首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determination of the chemical compositions of atmospheric single particles in the Yellow Sea region is critical for evaluating the environmental impact caused by air pollutants emitted from mainland China and the Korean peninsula. After ambient aerosol particles were collected by the Dekati PM10 cascade impactor on July 17–23, 2007 at Tokchok Island (approximately 50 km west of the Korean coast nearby Seoul), Korea, overall 2000 particles (on stage 2 and 3 with cut-off diameters of 2.5–10 μm and 1.0–2.5 μm, respectively) in 10 samples were determined by using low-Z particle electron probe X-ray microanalysis. X-ray spectral and secondary electron image (SEI) data showed that soil-derived and sea-salt particles which had reacted or were mixed with SO2 and NOx (or their acidic products) outnumbered the primary and “genuine” ones (59.2% vs. 19.2% in the stage 2 fraction and 41.3% vs. 9.9% in the stage 3 fraction). Moreover, particles containing nitrate in the secondary soil-derived species greatly outnumbered those containing sulfate. Organic particles, mainly consisting of marine biogenic species, were more abundant in the stage 2 fraction than in the stage 3 fraction (11.6% vs. 5.1%). Their relative abundance was greater than the sum of carbon-rich, K-containing, Fe-containing, and fly ash particles, which exhibited low frequencies in all the samples. In addition, many droplets rich in C, N, O, and S were observed. They tended to be small, exhibiting a dark round shape on SEI, and generally included 8–20 at.% C, 0–12 at.% N, 60–80 at.% O, and 4–10 at.% S (sometimes with <3 at.% Mg and Na). They were attributed to be a mixture of carbonaceous matter, H2SO4, and NH4HSO4/(NH4)2SO4, mostly from the reaction of atmospheric SO2 with NH3 under high relative humidity. The analysis of the relationship between the aerosol particle compositions and 72-h backward air-mass trajectories suggests that ambient aerosols at Tokchok Island are strongly affected not only by seawater from the Yellow Sea but also by anthropogenic pollutants emitted from China and the Seoul–Incheon metropolis, resulting in the dominance of complex secondary aerosol particles.  相似文献   

2.
ABSTRACT

To investigate the chemical characteristics of fine particles in the Sihwa area, Korea, atmospheric aerosol samples were collected using a dichotomous PM10 sampler and two URG PM2.5 cyclone samplers during five intensive sampling periods between February 1998 and February 1999. The Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES)/ICP-Mass Spectrometry (MS), ion chromatograph (IC), and thermal manganese dioxide oxidation (TMO) methods were used to analyze the trace elements, ionic species, and carbonaceous species, respectively. Backward trajectory analysis, factor analysis, and a chemical mass balance (CMB) model were used to estimate quantitatively source contributions to PM2 5 particles collected in the Sihwa area.

The results of PM2.5 source apportionment using the CMB7 receptor model showed that (NH4)2SO4 was, on average, the major contributor to PM2.5 particles, followed by nontraffic organic carbon (OC) emission, NH4NO3, agricultural waste burning, motor vehicle emission, road dust, waste incineration, marine aerosol, and others. Here, the nontraffic OC sources include primary anthropogenic OC emitted from the industrial complex zone, secondary OC, and organic species from distant sources. The source impact of waste incineration emission became significant when the dominant wind directions were from southwest and west sectors during the sampling periods. It was found that PM2.5 particles in the Sihwa area were influenced mainly by both anthropogenic local sources and long-range transport and transformation of air pollutants.  相似文献   

3.
PM2.5 aerosols were sampled and atmospheric 222Rn (radon) was measured, at Hong Kong, China, over 3 years 2001–2003. The aerosol samples were analysed using accelerator-based Ion Beam Analysis (IBA) techniques to provide quantitative information on 21 of their major and minor elemental contributions. The radon concentration on aerosol sampling days was then used to classify the degree of land contact (high or low) experienced by air masses en route to the receptor site. It was found that elements known to originate from anthropogenic sources (e.g. Zn, K, Br, Pb and Black Carbon) were positively correlated with observed radon concentration. An eight-factor Positive Matrix Factorisation (PMF) analysis was performed on the data set, which resulted in elemental profiles (“fingerprints”) for eight potential sources and we identified source factors that were correlated with radon. The Potential Source Contribution Function technique was then used to identify the geographic regions most likely to have significantly contributed to the aerosol samples collected at the receptor site.  相似文献   

4.
An Aerosol and Oceanographic Science Expedition (AEROSE) on the NOAA Ship Ronald H. Brown collected PM2.5 particles from a Saharan dust storm in March 2004. High levels of PM2.5 (120 μg m?3) were measured during this Saharan storm over the Atlantic Ocean. The particles were characterized for trace element content, with Al and Fe the most abundant metals. These metals were detected in high concentrations during the Saharan event and exhibited good correlations with PM2.5, suggesting its soil origin. Other elements (Pb, Ni, Cd) did not correlate with Al and Fe, indicating their anthropogenic origin. Enrichment factor calculation conducted on these trace elements support our findings. Trace element analyses performed on particulate matter from a reference site on land in Puerto Rico (Fajardo), demonstrated similar results to those obtained in the AEROSE expedition, where high concentrations of PM2.5 and Fe were present concomitantly with Saharan events at this station.  相似文献   

5.
Little is known about the level and content of exposure to fine particles (PM2.5) among persons who attend fireworks displays and those who live nearby. An evaluation of the levels of PM2.5 and their elemental content was carried out during the nine launches of the 2007 Montréal International Fireworks Competition. For each event, a prediction of the location of the firework plume was obtained from the Canadian Meteorological Centre (CMC) of the Meteorological Service of Canada. PM2.5 was measured continuously with a photometer (Sidepak?, TSI) within the predicted plume location (“predicted sites”), and integrated samples were collected using portable personal samplers. An additional sampler was located on a nearby roof (“fixed site”). The elemental composition of the collected PM2.5 samples from the “predicted sites” was determined using both a non-destructive energy dispersive ED-XRF method and an ICP-MS method with a near-total microwave-assisted acid digestion. The elemental composition of the “fixed site” samples was determined by the ICP-MS with the near-total digestion method. The highest PM2.5 levels reached nearly 10 000 μg m?3, roughly 1000 times background levels. Elements such as K, Cl, Al, Mg and Ti were markedly higher in plume-exposed filters. This study shows that 1) persons in the plume and in close proximity to the launch site may be exposed to extremely high levels of PM2.5 for the duration of the display and, 2) that the plume contains specific elements for which little is known of their acute cardio-respiratory toxicity.  相似文献   

6.
An integrated approach to identify the origin of PM10 exceedances   总被引:1,自引:1,他引:0  

Purpose

This study was aimed to the development of an integrated approach for the characterization of particulate matter (PM) pollution events in the South of Italy.

Methods

PM10 and PM2.5 daily samples were collected from June to November 2008 at an urban background site located in Bari (Puglia Region, South of Italy). Meteorological data, particle size distributions and atmospheric dispersion conditions were also monitored in order to provide information concerning the different features of PM sources.

Results

The collected data allowed suggesting four indicators to characterize different PM10 exceedances. PM2.5/PM10 ratio, natural radioactivity, aerosol maps and back-trajectory analysis and particle distributions were considered in order to evaluate the contribution of local anthropogenic sources and to determine the different origins of intrusive air mass coming from long-range transport, such as African dust outbreaks and aerosol particles from Central and Eastern Europe. The obtained results were confirmed by applying principal component analysis to the number particle concentration dataset and by the chemical characterization of the samples (PM10 and PM2.5).

Conclusions

The integrated approach for PM study suggested in this paper can be useful to support the air quality managers for the development of cost-effective control strategies and the application of more suitable risk management approaches.  相似文献   

7.
In order to characterize atmospheric aerosol in the São Paulo Metropolitan Area, aerosols were sampled during the winter months of August 1999 and August 2000. A micro-orifice uniform deposit impactor (MOUDI) was used. Samples were submitted to gravimetry, as well as to proton-induced X-ray emission (PIXE), carbon (black and organic) and ion-chromatography analysis. These analyses supplied information about mass concentrations and physicochemical properties of the particles. Due to the higher humidity, which can increase soluble particles diameters, and reduced atmospheric stagnation seen in 2000, average PM10 concentrations were higher (105 μg m−3) in the winter of 1999 than in the winter of 2000 (60 μg m−3). The PIXE analysis revealed metals and metal compounds, soil-derived elements, Si-rich particles, sulfates, carbonates, chlorides and other anthropogenic air-borne particles, supposing molecules in their usual composition. Mass balance for PM2.5 revealed significant participation of organic and black carbon, probably resulting from diesel burning by the heavy-duty fleet.  相似文献   

8.
Aerosol samples in PM10–2.0 and PM2.0 size fractions were collected on the platform of a metropolitan underground railway station in central Budapest. Individual aerosol particles were studied using atomic force microscopy, scanning electron microscopy and transmission electron microscopy with energy-dispersive X-ray spectrometry and electron diffraction. The bulk aerosol samples were investigated by 57Fe Mössbauer spectroscopy, and they were subjected to chemical speciation analysis for Cr. The particles were classified into groups of iron oxides and iron, carbonates, silicates, quartz and carbonaceous debris. Electron micrographs showed that the Fe-rich particles in the PM2.0 size fraction typically consisted of aggregates of nano-sized hematite crystals that were randomly oriented, had round shapes and diameters of 5–15 nm. In addition to hematite, a minor fraction of the iron oxide particles also contained magnetite. In addition, the PM2.0-fraction particles typically had a rugged surface with layered or granular morphologies. Mössbauer spectroscopy suggested that hematite was a major Fe-bearing species in the PM10–2.0 size fraction; its mass contribution to the Fe was 36%. Further constituents (ferrite, carbides and FeOOH) were also identified. The water soluble amounts of Cr for the underground railway station and city center were similar. In the PM10–2.0 size fraction, practically all dissolved Cr had an oxidation state of three, which corresponds to ambient conditions. In the PM2.0 size fraction, however, approximately 7% of the dissolved Cr was present as Cr(VI), which was different from that for the urban aerosol. It is suggested that the increased adverse health effects of aerosol particles in metros with respect to ambient outdoor particles is linked to the differences in the oxidation states, surface properties or morphologies.  相似文献   

9.
Subway particle samples collected at four underground subway stations in Seoul, Korea were characterized by a single-particle analytical technique, low-Z particle electron probe X-ray microanalysis. To clearly identify indoor sources of subway particles, four sets of samples collected in tunnels, at platforms, near ticket offices, and outdoors were investigated. For the samples collected in tunnels, Fe-containing particles predominate, with relative abundances of 75–91% for the four stations. The amounts of Fe-containing particles decrease as the distance of sampling locations from the tunnel increases. In addition, samples collected at the platform in subway stations with platform screen doors (PSDs) that limit air-mixing between the platform and the tunnel showed marked decreases in relative abundances of Fe-containing particles, clearly indicating that Fe-containing subway particles are generated in the tunnel. PM10 mass concentration levels are the highest in the tunnels, becoming lower as the distance of sampling locations from the tunnel increases. The extent of the decrease in PM10 in stations with PSDs is also larger than that in stations without PSDs. The results clearly indicate that Fe-containing particles originating in tunnels predominate in the indoor microenvironment of subway stations, resulting in high indoor PM10 levels, and that PSDs play a significant role in reducing Fe-containing particles at platforms and near ticket offices.  相似文献   

10.
This study investigates the source identification of nickel in the aerosol of the Tokyo metropolitan area. TSP and PM2.5 samples were collected daily from August to November 2004. The samples were examined by means of the water-extraction method, followed by elemental analysis and SEM/EDX analysis. We distinguished two types of atmospheric nickel sources in the studied area: (1) particles derived from heavy oil combustion, distributed mostly in fine particles such as PM2.5, relatively water-soluble, and containing vanadium and (2) particles derived from mechanical abrasion/erosion of metallic surfaces, distributed in coarse particles such as TSP, relatively water-insoluble, and containing chromium.  相似文献   

11.
The geochemistry of PM10 filter samples collected at sea during the Scholar Ship Atlantic–Mediterranean 2008 research cruise reveals a constantly changing compositional mix of pollutants into the marine atmosphere. Source apportionment modelling using Positive Matrix Factorization identifies North African desert dust, sea spray, secondary inorganic aerosols, metalliferous carbon, and V–Ni-bearing combustion particles as the main PM10 factors/sources. The least contaminated samples show an upper continental crust composition (UCC)-normalised geochemistry influenced by seawater chemistry, with marked depletions in Rb, Th and the lighter lanthanoid elements, whereas the arrival of desert dust intrusions imposes a more upper crustal signature enriched in “geological” elements such as Si, Al, Ti, Rb, Li and Sc. Superimposed on these natural background aerosol loadings are anthropogenic metal aerosols (e.g. Cu, Zn, Pb, V, and Mn) which allow identification of pollution sources such as fossil fuel combustion, biomass burning, metalliferous industries, and urban–industrial ports. A particularly sensitive tracer is La/Ce, which rises in response to contamination from coastal FCC oil refineries. The Scholar Ship database allows us to recognise seaborne pollution sourced from NW Africa, the Cape Verde and Canary islands, and European cities and industrial complexes, plumes which in extreme cases can produce a downwind deterioration in marine air quality comparable to that seen in many cities, and can persist hundreds of kilometres from land.  相似文献   

12.
Atmospheric particulate matter (PM10) was collected simultaneously at three sites in the West Coast of Portugal, during an intensive campaign in August 1996. The sites were located in line with the breezes blowing from the sea. The collected aerosol was analysed in relation to black and organic carbon content. The particulate organic matter was extracted with solvents and characterised by gas chromatography and mass spectrometry (GC–MS). Most of the organic mass identified consists of alkanes, polycyclic aromatic hydrocarbons (PAH), ketones, aldehydes, alcohols and fatty acids with both biogenic and anthropogenic origin. Many photochemical products from volatile organic compounds emitted by vegetation were also detected. Biomarkers such as 6,10,14-trimethylpentadecanone, abieta-8,11,13-trien-7-one and Patchouli alcohol were observed at higher concentrations in the rural sites. Samples from the urban site present lower values of “carbon preference index” and higher concentrations of petrogenic/pyrogenic species, such as PAH. The PM10 concentrations and the total organic extract measured for the more interior site were generally lower, indicating that dispersion and dry deposition into the forest canopy were more important during the transport of the air masses than aerosol production by condensation and photochemical reactions. On the contrary, the ratio between organic and black carbon was, in general, lower at sites near the coast, especially for compounds that evaporate at lower temperatures. The organic aerosol composition also seems to be strongly dependent on the meteorology.  相似文献   

13.
A systematic method combining water and diluted-acid extractions has been developed for the manifold evaluation of soluble and insoluble fractions in ambient aerosol. The pre-washed regenerated cellulose membrane filter was used as a collection medium of a low-volume air sampler. The collection time of 7–14 days was required to obtain the sample amounts enough for the systematic analysis. Simple and efficient extraction procedures using the filtration of water and 0.1 M hydrochloric acid were recommended in order to obtain the information about the dissolution behaviors of various elements in the aerosol. Soluble components in both the extracts were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) and ion chromatography (IC). These extraction procedures were also preferred to prepare thin-layer specimens suitable to the succeeding X-ray fluorescence spectrometry (XRF) for insoluble components. Elemental compositions of the extraction residues were conveniently determined by the XRF calibrated with thin-layer standard specimens prepared with activated carbon. The determination of the 17 representative elements (Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Br, Pb) in these three fractions from an aerosol sample was performed rapidly within 4 h. The proposed systematic method was applied to PM2.5 and PM10 aerosol samples collected in Kofu City, Central Japan, and the enrichment behaviors of various elements and their source apportionment such as soil, anthropogenic substances and vehicle exhaust particulates could be demonstrated by the present method.  相似文献   

14.
PM2.5 and PM2.5–10 aerosol samples were collected in four seasons during November 2010, January, April, and August 2011 at 13 urban/suburban sites and one background site in Western Taiwan Straits Region (WTSR), which is the coastal area with rapid urbanization, high population density, and deteriorating air quality. The 10 days average PM2.5 concentrations were 92.92, 51.96, 74.48, and 89.69 μg/m3 in spring, summer, autumn, and winter, respectively, exceeding the Chinese ambient air quality standard for annual average value of PM2.5 (grade II, 35 μg/m3). Temporal distribution of water-soluble inorganic ions (WSIIs) in PM2.5 was coincident with PM2.5 mass concentrations, showing highest in spring, lowest in summer, and middle in autumn and winter. WSIIs took considerable proportion (42.2~50.1 %) in PM2.5 and PM2.5–10. Generally, urban/suburban sites had obviously suffered severer pollution of fine particles compared with the background site. The WSIIs concentrations and characteristics were closely related to the local anthropogenic activities and natural environment, urban sites in cities with higher urbanization level, or sites with weaker diffuse condition suffered severer WSIIs pollution. Fossil fuel combustion, traffic emissions, crustal/soil dust, municipal constructions, and sea salt and biomass burnings were the major potential sources of WSIIs in PM2.5 in WTSR according to the result of principal component analysis.  相似文献   

15.
An apartment bedroom located in a residential area of Aveiro (Portugal) was selected with the aim of characterizing the cellulose content of indoor aerosol particles. Two sets of samples were taken: (1) PM10 collected simultaneously in indoor and outdoor air; (2) PM10 and PM2.5 collected simultaneously in indoor air. The aerosol particles were concentrated on quartz fibre filters with low-volume samplers equipped with size selective inlets. The filters were weighed and then extracted for cellulose analysis by an enzymatic method. The average indoor cellulose concentration was 1.01 ± 0.24 μg m?3, whereas the average outdoor cellulose concentration was 0.078 ± 0.047 μg m?3, accounting for 4.0% and 0.4%, respectively, of the PM10 mass. The corresponding average ratio between indoor and outdoor cellulose concentrations was 11.1 ± 4.9, indicating that cellulose particles were generated indoors, most likely due to the handling of cotton-made textiles as a result of routine daily activities in the bedroom. Indoor cellulose concentrations averaged 1.22 ± 0.53 μg m?3 in the aerosol coarse fraction (determined from the difference between PM10 and PM2.5 concentrations) and averaged 0.38 ± 0.13 μg m?3 in the aerosol fine fraction. The average ratio between the coarse and fine fractions of cellulose concentrations in the indoor air was 3.6 ± 2.1. This ratio is in line with the primary origin of this biopolymer. Results from this study provide the first experimental evidence in support of a significant contribution of cellulose to the mass of suspended particles in indoor air.  相似文献   

16.
The ambient air of the Monterrey Metropolitan Area (MMA) in Mexico frequently exhibits high levels of PM10 and PM2.5. However, no information exists on the chemical composition of coarse particles (PMc = PM10 – PM2.5). A monitoring campaign was conducted during the summer of 2015, during which 24-hr average PM10 and PM2.5 samples were collected using high-volume filter-based instruments to chemically characterize the fine and coarse fractions of the PM. The collected samples were analyzed for anions (Cl, NO3, SO42–), cations (Na+, NH4+, K+), organic carbon (OC), elemental carbon (EC), and 35 trace elements (Al to Pb). During the campaign, the average PM2.5 concentrations did not showed significance differences among sampling sites, whereas the average PMc concentrations did. In addition, the PMc accounted for 75% to 90% of the PM10 across the MMA. The average contribution of the main chemical species to the total mass indicated that geological material including Ca, Fe, Si, and Al (45%) and sulfates (11%) were the principal components of PMc, whereas sulfates (54%) and organic matter (30%) were the principal components of PM2.5. The OC-to-EC ratio for PMc ranged from 4.4 to 13, whereas that for PM2.5 ranged from 3.97 to 6.08. The estimated contribution of Secondary Organic Aerosol (SOA) to the total mass of organic aerosol in PM2.5 was estimated to be around 70–80%; for PMc, the contribution was lower (20–50%). The enrichment factors (EF) for most of the trace elements exhibited high values for PM2.5 (EF: 10–1000) and low values for PMc (EF: 1–10). Given the high contribution of crustal elements and the high values of EFs, PMc is heavily influenced by soil resuspension and PM2.5 by anthropogenic sources. Finally, the airborne particles found in the eastern region of the MMA were chemically distinguishable from those in its western region.

Implications: Concentration and chemical composition patterns of fine and coarse particles can vary significantly across the MMA. Public policy solutions have to be built based on these observations. There is clear evidence that the spatial variations in the MMA’s coarse fractions are influenced by clearly recognizable primary emission sources, while fine particles exhibit a homogeneous concentration field and a clear spatial pattern of increasing secondary contributions. Important reductions in the coarse fraction can come from primary particles’ emission controls; for fine particles, control of gaseous precursors—particularly sulfur-containing species and organic compounds—should be considered.  相似文献   


17.
The Monterrey Metropolitan Area (MMA) has shown a high concentration of PM2.5 in its atmosphere since 2003. The contribution of possible sources of primary PM2.5 and its precursors is not known. In this paper we present the results of analyzing the chemical composition of sixty 24-hr samples of PM2.5 to determine possible sources of PM2.5 in the MMA. The samples were collected at the northeast and southeast of the MMA between November 22 and December 12, 2007, using low-volume devices. Teflon and quartz filters were used to collect the samples. The concentrations of 16 airborne trace elements were determined using x-ray fluorescence (XRF). Anions and cations were determined using ion chromatography. Organic carbon (OC) and elemental carbon (EC) were determined by thermal optical analysis. The results show that Ca had the maximum mean concentration of all elements studied, followed by S. Enrichment factors above 50 were calculated for S, Cl, Cu, Zn, Br, and Pb. This indicates that these elements may come from anthropogenic sources. Overall, the major average components of PM2.5 were OC (41.7%), SO4 2? (22.9%), EC (7.4%), crustal material (11.4%), and NO3 ? (12.6%), which altogether accounted for 96% of the mass. Statistically, we did not find any difference in SO4 2? concentrations between the two sites. The fraction of secondary organic carbon was between 24% and 34%. The results of the factor analysis performed over 10 metals and OC and EC show that there are three main sources of PM2.5: crustal material and vehicle exhaust; industrial activity; and fuel oil burning. The results show that SO4 2?, OC, and crustal material are important components of PM2.5 in MMA. Further work is necessary to evaluate the proportion of secondary inorganic and organic aerosol in order to have a better understanding of the sources and precursors of aerosols in the MMA.

Implications: The MMA has become one of the most air polluted areas in Mexico. High levels of PM2.5 have been measured and effective actions need to be taken to reduce air pollution and the associated health risks. Several sources of primary PM2.5 and precursors of secondary particles exist in the MMA. This study provides valuable information for the local environmental authorities to identify possible sources of primary PM2.5 and its precursors. The effectiveness of the actions taken to improve air quality will lead to health benefits for the population, reducing their associated costs.  相似文献   

18.
ABSTRACT

Aerosol samplers collect material that is locally generated as well as that transported from upwind; knowing the extent of the area from which the sample is drawn is necessary for proper interpretation of sampler data. The U.S. Environmental Protection Agency (EPA) PM2.5 monitoring guidelines recognize a conceptual hierarchy of sampler spatial representation, but provide no objective measures of a site’s spatial representativeness. A case study of a sampler tributary area in central California provides insights into the factors that determine a sampler’s spatial representation. Winter diurnal cycles of fine particle concentrations at places of habitation ranging from urban cores to small farm towns show a marked cycle that can be linked to local human activity. Assessment of the possible causes of the observed cycles leads to the hypothesis that local sources dominate primary particle mass in winter samples. The hypothesis was tested using a simple model to relate routine 24-hr PM10 and PM2.5 samples to a sampler’s surroundings. Model results indicate that even minor sources very close to a sampler will overwhelm any regional component in a sample. The results for the cases studied also demonstrate that, in winter, most coarse (PM10-2.5) particles collected are less than 2 hr old, and most primary fine (PM2.5) particles are less than 4 hr old. Even on days that are not truly “stagnant,” samplers are very strongly influenced by their immediate surroundings (distances less than 10 km), and only weakly influenced by regional emissions.

The implications for interpretation of sample analyses are as follows: 1. Typical PM sampling networks are unlikely to represent regional conditions;

2. Similarity of samples in time and space between widely separated samplers probably arises from sampling analogous local environments rather than a uniformly mixed regional air mass;

3. Even weak sources near a sampler will prevent regionally representative samples, so that “background” specification in models can be strongly skewed by misapplication of sampler data;

4. Source-receptor relationships within a single modeling grid cell can cause measured and modeled source impacts at a sampler to diverge by orders of magnitude, even for grid cells as small as 1 km; and

5. Differential deposition of coarse and fine particles will skew source apportionment by chemical tracers unless the tracers and the source emissions have the same size distribution.

  相似文献   

19.
Abstract

A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002–2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5–10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09–11.31 μm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.  相似文献   

20.
High concentration of fine airborne particulates is considered one of the major environmental pollutants in Santiago, the Chilean Capital city, which in 1997 was declared a PM10 saturated zone. To date there is no control of the amounts of fine and coarse aerosols concentrations and the source and chemical characterizations of the PM2.5 particulates in the carbonaceous fractions are not well known even though this fraction could be represented almost the 50% in mass of the PM2.5.In this work, we present for the first time determinations of primary organic aerosol (POA) and secondary organic aerosol composition (SOA) fractions of the total mass of PM2.5 particulates collected in the urban atmosphere of Santiago City. Our purpose is to know the anthropogenic contributions to the formation of SOA. To accomplish this we used the elemental carbon (EC) and organic carbon (OC) determinations developed by automatic monitoring stations installed in the city during the period 2002–2005, with a particular analysis of the summer time occurred in February 2004. Based on the EC tracer method, we have estimated the POA and SOA fraction and our data permit us to estimate the SOA reaching up to 20% of total organic aerosol matter, in good agreement to other measurements observed in large cities of Europe and U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号