 and 65 ml/min, respectively. Large variation in convective and evaporative heat transfer coefficients of distillation unit has been observed at given water flow rates. Water flow rate in the distillation unit significantly affects the performance of the drying unit. Average convective heat transfer coefficients of 6.56 and 3.75 W/m2 oC have been observed for drying ginger at flow rates of 50 and 65 ml/min, respectively. Energy and exergy efficiency of the distillation unit have been found to be nearly 19% and 0.9%, respectively. Experimental uncertainty has also been evaluated for distillation and drying units. The distillate cost for the developed distillation-cum-drying unit is calculated as $0.03729/l along with dried ginger of about 2.5 kg/m2/day.  相似文献   

2.
A new system composed of a sequential flat plate and parabolic dish solar collector was applied to enhance the solar desalination productivity. Heated saline water was desalinated using the evaporation/condensation principle and an effort was made to achieve higher distillate production compared to previous studies. Desalination efficiency values were calculated between 23% and 57%. Maximum desalinated water productions were obtained as 1,038 mL/m2.h in autumn and 1,402 mL/m2.h in summer. The cost of solar desalination system was found as economically feasible with 3 years’ payback period and the produced water cost of 0.014 $/L. Physicochemical analyses revealed that as a result of the desalination process, salinity level decreased from 35.6‰ to 0.0–0.1‰, chloride concentration decreased from 21,407 mg/L to 10 mg/L, and electrical conductivity decreased from 53.1 mS/cm to 0.11 mS/cm.  相似文献   

3.
This experimental work has been conducted to compare the performance of the modified stills with that of the conventional still. Three modified stills (S1, S2, and S3) and conventional still (S4) were fabricated, each with 0.5 m2 of the basin area. S1 and S3 had transparent double glass walls with air in between acting as insulation, whereas S2 has a single transparent wall. S4 has insulated plywood walls painted black from inside. A mixture of coco peat and charcoal was used in S1, S2, and S3, whereas there was no basin material for S4. Experiments were conducted by changing the water quantity in the solar still ranging from 5 to 10 kg. Maximum distillate output of 5.46 l/m2-d was obtained for S2, whereas it was 3.80 l/m2-d for S4 for an average solar radiation intensity of 675 W/m2 (24.3 MJ/m2-d). Use of transparent walls with troughs to collect condensate increased the condenser area by 78.4%. The distillate water cost per liter was estimated as Rs. 0.86 (0.013 US$) and Rs. 1.61 (0.025 US$) for S2 and S4, respectively. Energy payback time for S2 was estimated as 4 months. Theoretical and experimental values showed that there is a significant loss of incoming solar radiation due to wall shadow.  相似文献   

4.
A solar still of a single basin-slope coupled with a finned condensing chamber and installed thermoelectric modules at the bottom of the water basin has been presented in this paper. A mathematical model under steady state conditions has been introduced and improved to investigate the system performance. An increase of solar radiation and ambient temperature or a decrease in wind velocity affect positively the distillation rate, the still efficiency, and the system efficiency. Integrating a condenser and finned condenser increases the distillation rate of the proposed system. The results of the simulation have been verified by comparing them with published theoretical and experimental results, and the comparison shows very good agreement.  相似文献   

5.
A passive flat-plate solar air collector was constructed in the laboratory of New and Renewable Energy in Arid Zones, Ouargla University, South East Algeria. The absorber of the passive flat-plate solar air collector was laminated with a thin layer of local sand. This acted as a thermal packed bed with a collecting area of 0.5 m2 (1 m × 0.5 m). Three series of experiments were performed. The first consisted of choosing the best sand brought from three different places of the Algerian desert. The second consisted of studying the effect of the thickness of the sand layer on the daily efficacy of the collector. The influence of the sand diameter was investigated in the third series. The experimental results showed that: All collectors covered with sand had higher efficiency than those without. It was noticed that, for a fixed mass of sand (given thickness of the sand layer), the improvement of the collector was inversely proportional to the sand particle diameters. The maximum efficiency approximates 62.1% for a particle diameter 0.063 mm, compared to 41.71% for a diameter 0.250 mm.The efficiency of the collector for a fixed particle diameter increases with the increase in the thickness of the sand layer. The collector with thickness sand layer 0.84 mm gave the best efficiency of 46.14% compared to 27.8% for 0.28 mm of thickness sand layer.  相似文献   

6.
In this study, an experimental investigation on the performance of a small-scale residential-size solar-driven adsorption (silica gel-water) cooling system that was constructed at Assiut University campus, Egypt is carried out. As Assiut area is considered as hot, arid climate, field tests for performance assessment of the system operation during the summer season are performed under different environmental operating conditions. The system consists of an evacuated tube with a reflective concentration parabolic surface solar-collector field with a total area of 36 m2, a silica gel-water adsorption chiller of 8 kW nominal cooling capacity, and hot and cold water thermal storage tanks of 1.8 and 1.2 m3 in volume, respectively. The results of summer season field test show that under daily solar insolation varying from 21 to 27 MJ/m2, the solar collectors employed in the system had high and almost constant thermal efficiency. The daily solar-collector efficiency during the period of system operation ranged from about 50% to 78%. The adsorption chiller performance shows that the chiller average daily coefficient of performance (COP) was 0.41 with the average cooling capacity of 4.4 kW when the cooling-water and chilled-water temperatures were about 31°C and 19°C, respectively. As the chiller cooling water is cooled by the cooling tower in the hot arid area, the cooling water is at a higher temperature than the design point of the chiller. Therefore, an experiment was carried out using the city water for cooling. The results show that an enhancement in the chiller COP by 40% and the chilling power by 17% has been achieved when the city water was 27.7°C.  相似文献   

7.
This paper investigates the prediction of solar radiation model and actual solar energy in Osmaniye, Turkey. Four models were used to estimate using the parameters of sunshine duration and average temperature. In order to obtain the statistical performance analysis of models, the coefficient of determination (R2), mean absolute percentage error (MAPE), mean absolute bias error (MABE), and root mean square error (RMSE) were used. Results obtained from the linear regression using the parameters of sunshine duration and average temperature showed a good prediction of the monthly average daily global solar radiation on a horizontal surface. In order to obtain solar energy, daily and monthly average solar radiation values were calculated from the five minute average recorded values by using meteorological measuring device. As a result of this measurement, the highest monthly and yearly mean solar radiation values were 698 (April in 2013) and 549 (2014 year) W/m2 respectively. On an annual scale the maximum global solar radiation changes from 26.38 MJ/m2/day by June to 19.19 MJ/m2/day by September in 2013. Minimum global solar radiation changes from 14.05 MJ/m2/day by October to 7.20 MJ/m2/day by January in 2013. Yearly average energy potential during the measurement period was 16.53 MJ/m2/day (in 2013). The results show that Osmaniye has a considerable solar energy potential to produce electricity.  相似文献   

8.
ABSTRACT

In this paper, a novel evacuated tube solar collector (ETSC) is first designed and built. Then, the impact of adding reflector, reflector plus single-axis sun tracker and reflector plus two-axis sun tracker to the built ETSC on the thermal efficiency of the ETSC is evaluated both theoretically and experimentally. In this regard, four identical versions of the proposed ETSC have been built and utilized in four collectors built and presented in this research work. The first collector is the same proposed built ETSC, the second collector is a parabolic trough solar collector comprising one built ETSC and a reflector (ETSC+R), the third collector is composed of one built ETSC, a reflector and a single-axis sun tracker all built in this study (ETSC+R+ ST), and the fourth collector consists of one built ETSC, a reflector and a two-axis sun tracker all built in this study (ETSC+R+ DT). Theoretical basis and concepts of the four collectors are formulated and analyzed in separate subsections. Theoretical results are outlined and highlighted at the end of each subsection. Experimental measurements and data obtained from the operation of the four collectors in the four seasons are presented that point by point verify theoretical results obtained in this study. To provide a comprehensive view, a techno-economic numerical comparison is performed between the four collectors. The following points, which are also the novelty and contributions of this work, are deduced from theoretical concepts, experimental data, and comparison provided in this study:

?There is no technical and economic justification for adding a reflector to an ETSC that results in forming a parabolic trough solar collector (ETSC+R) without any sun tracker.

?There is no economic justification for adding a single-axis sun tracker to a parabolic trough solar collector (ETSC+R).

?There is no economic justification for adding a two-axis sun tracker to a parabolic trough solar collector (ETSC+R).

?Comparing between a two-axis sun tracker and a single-axis sun tracker, adding the single-axis type to a parabolic trough solar collector (ETSC+R) is more advantageous.  相似文献   

9.
Abstract: We compared summer stream temperature patterns in 40 small forested watersheds in the Hoh and Clearwater basins in the western Olympic Peninsula, Washington, to examine correlations between previous riparian and basin‐wide timber harvest activity and stream temperatures. Seven watersheds were unharvested, while the remaining 33 had between 25% and 100% of the total basin harvested, mostly within the last 40 years. Mean daily maximum temperatures were significantly different between the harvested and unharvested basins, averaging 14.5°C and 12.1°C, respectively. Diurnal fluctuations between harvested and unharvested basins were also significantly different, averaging 1.7°C and 0.9°C, respectively. Total basin harvest was correlated with average daily maximum temperature (r2 = 0.39), as was total riparian harvest (r2 = 0.32). The amount of recently clear‐cut riparian forest (<20 year) within 600 m upstream of our monitoring sites ranged from 0% to 100% and was not correlated to increased stream temperatures. We used Akaike’s Information Criteria (AIC) analysis to assess whether other physical variables could explain some of the observed variation in stream temperature. We found that variables related to elevation, slope, aspect, and geology explain between 5% and 14% more of the variability relative to the variability explained by percent of basin harvested (BasHarv), and that the BasHarv was consistently a better predictor than the amount of riparian forest harvested. While the BasHarv is in all of the models that perform well, the AIC analysis shows that there are many models with two variables that perform about the same and therefore it would be difficult to choose one as the best model. We conclude that adding additional variables to the model does not change the basic findings that there is a relatively strong relationship between maximum daily stream temperatures and the total amount of harvest in a basin, and strong, but slightly weaker relationship between maximum daily stream temperatures and the total riparian harvest in a basin. Seventeen of the 40 streams exceeded the Washington State Department of Ecology’s (DOE) temperature criterion for waters defined as “core salmon and trout habitat” (class AA waters). The DOE temperature criterion for class AA waters is any seven‐day average of daily maximum temperatures in excess of 16°C. The probability of a stream exceeding the water quality standard increased with timber harvest activity. All unharvested sites and five of six sites that had 25‐50% harvest met DOEs water quality standard. In contrast, only nine of eighteen sites with 50‐75% harvest and two of nine sites with >75% harvest met DOEs water quality standard. Many streams with extensive canopy closure, as estimated by the age of riparian trees, still had higher temperatures and greater diurnal fluctuations than the unharvested basins. This suggests that the impact of past forest harvest activities on stream temperatures cannot be entirely mitigated through the reestablishment of riparian buffers.  相似文献   

10.
In this communication, a new design of solar-energy-based water distillation cum drying unit with parabolic reflector has been designed, fabricated, and tested. Bitter gourd and potato slices are chosen as a drying commodity. Thermal performance of the developed system has been evaluated based on the experimental results and using linear regression analysis. Heat transfer coefficients (convective, evaporative, and radiative) for solar distillation system have been observed to be 2.48–4.09, 13.25–52.38, and 8.75–9.66 W/m2°C, respectively. Overall thermal efficiency and exergy efficiency for the distillation system has been found to be 18.77% and 1.2%, respectively. The convective heat transfer coefficient for potato slices are observed higher for initial hours and decreases as the day progresses. The average convective heat transfer coefficients for bitter gourd and potato slices have been observed as 2.18 and 5.04 W/m2°C, respectively. Experimental error in terms of percent uncertainty for bitter gourd and potato slices are found to be 42.93% and 37.06%, respectively. The present design of solar distillation and drying in a single unit could be beneficial for the development of remote, arid, and rural areas.  相似文献   

11.
Daily global solar radiation on a horizontal surface and duration of sunshine hours have been determined experimentally for five meteorological stations in Saudi Arabia, namely, Abha, Al-Ahsa, Al-Jouf, Al-Qaisumah, and Wadi Al-Dawaser sites. Five-years of data covering 1998–2002 period have been used. Suitable Angstrom models have been developed for the global solar radiation estimation as a function of the sunshine duration for each respective sites. Daily averages of monthly solar PV power outputs have been determined using the Angstrom models developed. The effect of the PV cell temperature on the PV efficiency has been considered in calculating the PV power output. The annual average PV output energy has been discussed in all five sites for small loads. The minimum and maximum monthly average values of the daily global solar radiation are found to be 12.09 MJ/m2/d and 30.42 MJ/m2/d for Al-Qaisumah and Al-Jouf in the months of December June, respectively. Minimum monthly average sunshine hours of 5.89 hr were observed in Al-Qaisumah in December while a maximum of 12.92 hr in Al-Jouf in the month of June. Shortest range of sunshine hours of 7.33–10.12 hr was recorded at Abha station. Minimum monthly average Solar PV power of 1.59 MJ/m2/day was obtained at Al-Qaisumah in the month of December and a maximum of 3.39 MJ/m2/day at Al-Jouf in June. The annual PV energy output was found to be 276.04 kWh/m2, 257.36 kWh/m2, 256.75 kWh/m2, 245.44 kWh/m2, and 270.95 kWh/m2 at Abha, Al-Ahsa, Al-Jouf, Al-Qaisumah, and Wadi Al-Dawaser stations, respectively. It is found that the Abha site yields the highest solar PV energy among the five sites considered.  相似文献   

12.
Microalgae have been identified as a superior feedstock for biodiesel production and varied tubular photobioreactors are developed for high efficient and scale-up microalgae cultivation. This article presented a novel concentric double tubes using aeration through radial pores along the length direction of inner tube. Experiments on microalgae cultivation were carried out in the novel photobioreactor, and two control groups including concentric double tubes with axial aeration at both ends and common tubular. The biomass productivity of novel photobioreactor increased by 43.6% and 107.4%, respectively, compared with concentric double tubes with axial aeration at both ends and common tubular without aeration. The values of pH shifted from 7.5 to 9.0 for novel photobioreactor, but 7.5 to 8.8 for common tubular, and 7.5 to 9.6 for concentric double tubes with axial aeration. The dissolved oxygen concentration fluctuated between 6.0 and 7.0 mg·L?1 for novel photobioreactor, but rose from 6.6 to 10.2 mg·L?1 for the common tubular, and 6.9 to 8.1 mg·L?1 for the concentric with axial aeration. Results show that the aeration style of novel photobioreactor can make efficient local mixing and maintain smaller range of pH and lower level of dissolved oxygen in case of higher biomass concentration. Moreover, compared with the two control groups, the novel concentric double tubes have advantages on the light/dark cycle frequency, which may be benefit for microalgae cultivation. The novel concentric double tubes presented in this work can give some inspiration for high efficiency microalgae cultivation.  相似文献   

13.
The concept of using the atmospheric water balance technique in the study of the hydrology of large (greater than 105km2) river basins is described. The atmospheric water balance technique consists of determining the spacial and time distributions and fluxes of water vapor through the atmospheric volume overlying the basin. The quantity precipitation minus evaporation at the earth's surface is determined as a residual of the computation. A review of the results of various experiments employing this technique is provided. The incorporation of the technique in a study of the hydrology of a large river basin is demonstrated by showing the results of a study of the hydrometeorology of the Upper Colorado River Basin. The example covers the study of eleven winter seasons, November through April, 1957–1968. The seasonal accumulation of water over the basin as determined by the atmospheric water balance is highly correlated with annual runoff. Correlation coefficient r = .8. The daily evaporation rate during dry days varies by a factor of two over the winter season, and is shown to be related to the incoming solar radiation intensity.  相似文献   

14.
Bioenergy production from biomass is proposed as a method to solve part of the nation's energy problem. However, biomass and bioenergy production is questioned as an environment-friendly approach due to the potential increase of water pollution and the potential decrease of available water resource. A conceptual model of an integrated natural waste treatment system that produces biogas and biomass for bioenergy, treat waste and wastewater, conserve fresh water, and decrease the potential water pollution is presented. The potential biomass production from water hyacinth, duckweed, cattail, and knotgrass was investigated using recycling wastewater from an integrated natural waste treatment system from 2005 to 2008. Although the biomass production from recycling wastewater was not controlled for maximum production, this research identified the large potential impact that could be made if these systems were implemented. The overall average water hyacinth growth rate was high to 0.297 kg wet wt./m2/day during a research period of over 500 days, including both the active and non-active growing seasons. The average daily growth rates of duckweed, cattail, and knotgrass were 0.099-0.127, 0.015, and 0.018 kg wet wt./m2, respectively. This research illustrated that water hyacinth was a more promising aquatic plant biomass for bioenergy production when wastewater effluent was recycled as water and nutrient sources from an integrated natural waste treatment system.  相似文献   

15.
Conventional solar photovoltaic (PV) module converts the light component of solar radiation into electrical power, and heat part is absorbed by module increasing its operating temperature. Combined PV module and heat exchanger generating both electrical and thermal powers is called as hybrid photovoltaic/thermal (PV/T) solar system. The paper presents the design of a PV/T collector, made with thin film PV technology and a spiral flow absorber, and a simulation model, developed through the system of several mathematical equations, to evaluate the performance of PV/T water collectors. The effect of various parameters on the thermal and electrical efficiency has been investigated to obtain optimum combination of parameters. Finally, a numerical simulation has been carried out for the daily and annual yield of the proposed PV/T collector, and comparison with a standard PV module is discussed.  相似文献   

16.
The heat-pipe solar water heating (HP-SWH) system and the heat-pipe photovoltaic/thermal (HP-PV/T) system are two practical solar systems, both of which use heat pipes to transfer heat. By selecting appropriate working fluid of the heat-pipes, these systems can be used in the cold region without being frozen. However, performances of these two solar systems are different because the HP-PV/T system can simultaneously provide electricity and heat, whereas the HP-SWH system provides heat only. In order to understand these two systems, this work presents a mathematical model for each system to study their one-day and annual performances. One-day simulation results showed that the HP-SWH system obtained more thermal energy and total energy than the HP-PV/T system while the HP-PV/T system achieved higher exergy efficiency than the HP-SWH system. Annual simulation results indicated that the HP-SWH system can heat the water to the available temperature (45°C) solely by solar energy for more than 121 days per year in typical climate regions of China, Hong Kong, Lhasa, and Beijing, while the HP-PV/T system can only work for not more than 102 days. The HP-PV/T system, however, can provide an additional electricity output of 73.019 kWh/m2, 129.472 kWh/m2, and 90.309 kWh/m2 per unit collector area in the three regions, respectively.  相似文献   

17.
ABSTRACT

According to the structure of photovoltaic/phase change material (PV/PCM), the mechanism of internal heat transfer, transmission, storage, and temperature control is analyzed, and a two-dimensional finite element analysis model of PV/PCM structure is established. This study is carried out on the effect of PCM thermal conductivity on internal temperature distribution characteristics of PV/PCM and temperature control characteristics of solar cells. The results show that the increase in thermal conductivity of PCM can prolong the temperature control time of solar cell in PV/PCM system, for example, when the thermal conductivity is increased from 0.2 W/(m·K) to1.5 W/(m·K) under a thickness of 4 cm, the duration when PV/PCM solar cell temperature is controlled below 40°C and extended from 52 min to 184 min. In addition, PV/PCM experimental prototypes are designed with the LA-SA-EG composite PCM peak melting point of 46°C and thermal conductivity of 0.8 W/(m·K) and 1.1 W/(m·K), respectively. The results indicate that compared with PCM-free solar cells, the maximum temperature of PV/PCM prototype solar cells with thermal conductivity of 0.8 W/(m·K) and 1.1 W/(m·K) is reduced by 10.8°C and 4.6°C, respectively, with average output power increased by 4.1% and 2.2%, respectively, under simulated light sources. Under natural light conditions, the average output power is increased by 6.9% and 4.3%, respectively. The results provide theoretical and experimental basis for the optimization of PV/PCM design by changing the thermal conductivity of PCM.  相似文献   

18.
The redox state of carbon sources directly affected the ratio of NADH/NAD+ which was coupled to the hydrogen production by Bacillus sp. FS2011. The addition of the inhibitor of pyruvate dehydrogenase multi-enzyme complex (PDHc)E1 could regulate hydrogen production by FS2011 or pretreated compost in batch cultivation. With the addition of appropriate amount of inhibitor, hydrogen production via the NADH pathway was increased, leading to the higher overall hydrogen production. The maximum hydrogen yields of 307.6 ± 13.21 mL/g by FS2011 with the inhibitor of 80 ppm and 362.1 ± 10.1 mL/g by pretreated compost with the inhibitor of 60 ppm were observed, which were increased by 8.7% and 17.8% compared with the controls, respectively. Meanwhile the production of soluble metabolic byproducts such as butyrate, acetate and so on were decreased, resulting in reducing the difficulty of wastewater treatment.  相似文献   

19.
The present study assesses the feasibility of exploiting single- and double-basin solar stills in our daily lives. An investigation is carried out to determine the thermal performance and economic viability of making use of solar stills in water desalination. The climatic conditions of Tehran (35°44?N, 51°30?E) are considered to assess the feasibility of the basins. Transient energy and mass balance equations are utilized for modeling the thermal performance. The equations are solved by using fourth-order Runge–Kutta method in FORTRAN. The daily productivities of single- and double-basin solar stills are found to be 5.22 kg/m2 and 7.73 kg/m2, respectively, while the effect of different water masses (20–100 kg) on the productivity of each system was found to be optimum at 20 kg/m2. The results are compared with experimental work performed under different climatic conditions to examine the validity of the feasibility of basins in general. A life cycle cost analysis performed for Tehran, yields that single- and double-basin solar stills have savings-to-investment ratios of 4.2 and 4.8, respectively, indicating that they are economically feasible.  相似文献   

20.
A 100 W proton exchange membrane fuel cell (PEMFC) system with a sodium borohydride (NaBH4) hydrogen generator was investigated for small unmanned aerial vehicles (UAVs). The performance of a cobalt–phosphorous/nickel foam catalyst was evaluated to determine the change in catalytic activity under real operating conditions. The response time increased owing to oxidation of the metals and accumulation of sodium; however, the catalyst remained active at high reaction temperatures. A NaBH4 hydrogen generator with the catalyst was developed for a 100 W PEMFC system. The hydrogen generation rate was stable for 3 h, and the conversion efficiency was 97.8%. Finally, a 100 W PEMFC system with the NaBH4 hydrogen generator was investigated for small UAVs. The maximum power and energy density of the PEMFC system were 95.96 W and 185.2 Wh/kg, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号