首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because many secondary metabolites in plants act as defense against herbivores it has been postulated that these compounds have evolved under selective pressure by insect herbivores. One explanation for the within-species variation in metabolite patterns in a particular species is that different populations are under selection by different herbivores. We tested this hypothesis, using Arabidopsis thaliana plants that originated from dune and inland areas. We analyzed Arabidopsis thaliana leaves using NMR spectroscopy and multivariate data analysis. Major differences in chemical composition were found in water-methanol fractions and were due to higher concentrations of sinigrin and fumaric acid in dune plants. Inland plants showed lower levels of glucose. Quantitative analysis of glucosinolates was performed with HPLC. Individual plants and populations demonstrated differences in glucosinolate composition and concentration. In growth chamber experiments, the generalist herbivore, Spodoptera exigua grew significantly better on the inland plants, while the specialist herbivore Plutella xylostella performed equally well on plants of both origins. Aliphatic glucosinolate as well as total glucosinolate concentrations negatively correlated with larval mass of Spodoptera exigua. No significant correlations, however, were found between larval mass of Plutella xylostella and glucosinolates in the leaves. A specialist and a generalist herbivore were responding differently to plant secondary chemistry, as was also found in several other studies. This is an important indication that differences in glucosinolate concentrations among populations may result from differential selection by different guilds of herbivores.  相似文献   

2.
Summary. Feeding by belowground herbivores may induce systemic changes in shoot defence levels that affect the performance of above ground herbivores and higher trophic levels. In this paper two wild Brassica species, B. nigra and B. oleracea were experimentally infested with 10 larvae of the cabbage root fly, Delia radicum. Plant dry masses and glucosinolate levels in shoots, main roots, and fine roots were determined at 3, 7, 12 and 14 days after infestation and compared to those of control plants. The systemic response in the leaves differed between plant species. In B. nigra shoot glucosinolate levels in D. radicum infested plants steadily increased with time until they were almost twice those of controls 14 days after infestation. B. oleracea plants infested with D. radicum did not show significant changes in shoot glucosinolate levels within 14 days, which may be due to the unexpected poorer performance of D. radicum on this species. Both plant species showed a local increase in indole glucosinolates in the main roots, which are the preferred feeding site of D. radicum larvae. B. oleracea plants however showed a stronger (1.9 – 4.7 times) increase in indole glucosinolate levels than B. nigra (1.5 – 2.6 times). The increase in indole glucosinolates in B. nigra main roots, was counterbalanced by a significant decrease in aromatic glucosinolate levels. These differences in local responses to D. radicum feeding between the two species may have contributed to the slower growth rates of the larvae on B. oleracea. D. radicum feeding did not result in altered glucosinolate levels in the fine roots in either plant species. The differences in glucosinolate induction patterns between the summer annual B. nigra and the perennial B. oleracea are discussed in the light of their different life histories.  相似文献   

3.
In their natural environment, plants are often attacked simultaneously by many insect species. The specificity of induced plant responses that is reported after single herbivore attacks may be compromised under double herbivory and this may influence later arriving herbivores. The present study focuses on the dynamics of induced plant responses induced by single and double herbivory, and their effects on successive herbivores. Morphological (leaf length, area and trichome density) and chemical changes (leaf alkenyl and indole glucosinolates) in Brassica juncea were evaluated 4, 10, 14 and 20 days after damage by the specialist Plutella xylostella alone, or together with the generalist Spodoptera litura. To assess the biological effect of the plant’s responses, the preference and performance of both herbivores on previously induced plants were measured. We found that alkenyl glucosinolates were induced 20 days after damage by P. xylostella alone, whereas their levels were elevated as early as 4 days after double herbivory. Trichome density was increased in both treatments, but was higher after double herbivory. Interestingly, there was an overall decrease in indole glucosinolates and an increase in leaf size due to damage by P. xylostella, which was not observed during double damage. S. litura preferred and performed better on undamaged plants, whereas P. xylostella preferred damaged plants and performed better on plants damaged 14 and 10 days after single and double herbivory, respectively. Our results suggest that temporal studies involving single versus multiple attacker situations are necessary to comprehend the role of induced plant responses in plant–herbivore interactions.  相似文献   

4.
Summary. Sequestration of plant toxins in herbivores is often correlated with aposematic coloration and gregarious behaviour. Larvae of Pieris brassicae show these conspicuous morphological and behavioural characteristics and were thus suggested to sequester glucosinolates that are characteristic secondary metabolites of their host plants. P. rapaeare camouflaged and solitary, and are thus not expected to sequester. To test this hypothesis and to check the repeatabi-lity of a study that did report the presence of the glucosinolate sinigrin in P. brassicae, larvae were reared on three species of Brassicaceae (Sinapis alba, Brassica nigra and Barbarea stricta), and different leaf and insect samples were taken for glucosinolate analysis. The major host plant glucosinolates could only be found in traces or not at all in larval haemolymph, bled or starved larvae, faeces or pupae of both species or P. brassicae regurgitant. Haemolymph of both Pieris spp. was not rejected by the ant Myrmica rubra in dual-choice assays; the regurgitant of P. brassicae was rejected. This suggests the presence of compounds other than glucosinolates that might be sequestered in or produced by P. brassicae only. In faeces of both Pieris spp. a compound which yielded 4-hydroxybenzylcyanide (HBC) upon incubation with sulfatase was detected in high concentrations when larvae had been reared on S. alba. This compound may be derived from hydrolysis of sinalbin, the main glucosinolate of that plant. The unidentified HBC progenitor was apparently not sequestered in the two Pieris spp., and was not detected in faeces of larvae reared on B. nigra or B. stricta. Received 18 July 2002; accepted 11 September 2002.  相似文献   

5.
Summary. Plant responses to herbivory might directly affect the herbivore (“direct” defences) or might benefit the plant by promoting the effectiveness of natural antagonists of the herbivores (“indirect” defences). Brussels sprouts attacked by Pieris brassicae larvae release volatiles that attract a natural antagonist of the herbivores, the parasitoid Cotesia glomerata, to the damaged plant. In a previous study, we observed that feeding by caterpillars on the lower leaves of the plant triggers the systemic release of volatiles detectable by the parasitoids from upper leaves of the same plant.?The role of these systemically induced volatiles as indirect defence and the dynamics of their emission were investigated in wind-tunnel dual choice tests with C. glomerata. The systemically induced emission of volatiles varied depending on leaf age and on plant age. Systemic induction affected parasitoid effectiveness, as induced plants could be more easily located by parasitoids than non-induced ones.?The role of the systemic induction as a direct defence was investigated through behavioural and feeding tests with P. brassicae. In dual choice assays, 1st instar larvae preferred to feed and fed more on systemically induced than on non-induced leaves. In single choice assays, the leaf area consumed by caterpillars was larger on systemically induced leaves than on non-induced control leaves. However, caterpillars fed on systemically induced leaves attained the same weight as those feeding on non-induced controls. In addition, P. brassicae pupae whose larvae were fed on systemically induced leaves had longer developmental times than those of larvae fed on non-induced leaves. Adult oviposition behavior was not influenced by systemic induction.?We conclude that systemically induced responses in cabbage might reduce P. brassicae fitness both directly, by affecting their development and feeding behavior and indirectly by making caterpillars and pupae more vulnerable to attack by carnivores. The occurrence of a possible relationship between direct and indirect defence is discussed. Received 24 January 2001; accepted 3 May 2001.  相似文献   

6.
Summary. Larvae of the turnip sawfly, Athalia rosae L. (Hymenoptera: Tenthredinidae), sequester glucosinolates of their host plants, namely members of the Brassicaceae family, in their haemolymph. Therefore, they need to circumvent myrosinase activities of the plant tissue which normally hydrolyse the glucosinolates after plant damage. Effects of varying levels of glucosinolates and myrosinases on the performance of A. rosae were investigated using homozygous lines of Brassica juncea (L.) with either (1) low glucosinolate (lowGS) and low myrosinase (lowMR), (2) high glucosinolate (highGS) and high myrosinase (highMR), or (3) high glucosinolate (highGS) and low myrosinase (lowMR) levels. To insure that the given quantities remained as constant as possible, newly hatched larvae were enclosed on the second-youngest leaf of a plant, and were offered a new plant of comparable physiological age (6-leaf-stage) every day. The performance of A. rosae was little affected by leaf quality. Body masses of eonymphs and adults were on average lowest on the highGS/highMR-line, but these differences were rarely significant. The pupal developmental times of females and males were longest on the highGS/lowMR-line in only one of two replicate experiments. All other performance traits (developmental times of larvae, egg numbers, adult longevity) were not significantly different. Glucosinolates, sequestered by the larvae, are carried through the pupal stage. The glucosinolate concentration measured in adult insects reflected the level of the host plant line, without showing any obvious costs for sequestration. Obviously, A. rosae is highly tolerant to variation in the glucosinolate-myrosinase system of its host. In addition, induced changes of glucosinolate concentrations and myrosinase activities caused by 24 h-feeding of groups of three small larvae were analysed in the second-youngest leaves. In contrast to the patterns most herbivores evoke on Brassicaceae, namely an increase of both glucosinolate concentration and myrosinase activity, we detected a significant decrease of both traits in all three lines where the respective trait was originally high in the plants. Although glucosinolate levels dropped in the highGS lines about 50%, these still contained higher concentrations than the lowGS line. Whereas the activity of soluble myrosinases remained highest in the highMR line, even after a decrease to almost 30% due to feeding, the levels of insoluble myrosinases converged after feeding in lowMR and highMR lines. Levels of the signalling molecule salicylic acid slightly decreased on average after feeding, whereas jasmonic acid was below the detection threshold in almost all samples. The concentration of several molecules varies strongly in plant tissue with age and can change due to induction by herbivore feeding. Therefore, if performance of an insect species is measured on plants with specific traits, the variability in these traits needs to be carefully controlled in experiments.  相似文献   

7.
Traw MB  Feeny P 《Ecology》2008,89(3):763-772
Glucosinolates, trichomes, nitrogen, and carbon are not distributed uniformly through the canopies of mustards. In this study, we asked whether glucosinolate concentrations and trichome densities in two sympatric mustards, Brassica kaber and B. nigra, are highest in tissues of greatest value to the plant. We also asked whether nitrogen or carbon content is the stronger predictor of tissue value, and what fraction of each resource is incorporated in glucosinolates. To quantify tissue values, we removed three equal-area fractions (lower, middle, and upper) from the canopies of B. kaber and B. nigra in the greenhouse, as well as whole canopies of naturally growing B. nigra in the field, at two times during growth and measured reductions in their performance relative to controls. We also measured trichome density in both experiments, as well as glucosinolate, nitrogen, and carbon concentrations for the equal-area fractions in the greenhouse. We found that upper leaves had the highest glucosinolate concentrations, trichome densities, and tissue values. Furthermore, young plants in the field had higher trichome densities and tissue values than did older plants. Collectively, these data provide strong support for optimal defense theory and are among the first such evidence for glucosinolates and for physical defenses. The positive relationship between trichome density and tissue value was strong even after we accounted for the effects of leaf expansion. While nitrogen and carbon have both received attention as currencies for trade-offs, our data suggest that nitrogen concentration is a significantly better predictor of tissue value in these two mustard species. Interestingly, <1% of the nitrogen or carbon in leaves was incorporated in glucosinolates, which may explain why glucosinolates lack a consistent response to nitrogen fertilization.  相似文献   

8.
Glucosinolates (GS) are the main secondary metabolites in brassicaceous plants that play an important role in plant defense and plant–insect communication. GS biosynthesis in plants and their accumulation may be influenced by biotic and abiotic stressors from the environment. In the present study, GS levels in broccoli plants, Brassica oleracea var. italica Plenck, grown under different water status conditions of soil—well-watered, drought and waterlogged—were determined after two aphid species, the specialist Brevicoryne brassicae (L.) and the generalist Myzus persicae (Sulzer), had fed on them for 7 days. High-performance liquid chromatography analysis revealed that GS levels were significantly induced after B. brassicae had fed on B. italica plants grown for 2 weeks under the various water status conditions. No significant differences were determined between GS induction in the three treatments. In contrast, the induction of GS after M. persicae had fed on the plants depended greatly on water stress levels. GS content in well-watered plants increased more significantly than in plants grown under drought conditions. Feeding by M. persicae did not increase GS levels when plants were grown under waterlogged conditions. The lowest plant growth were found in M. persicae-infested plants for all three water treatments, and measurements of GS showed that the induction of GS by M. persicae decreased in line with the reduction in infested plant growth. GS induction by B. brassicae did not alter remarkably following change in plant growth under water stress. Only one of the five glucosinolates detected, the aliphatic GS 4-methylsulfinylbutyl, remained unchanged after feeding of both, M. persicae and B. brassicae, on plants under water stress. Variation in GS levels was mainly observed for the induction of indolyl GS due to aphid herbivory, but changes in indol-3-ylmethyl GS were not always consistent with the induction of other indolyl GS.  相似文献   

9.
Summary. Soil organisms in direct and indirect interaction with plant roots affect aboveground herbivores, likely by inducing different plant responses. We investigated the combined effects of the root-knot nematode Meloidogyne incognita (in direct interaction with roots) and the endogeic earthworm Octolasion tyrtaeum (in indirect interaction with roots) on the performance of Brassica oleracea. Both earthworms and nematodes increased N uptake and shoot biomass of B. oleracea. Earthworm activity mobilized more soil N than litter N, and herbivory by nematodes tended to increase the microbial biomass in soil. Only the structural class of sulphur containing glucosinolates was affected by the soil organisms. Earthworms decreased glucoiberin concentrations in B. oleracea shoots. Glucoraphanin was affected by an interaction between earthworms and nematodes.  相似文献   

10.
Summary. Jasmonic acid (JA) is a wound-related hormone found in most plants that, when applied exogenously, can induce increases in levels of chemical defenses in patterns similar to those induced by mechanical damage or insect feeding. Relative to responses to insect and pathogen attack, chemical responses of herbaceous plants to mammalian herbivore attack have been little studied. In a field experiment, we compared the effects of JA treatment and naturally occurring mammalian herbivory on the expression of trypsin inhibitors, glucosinolates, peroxidase activity and growth of wild mustard (Brassica kaber). Exogenous JA significantly increased trypsin inhibitor activity and glucosinolate concentration, and moderately increased peroxidase activity in the eighth true leaves of five-week-old plants, relative to untreated controls. In contrast, levels of these chemical defenses in the eighth true leaves or in regrowth foliage of plants that had ∼80% of their leaf area removed by groundhogs (Marmota monax) did not differ from that in undamaged and untreated controls. Although exogenous JA significantly elevated levels of chemical defenses, it did not affect height of plants through the season and only slightly reduced time to first flower. Groundhog herbivory significantly reduced height and delayed or abolished flowering, but these effects were not substantial unless coupled with apical meristem removal. We hypothesize that the lack of effect of groundhog herbivory on chemical defenses may be due in part to the speed and pattern of leaf area removal by groundhogs, or physiological constraints caused by leaf area loss. Despite having no effect on chemical defense production, leaf area loss by groundhogs was more costly to growth and fitness than the effects of JA application in this study, but only substantially so if coupled with apical meristem removal. We suggest that in general, costs of defense production in plants are likely to be minimal when compared to the risk of losing large amounts of leaf area or primary meristematic tissue. Thus, if they are effective at deterring herbivory, the benefits of inducible defense production likely outweigh the costs in most cases. Received 20 December 2000; accepted 3 May 2001  相似文献   

11.
Summary. As Salicaceous plants produce new leaves for a prolonged period of time, they expose a wide range of differentially aged leaves to herbivores during the growing season. In this work, I show that young leaves of three Salicaceous species, Populus tremula L., Salix phylicifolia L. and S. pentandra L., contain more nitrogen than conspecific old leaves. In P. tremula and S. pentandra young leaves also contained more low-molecular weight secondary compounds, phenolic glucosides. Leaves of S. phylicifolia did not contain phenolic glucosides in detectable amounts. Furthermore, in P. tremula and S. pentandra young leaves contained less polymeric digestability-reducing phenolics, condensed tannins, than old leaves. In S. phylicifolia, higher concentrations of condensed tannins were found in young leaves. In laboratory feeding trials with six leaf beetle species, young leaves of the studied plants were invariably preferred in all tested herbivore × host species combinations. In particular, it is remarkable that three leaf beetle species with known different overall relationships to phenolic glucosides equally preferred more glucoside-containing young S. pentandra leaves over conspecific old ones. Four beetle species were found to prefer young leaves of S. phylicifolia despite the higher content of condensed tannins in young leaves. These results indicate that the general preference of leaf beetles for young leaves of Salicaceous plants probably does not primarily result from variable distribution of secondary compounds. Apparently, the preference for young leaves is fundamentally due to variation in leaf nutritive traits, such as nitrogen content. Received 9 February 2001.  相似文献   

12.
Summary During foraging, natural enemies of herbivores may employ volatile allelochemicals that originate from an interaction of the herbivore and its host plant. The composition of allelochemical blends emitted by herbivore-infested plants is known to be affected by both the herbivore and the plant. Our chemical data add new evidence to the recent notion that the plants are more important than the herbivore in affecting the composition of the volatile blends. Blends emitted by apple leaves infested with spider mites of 2 different species,T. urticae andP. ulmi, differed less in composition (principally quantitative differences for some compounds) than blends emitted by leaves of two apple cultivars infested by the same spider-mite species,T. urticae (many quantitative and a few qualitative differences). Comparison between three plant species — apple, cucumber and Lima bean — reveals even larger differences between volatile blends emitted upon spider-mite damage (many quantitative differences and several qualitative differences).  相似文献   

13.
Chemical defenses are thought to contribute to the invasion success and impacts of many introduced plants; however, for most of these species, little is known about these compounds and how they vary in natural environments. Plant allelochemical concentrations may be affected by a variety of abiotic and biotic factors, including soil nutrients and herbivores. Moreover, such quantitative variation is likely to play an important role in species interactions involving these invasive plants. The purpose of this study was to examine patterns of variation in iridoid glycoside concentrations of the invasive plant Linaria dalmatica (Plantaginaceae). We conducted a greenhouse experiment to investigate the effect of soil nitrogen availability on iridoid glycoside concentrations. Results from this experiment showed that plant iridoid glycoside concentrations decreased with increased nitrogen availability. Additionally, plants were collected from multiple field sites in order to characterize the influence of population, soil nitrogen availability, and herbivore attack on iridoid glycoside variation. Results from field studies indicated that plants demonstrated considerable seasonal variation, as well as variation within and among populations, with iridoid glycoside concentrations ranging from approximately 1 to 15% dry weight. The relationship between soil nitrogen and plant iridoid glycosides varied among populations, with a strong negative correlation in one population, a marginally significant negative relationship in a second population, and no relationship in the remaining two populations. Additionally, we found a negative relationship between iridoid glycoside concentrations and plant injury by an introduced biocontrol agent, the stem-mining weevil Mecinus janthinus (Cucurlionidae). These results show that plant allelochemical concentrations can vary widely in natural environments and suggest that levels of plant defense may be reduced by increased soil nitrogen availability and herbivore attack in this invasive plant species.  相似文献   

14.
Environmental and/or genetic among-site variation in plant quality may influence growth and fecundity of specialized herbivores inhabiting a particular site. Such variation is important as it generates spatial variation in selection for traits related to plant–herbivore interaction. Littoral macroalgae are known to respond plastically to environmental variation by modifying their chemistry or morphology. We studied geographic variation in phlorotannin, nitrogen, protein, and sugar (fucose, mannitol, and melibiose) concentrations of the brown alga Fucus vesiculosus at 12 sites separated by 0.5 to 40 km in the naturally fragmented Archipelago Sea in the northern Baltic Sea. By this regional variation in algal chemistry we attempted to explain among-population variation in size and fecundity of the crustacean herbivore Idotea baltica. We observed high spatial variation in all the measured chemical characteristics of F. vesiculosus, as well as in female size and the number of eggs produced by the herbivores. Spatial variation in nitrogen or protein contents of the alga did not explain the variation of herbivore traits. However, egg size positively covaried with spatial variation in the concentration of mannitol, the major storage carbohydrate of the alga. Such a positive relationship may arise if I. baltica can utilize the nutritive value of a mannitol-rich diet thereby being better able to provision the developing eggs with energy-rich metabolites. Unexpectedly, the concentration of phlorotannins, secondary metabolites having a putative role in defense against herbivory, positively covaried with the size of the herbivore. Among-population variation in host plant chemistry and covariation of that with herbivore growth and reproduction imply that herbivores respond to the local quality of their host plants, and that geographical structuring of populations has to be taken into account in studies of plant–herbivore interactions.Communicated by M. Kühl, Helsingør  相似文献   

15.
Summary. Insects feeding on Cruciferae recognize their host plants at least partially by means of specific responses to glucosinolates. However, the effects of variations in glucosinolate levels on the acceptability of plants for specialized insects are not well understood. A survey of the literature demonstrated positive, no, as well as negative correlations between plant acceptability and glucosinolate levels. The present study took advantage of the presence of transgenic Arabidopsis thaliana plants with increased glucosinolate levels. Transgenic A. thaliana contain the CYP79A1 gene from Sorghum bicolor. This gene encodes an enzyme which converts L-tyrosine into p-hydroxyphenylacetaldoxime in the biosynthesis of cyanogenic glycosides in S. bicolor. In transgenic A. thaliana plants, endogenous enzymes convert p-hydroxyphenylacetaldoxime into p-hydroxybenzylglucosinolate (sinalbin), which is not found naturally in this plant. The introduction of CYP79A1 resulted in a four-fold increase in total glucosinolate levels in transgenic A. thaliana plants. Although these changes in glucosinolate levels were rather dramatic, they did not have any effects on the acceptability of A. thaliana for the two flea beetle species, Phyllotreta nemorum and P. cruciferae. The flea beetles did not discriminate between transgenic and wildtype plants. Furthermore, they did not discriminate between leaf discs of wildtype plants where different concentrations of p-hydroxybenzylglucosinolate had been applied topically on the leaf surface. Feeding in P. nemorum was stimulated by extremely high levels of allylglucosinolate while this compound had no effect on P. cruciferae. It is concluded that the effect of glucosinolates on adapted insects depends on the chemical or physical environment in which the glucosinolates are found.  相似文献   

16.
Summary Chemicals present on the surface of cabbage (Brassica oleracea L.) leaves were extracted by dipping these leaves for 3 s in dichloromethane followed by a 3 s dip in methanol. When offered in dual choice bioassays using green paper cards as a substrate, the methanol extract stimulated oviposition activity byPieris brassicae L. (Lepidoptera: Pieridae) females. The oviposition stimulant was isolated using medium pressure liquid chromatography, reversed-phase HPLC, ion-pair HPLC and ion exchange chromatography. Using1H-NMR spectroscopy, the stimulant could be identified as glucobrassicin (3-indolyl-methyl-glucosinolate). When pure glucobrassicin was offered at a dose identical to that in the crude methanol extract, butterflies did not discriminate between these two substrates in a dual choice test. It is argued that a high sensitivity for indole glucosinolates as host recognition factors may confer an adaptive value for these specialist crucifer feeders. The nutritional significance of their precursor tryptophan and the non-volatile nature of the aglycones formed upon enzymic hydrolysis in damaged tissues are proposed as properties of indole glucosinolates that contribute to this possible adaptive advantage.  相似文献   

17.
Summary. The turnip sawfly Athalia rosae sequesters glucosinolates from its cruciferous host plants in the larval stage. Investigation of the chemosensory and behavioural responses of adult A. rosae to glucosinolates and their volatile hydrolysis products, isothiocyanates, revealed that females detect glucosinolates by contact chemoreception and isothiocyanates by antennal olfaction. In electroantennogram recordings, four isothiocyanates (allyl [2-propenyl] isothiocyanate, benzyl isothiocyanate, butyl isothiocyanate and iberverin [3-methylthiopropyl isothiocyanate]) were active at all doses presented, including the lowest (0.1 μg), whilst the threshold for detection of three others, iberin [3-methylsulphinylpropyl isothiocyanate], methyl isothiocyanate, and sulforaphane [4-methylsulphinylbutyl isothiocyanate], was higher, at between 1 and 10 μg (source concentration of volatiles). Allyl isothiocyanate attracted experienced females in a four-chambered olfactometer, whilst na?ve females showed no response. Allyl isothiocyanate also attracted mature females to baited yellow water traps in field trials, although immature females were repelled at high isothiocyanate concentrations. In laboratory behavioural bioassays the glucosinolates sinigrin (allyl [2-propenyl] glucosinolate) and sinalbin (p-hydroxybenzyl glucosinolate), stimulated ovipositor probing in mature female A. rosae to an extent comparable to hot-water extracts of their host plants. These responses show that glucosinolates and isothiocyanates play an important role in host finding and host recognition in A. rosae.  相似文献   

18.
Glucosinolates (GSs) are part of a two-component defence system, characteristic for the Brassicales, including the model species Arabidopsis thaliana (L.) Heynh. The defence activity of GSs is associated with different side chain structures. The AOP genes are central in side-chain modification. AOP2 mediates formation of alkenyl GS from a methylsulfinyl precursor, whereas AOP3 catalyzes production of hydroxy-alkyl GSs from the same precursor. Although several studies have assessed the role of GSs in plant defence, the function of specific aliphatic GSs in plant defence is still not clarified. Structural different GSs may influence insect herbivores differentially. We created a set of plant lines derived of a cross between two A. thaliana accessions, Gie-0 × Sap-0, which dominantly accumulate either 3-methylsulfinylpropyl GS or 3-hydroxypropyl GS. The generalist Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) and the crucifer-specialist Pieris brassicae (L.) (Lepidoptera: Pieridae) were used as model insects, to study effects of individual aliphatic GSs on lepidopteran herbivores with a different feeding specialization. However, the experiments revealed that weight gain of S. exigua and P. brassicae third and fourth-larval instars was similar on both chemotypes. But leaf consumption of the generalist was higher on 3-methylsulfinylpropyl-producing lines with low GS levels (23.2 μmol g−1) than on 3-hydroxypropyl-producing lines that contained a more than twofold higher amount of GSs (60 μmol g−1). In contrast, no differential effects of non-hydroxylated and hydroxylated GSs were found on the specialist P. brassicae. Our study indicates that there is no simple relationship between GS content and insect responses.  相似文献   

19.
Lau JA  Strengbom J  Stone LR  Reich PB  Tiffin P 《Ecology》2008,89(1):226-236
Resource abundance and plant diversity are two predominant factors hypothesized to influence the amount of damage plants receive from natural enemies. Many impacts of these environmental variables on plant damage are likely indirect and result because both resource availability and diversity can influence plant traits associated with attractiveness to herbivores or susceptibility to pathogens. We used a long-term, manipulative field experiment to investigate how carbon dioxide (CO2) enrichment, nitrogen (N) fertilization, and plant community diversity affect plant traits and the amount of herbivore and pathogen damage experienced by the common prairie legume Lespedeza capitata. We detected little evidence that CO2 or N affected plant traits; however, plants growing in high-diversity treatments (polycultures) were taller, were less pubescent, and produced thinner leaves (higher specific leaf area). Interestingly, we also detected little evidence that CO2 or N affect damage. Plants growing in polycultures compared to monocultures, however, experienced a fivefold increase in damage from generalist herbivores, 64% less damage from specialist herbivores, and 91% less damage from pathogens. Moreover, within diversity treatments, damage by generalist herbivores was negatively correlated with pubescence and often was positively correlated with plant height, while damage by specialist herbivores typically was positively correlated with pubescence and negatively associated with height. These patterns are consistent with changes in plant traits driving differences in herbivory between diversity treatments. In contrast, changes in measured plant traits did not explain the difference in disease incidence between monocultures and polycultures. In summary, our data provide little evidence that CO2 or N supply alter damage from natural enemies. By contrast, plants grown in monocultures experienced greater specialist herbivore and pathogen damage but less generalist herbivore damage than plants grown in diverse communities. Part of this diversity effect was mediated by changes in plant traits, many of which likely are plastic responses to diversity treatments, but some of which may be the result of evolutionary changes in response to these long-term experimental manipulations.  相似文献   

20.
Summary. We examined the role of plant phenology in the evolution of anti-herbivore defence in symbiotic ant-plant protection mutualisms. Phenology of the host-plant affects traits of its herbivores, including size, growth rate, development time, and gregariousness. Traits of herbivores in turn determine what traits ants must have to protect their host. Diversity in plant phenological traits could thus help explain the great ecological diversity of coevolved ant-plant mutualisms. We explored the postulated causal chain linking phenology of the plant, herbivore adaptations to phenology, and ant adaptations for protection, by comparing two myrmecophytes presenting strong contrasts in phenology. In Leonardoxa africana, a slow-growing understory tree, growth at each twig terminal is intermittent, the rapid flushing of a single leaf-bearing internode being followed by a pause of several months. In contrast, axes of Barteria nigritana, a tree of open areas, grow continuously. Analysis of the phenology (kinetics of expansion) and chemistry of leaf development (contents of chlorophylls, lignin, and nitrogen during leaf growth) showed that these two species exhibit strongly contrasting strategies. Leonardoxa exhibited a delayed greening strategy, with rapid expansion of leaves during a short period, followed by synthesis of chlorophylls and lignins only after final leaf size has been reached. In contrast, leaves of Barteria expanded more slowly, with chlorophylls and lignin gradually synthesised throughout development. Differences in the phenology of leaf development are reflected in differences in the duration of larval development, and thereby in size, of the principal lepidopteran herbivores observed on these two plants. This difference may in turn have led to different requirements for effective defence by ants. The strategy of phenological defence may thus affect the evolution of biotic defence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号