首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Li Y  Xie Y  Peng S  Lu G  Li S 《Chemosphere》2006,63(8):1312-1318
In the presence of chloroacetic acids, the photocatalytic hydrogen evolution and decomposition of the pollutants over Pt/TiO2 have been investigated. The Pt/TiO2 was prepared by photodeposition. Monochloroacetic acid and dichloroacetic acid enhance photocatalytic hydrogen generation, whereas trichloroacetic acid does not. The photocatalytic oxidation of monochloroacetic acid and dichloroacetic acid mainly produces CO2, HCl and formaldehyde, whereas the photocatalytic oxidation of trichloroacetic acid mainly produces CO2 and HCl. The effect of the concentration of monochloroacetic acid and dichloroacetic acid on the hydrogen generation rate is consistent with a Langmuir-Hinshelwood kinetic model. A possible reaction mechanism was discussed.  相似文献   

2.
The present work mainly deals with photocatalytic degradation of a herbicide, erioglaucine, in water in the presence of TiO2 nanoparticles (Degussa P-25) under ultraviolet (UV) light illumination (30 W). The degradation rate of erioglaucine was not so high when the photolysis was carried out in the absence of TiO2 and it was negligible in the absence of UV light. We have studied the influence of the basic photocatalytic parameters such as pH of the solution, amount of TiO2, irradiation time and initial concentration of erioglaucine on the photodegradation efficiency of erioglaucine. A kinetic model is applied for the photocatalytic oxidation by the UV/TiO2 system. Experimental results indicated that the photocatalytic degradation process could be explained in terms of the Langmuir-Hinshelwood kinetic model. The values of the adsorption equilibrium constant, K, and the second order kinetic rate constant, k, were 0.116 ppm-1 and 0.984 ppm min-1, respectively. In this work, we also compared the reactivity between the commercial TiO2 Degussa P-25 and a rutile TiO2. The photocatalytic activities of both photocatalysts were tested using the herbicide solution. We have noticed that photodegradation efficiency was different between both of them. The higher photoactivity of Degussa P-25 compared to that of rutile TiO2 for the photodegradation of erioglaucine may be due to higher hydroxyl content, higher surface area, nano-size and crystallinity of the Degussa P-25. Our results also showed that the UV/TiO2 process with Degussa P-25 as photocatalyst was appropriate as the effective treatment method for removal of erioglaucine from a real wastewater. The electrical energy consumption per order of magnitude for photocatalytic degradation of erioglaucine was lower with Degussa P-25 than in the presence of rutile TiO2.  相似文献   

3.
Yang JK  Lee SM 《Chemosphere》2006,63(10):1677-1684
The removal efficiencies of Cr(VI) and HA, using a TiO(2)-mediated photocatalytic process, were investigated with variations in the pH, TiO(2) dosage and Cr(VI)/HA ratio. During the photocatalytic reaction, the total removal of Cr(VI) occurred through adsorption onto TiO(2), as well as its reduction to Cr(III). However, oxidation and adsorption were identified as important removal processes for the treatment of HA. Due to the anionic type adsorption onto TiO(2) and its acid-catalyzed photocatalytic reduction, the removal of Cr(VI) decreased with increasing pH, while that of HA increased with increasing pH. The TiO(2) dosage was also an important parameter for the removal of Cr(VI). As the TiO(2) dosage was increased to 2.5 g l(-1), the removal of Cr(VI) was continuously enhanced, but decreased at dosages above 3 g l(-1) due to the increased blockage of the incident UV light used for the photocatalytic reaction. The removal of Cr(VI) was greatly enhanced when the system contained both HA and Cr(VI) compared to Cr(VI) alone. Also, the removal of HA was greatly enhanced when the system contained both HA and Cr(VI) compared to HA alone. The removal of Cr(VI) was continuously enhanced as the HA concentration gradually increased; however, no further increase was observed above 20 mg l(-1) HA due to the increased absorption of the UV light. This result supports that the photocatalytic reaction, with illuminated TiO(2), could be applied to more effectively treat wastewater containing both Cr(VI) and HA than that containing a single species only.  相似文献   

4.
Bioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H2 and acetate on the rate and extent of reductive dehalogenation of PCE. PCE dehalogenation with H2 alone was complete to ethene, but with acetate alone it generally proceeded only about half as fast and only to cis-1,2-dichloroethene (cDCE). Additionally, acetate was not used as an electron donor in the presence of H2. These findings suggest the fermentable electron donor requirement for PCE dehalogenation to ethene can be reduced up to 50% by separating PCE dehalogenation into two stages, the first of which uses acetate for the conversion of PCE to cDCE, and the second uses H2 for the conversion of cDCE to ethene. This can be implemented with a recycle system in which the fermentable substrate is added down-gradient, where the hydrogen being produced by fermentation effects cDCE conversion into ethene. The acetate produced is recycled up-gradient to achieve PCE conversion into cDCE. With the lower electron donor usage required, potential problems of aquifer clogging, excess methane production, and high groundwater chemical oxygen demand (COD) can be greatly reduced.  相似文献   

5.
Fan HJ  Yang HS  Tsai YS  Furuya E 《Chemosphere》2008,71(5):886-893
Method for simultaneous determination of individual component's adsorption equilibrium parameters for binary and ternary phenolic compounds mixtures was investigated in this research. The Freundlich equilibrium parameters of binary and ternary component of phenolic compounds were determined from one fixed composition of phenolic wastewater. The simulation results obtained from both binary and ternary systems on the basis of ideal adsorbed solution theory were consistent with single component equilibrium data.  相似文献   

6.
Ling CM  Mohamed AR  Bhatia S 《Chemosphere》2004,57(7):547-554
TiO2 thin film photocatalyst was successfully synthesized and immobilized on glass reactor tube using sol-gel method. The synthesized TiO2 coating was transparent, which enabled the penetration of ultra-violet (UV) light to the catalyst surface. Two photocatalytic reactors with different operating modes were tested: (a) tubular photocatalytic reactor with re-circulation mode and (b) batch photocatalytic reactor. A new proposed TiO2 synthesized film formulation of 1 titanium isopropoxide: 8 isopropanol: 3 acetyl acetone: 1.1 H2O: 0.05 acetic acid (in molar ratio) gave excellent photocatalytic activity for degradation of phenol and methylene blue dye present in the water. The half-life time, t1/2 of photocatalytic degradation of phenol was 56 min at the initial phenol concentration of 1000 microM in the batch reactor. In the tubular photocatalytic reactor, 5 re-circulation passes with residence time of 2.2 min (single pass) degraded 50% of 40-microM methylene blue dye. Initial phenol concentration, presence of hydrogen peroxide, presence of air bubbling and stirring speed as the process variables were studied in the batch reactor. Initial methylene blue concentration, pH value, light intensity and reaction temperature were studied as the process variables in the tubular reactor. The synthesized TiO2 thin film was characterized using SEM, XRD and EDX analysis. A comparative performance between the synthesized TiO2 thin film and commercial TiO2 particles (99% anatase) was evaluated under the same experimental conditions. The TiO2 film was equally active as the TiO2 powder catalyst.  相似文献   

7.
Zhang M  An T  Fu J  Sheng G  Wang X  Hu X  Ding X 《Chemosphere》2006,64(3):423-431
An adsorptive silica-supported titania photocatalyst TiO(2)/SiO(2) was prepared by using nanosized titania (anatase) immobilized on silica gel by the sol-gel technique with the titanium tetra isopropoxide as the main raw material and acetic acid as the acid catalyst. Meanwhile the structure and properties of the TiO(2)/SiO(2) photocatalyst were studied by means of many modern analysis techniques such as TEM, XRD, and BET. Gas-solid heterogeneous photocatalytic decomposition of four carbonyl compounds mixture at low concentration levels over ultraviolet irradiated TiO(2)/SiO(2) photocatalyst were carried out with high degradation efficiencies in a coaxial triple-cylinder-type fluidized bed photocatalytic reactor, which provided efficient continuous contact of ultraviolet photons, silica-supported titania photocatalyst, and gaseous reactants. Experimental results showed that the photocatalyst had a high adsorption performance and a good photocatalytic activity for four carbonyl compounds mixture. Some factors influencing the photocatalytic decomposition of the mixed carbonyl compounds, i.e. the gas flowrate, relative humidity, concentration of oxygen, and illumination time, were discussed in detail. It is found that the photocatalytic reaction rate of four carbonyl compounds decreased in this order: propionaldehyde, acetone, acetaldehyde and formaldehyde.  相似文献   

8.
采用溶胶-凝胶法,制备了多壁碳纳米管(MWCNTs)负载的双组分复合半导体光催化剂CdS-TiO2/MWCNTs。通过透射电镜(TEM)、比表面分析(BET)、X射线衍射(XRD)和紫外-可见吸收光谱(UV-vis)等分析方法对光催化剂进行了结构表征,并考察了CdS-TiO2/MWCNTs对甲苯降解的光催化性能。结果表明:纳米活性粒子CdS-TiO2均匀负载于MWCNTs上,比表面积、光吸收阈值和强度增大,活性粒子间以及活性粒子与载体之间具有协同作用,有利于光催化性能的提高,CdS-TiO2/MWCNTs在主波长为254 nm紫外光照射下对甲苯的降解效果较好,去除率可达55.3%。  相似文献   

9.
以亚甲基蓝(MB)作为表面修饰剂,采用简单的化学吸附法制备亚甲基蓝表面修饰的纳米TiO2光催化剂(TiO2-MB)。经表面修饰后,TiO2-MB光催化剂波长响应范围红移至可见光区575 nm处。探讨了光催化剂量、光照时间和溶液pH值对TiO2-MB光催化降解造纸废水的影响;研究了纳米TiO2-MB对造纸废水的暗吸附规律和光降解性能。结果表明:纳米TiO2-MB对造纸废水的吸附规律都较好地符合Langmuir和Freundlich吸附等温模型,属于吸热反应;光催化降解动力学符合Langmuir-Hinshelwood动力学模型。在160 W高压汞灯光照80 min,3.0 g/L纳米TiO2-MB光催化降解pH=2.0的造纸废水(COD:2 069.8 mg/L),COD去除率可达94.7%,处理效果远高于避光条件下。光催化剂经8次使用仍具有较高的催化活性。  相似文献   

10.
V/Ce共掺杂TiO2光催化降解甲醛的实验研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了不掺杂、V掺杂、Ce掺杂、V/Ce共掺杂纳米TiO2光催化剂,并将其分别负载于瓷砖上,利用X射线衍射分析(XRD)和扫描电镜分析(SEM)技术对薄膜样品的结构和形貌进行了表征。通过对甲醛的降解实验评价光催化剂的光催化活性。实验结果表明,光催化剂的负载量、共掺杂离子的掺杂量、掺杂配比、煅烧温度影响纳米TiO2的光催化活性。V/Ce共掺杂TiO2光催化剂产生了协同效应,其光催化活性优于纯TiO2和单掺杂TiO2样品。  相似文献   

11.
TiO2胶体光催化降解罗丹明B染料   总被引:2,自引:0,他引:2  
TiO2胶体从钛氧有机物水解制备,表征的方法有:X射线衍射光谱(XRD)、激光散射粒径分布、傅立叶变换红外光谱(FT-IR)、X射线光电子谱(XPS)和透射电子显微镜(TEM)。利用罗丹明B染料分子作为探针分子研究TiO2胶体的光催化活性,分析了pH、催化剂用量、外加氧化剂(H2O2)用量及罗丹明B初始浓度对TiO2胶体光催化活性的影响。结果表明:制备的TiO2胶体粒子平均粒径为13.8 nm(激光散法测定),光催化降解罗丹明B染料的反应属于一级动力学反应,可以用Langmuir-Hinshewood模型加以描述,反应速率常数k1为0.08413 mg/(L.min),平衡吸附常数k2为1.5305 L/mg;在pH为6,TiO2胶体用量为0.04%,H2O2(含量30%)用量为0.2%(V/V),光照度为69.6μW/cm2时,5 h后罗丹明B染料的降解率可达到99%以上;相似的条件,0.2%的P25 TiO2粉体光催化处理染料水时,罗丹明B的降解率为90%。纳米TiO2胶体不仅可以提高罗丹明B的光催化降解率,还具有用量少,可有效降低水处理成本的特点。  相似文献   

12.
纳米TiO_2光催化降解硝基酚类污染物动力学及机理的研究   总被引:2,自引:0,他引:2  
采用纳米TiO2(P25)粉末作为催化剂,研究了几种典型硝基取代酚在TiO2/UV悬浮体系下的光催化降解.研究表明,这些化合物的降解过程符合Langmuir-Hinshelwood动力学方程,其表观速率常数(kapp)的大小为:2-氨基-4硝基酚(2-A,4-NP)>4-硝基酚(4-NP)>2-硝基酚(2-NP)>3-硝基酚(3-NP)>2,4-二硝基酚(2,4-DNP)>2,4,6-三硝基酚(2,4,6-TNP),而吸附平衡常数(KL)却与Kapp成反比.苯环上取代基的种类和数日对有机物光催化降解活性有很大的影响,硝基的加入降低了光催化活性,并且kapp与Hammett常数(σ)具有较好的线性关系.  相似文献   

13.
TiO2胶体从钛氧有机物水解制备,表征的方法有:X射线衍射光谱(XRD)、激光散射粒径分布、傅立叶变换红外光谱(FT-IR)、X射线光电子谱(XPS)和透射电子显微镜(TEM)。利用罗丹明B染料分子作为探针分子研究TiO2胶体的光催化活性,分析了pH、催化剂用量、外加氧化剂(H2O2)用量及罗丹明B初始浓度对TiO2胶体光催化活性的影响。结果表明:制备的TiO2胶体粒子平均粒径为13.8 nm(激光散法测定),光催化降解罗丹明B染料的反应属于一级动力学反应,可以用Langmuir-Hinshewood模型加以描述,反应速率常数k1为0.08413 mg/(L.min),平衡吸附常数k2为1.5305 L/mg;在pH为6,TiO2胶体用量为0.04%,H2O2(含量30%)用量为0.2%(V/V),光照度为69.6μW/cm2时,5 h后罗丹明B染料的降解率可达到99%以上;相似的条件,0.2%的P25 TiO2粉体光催化处理染料水时,罗丹明B的降解率为90%。纳米TiO2胶体不仅可以提高罗丹明B的光催化降解率,还具有用量少,可有效降低水处理成本的特点。  相似文献   

14.
The objective of this study was to examine the effects of adsorbability and number of sulfonate group on solar photocatalytic degradation of mono azo methyl orange (MO) and diazo Reactive Green 19 (RG19) in single and binary dye solutions. The adsorption capacity of MO and RG19 onto the TiO2 was 16.9 and 26.8 mg/g, respectively, in single dye solution, and reduced to 5.0 and 23.1 mg/g, respectively, in the binary dye solution. The data obtained for photocatalytic degradation of MO and RG19 in single and binary dye solution were well fitted with the Langmuir–Hinshelwood kinetic model. The pseudo-first-order rate constants of diazo RG19 were significant higher than the mono azo MO either in single or binary dye solutions. The higher number of sulfonate group in RG19 contributed to better adsorption capacity onto the surface of TiO2 than MO indicating greater photocatalytic degradation rate.  相似文献   

15.
Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts   总被引:7,自引:0,他引:7  
Liu Y  Chen X  Li J  Burda C 《Chemosphere》2005,61(1):11-18
This study examined the photocatalytic degradation of three azo dyes, acid orange 7 (AO7), procion red MX-5B (MX-5B) and reactive black 5 (RB5) using a new type of nitrogen-doped TiO2 nanocrystals. These newly developed doped titania nanocatalysts demonstrated high reactivity under visible light (lambda>390 nm), allowing more efficient usage of solar light. The doped titania were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Experiments were conducted to compare the photocatalytic activities of nitrogen-doped TiO2 nanocatalysts and commercially available Degussa P25 powder using both UV illumination and solar light. It is shown that nitrogen-doped TiO2 after calcination had the highest photocatalytic activity among all three catalysts tested, with 95% of AO7 decolorized in 1 h under UV illumination. The doped TiO2 also exhibited substantial photocatalytic activity under direct sunlight irradiation, with 70% of the dye color removed in 1h and complete decolorization within 3 h. Degussa P25 did not cause detectable dye decolorization under identical experimental conditions using solar light. The decrease of total organic carbon (TOC) and evolution of inorganic sulfate (SO4(2-)) ions in dye solutions were measured to monitor the dye mineralization process.  相似文献   

16.
Monteagudo JM  Durán A 《Chemosphere》2006,65(7):1242-1248
The decoloration and mineralization of the azo dye orange II under conditions of artificial ultraviolet light and solar energy concentrated by a Fresnel lens in the presence of hydrogen peroxide and TiO(2)-P25 was studied. A comparative study to demonstrate the viability of this solar installation was done to establish if the concentration reached in the focus of the Fresnel lens was enough to improve the photocatalytic degradation reaction. The degradation efficiency was higher when the photolysis was carried out under concentrated solar energy irradiation as compared to UV light source in the presence of an electron acceptor such us H(2)O(2) and the catalyst TiO(2). The effect of hydrogen peroxide, pH and catalyst concentration was also determined. The increase of H(2)O(2) concentration until a critical value (14.7 mM) increased both the solar and artificial UV oxidation reaction rate by generating hydroxyl radicals and inhibiting the (e(-)/h(+)) pair recombination, but the excess of hydrogen peroxide decreases the oxidation rate acting as a radical or hole scavenger and reacting with TiO(2) to form peroxo-compounds, contributing to the inhibition of the reaction. The use of the response surface methodology allowed to fit the optimal values of the parameters pH and catalyst concentration leading to the total solar degradation of orange II. The optimal pH range was 4.5-5.5 close to the zero point charge of TiO(2) depending on surface charge of catalyst and dye ionization state. Dosage of catalyst higher than 1.1 gl(-1) decreases the degradation efficiency due to a decrease of light penetration.  相似文献   

17.
Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2   总被引:9,自引:0,他引:9  
Liu GG  Zhang XZ  Xu YJ  Niu XS  Zheng LQ  Ding XJ 《Chemosphere》2004,55(9):1287-1291
The photocatalytic oxidation of the organic pollutants with the TiO2 as photocatalyst has been widely studied in the world, and many achievements have been got. The degradation of pollutants is highly related with the photocatalytic activity of TiO2. It is demonstrated that doping ions or oxides to TiO2 is one way to enhance the photocatalytic activity of TiO2. In this paper, the ZnFe2O4-doped TiO2 nanoparticles were prepared from butyl titanate by a sol-gel method and characterized by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that when TiO2 was doped with ZnFe2O4, its particle size will decrease and its crystal structure will partly transform from anatase to rutile. The photocatalytic activity of the elaborated powders was studied following the degradation of Rhodamine B. The results showed that doping ZnFe2O4 to TiO2 will enhance the photocatalytic activity of TiO2 and that ZnFe2O4-doped TiO2 in the coexistence of anatase and rutile has higher efficiency for the degradation of Rhodamine B than that in the anatase phase alone. Also the different role of O2 in the direct photolysis and photocatalysis of Rhodamine B was discussed.  相似文献   

18.
Wu CH  Kuo CY  Lo SL  Lin CF 《Chemosphere》2002,47(3):283-292
This study examined the interactions of MoO4(2-) + SO4(2-), MoO4(2-) + SeO4(2-), and MoO4(2-) + SeO3(2-) systems on gamma-Al2O3 to better understand the competitive adsorption of these anions in the natural environment. The Freundlich isotherms of anionic adsorption onto gamma-Al2O3 in single and binary solutes were also investigated to estimate the competition between these anions. Experimental results indicate that a higher concentration of competitive solute yields a higher efficiency of the competitive solute's prevention of MoO4(2-) adsorption. The most significant result was found in the MoO4(2-) + SeO3(2-) system. The Freundlich isotherm constant (n) increases with the competitive solute concentration. The suitability of a Freundlich-type isotherm, the Sheindorf-Rebuhn-Sheintuch (SRS) equation, and the modified SRS equation in representing the competitive adsorption of MoO4(2-), SO4(2-), SeO4(2-), and SeO3(2-) on gamma-Al2O3 surface, was also examined. Each set of isotherm data was found to conform to linear SRS expressions, allowing competition coefficients to be derived on a concentration basis for each binary-solute system. The competition coefficient aij and relative affinity coefficients alphaij can be seen as a way to quantify competitive interactions. The proposed SRS and modified SRS equations are simple mathematical expressions accounting for competitive interactions of anions present in a mixture for the range of concentrations over which each individual component exhibits Freundlich behavior.  相似文献   

19.
The adsorption of three heavy metal ions by pine bark was studied. The study was divided into two parts; single component adsorption of the metals Cu2+, Cd2+ and Ni2+ and bisolute adsorption of the three binary systems Cu2+-Cd2+, Cu2+-Ni2+ and Cd2+-Ni2+. Extended Langmuir model, extended Freundlich model. Sips model and ideal adsorption solution theory (IAST) models were used to predict the equilibrium uptake for Cu2+, Cd2+ and Ni2+ in the binary diluted solutions using the single adsorption constants. The experimental data of single isotherm adsorption process were found to follow Langmuir isotherm model with less accuracy than Freundlich and Sips models. Whereas, the predictions of bisolute adsorption isotherms of the mentioned three systems, Cu2+-Cd2+, Cu2+-Ni2+ and Cd2+-Ni2+, showed good agreement with experimental data when using Extended-Langmuir, Extended-Freundlich and IAST. However, the only good fit of the Sips model was with the Cu2+-Cd2+ system.  相似文献   

20.
The present work deals with photocatalytic degradation of an organophosphorus pesticide, phosalone, in water in the presence of TiO2 particles under UV light illumination (1000 W). The influence of the basic photocatalytic parameters such as pH of the solution, amount of TiO2, irradiation time, stirring rate, and distance from UV source, on the photodegradation efficiency of phosalone was investigated. The degradation rate of phosalone was not high when the photolysis was carried out in the absence of TiO2 and it was negligible in the absence of UV light. The half-life (DT50) of a 20 ppm aqueous solution of phosalone was 15 min in optimized conditions. The plot of lnC (phosalone) vs. time was linear, suggesting first order reaction (K=0.0532 min(-1)). The half-life time of photomineralization in the concentration range of 7.5-20 ppm was 13.02 min. The efficiency of the method was also determined by measuring the reduction of Chemical Oxygen Demand (COD). During the mineralization under optimized conditions, COD decreased by more than 45% at irradiation time of 15 min. The photodegradation of phosalone was enhanced by addition of proper amount of hydrogen peroxide (150 ppm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号